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Open Problems from CCCG 2017

Joseph O’Rourke∗

The following is a description of the problems pre-
sented on July 26th, 2017 at the open-problem session of
the 29th Canad. Conf. Computational Geometry held
at Carleton University, in Ottawa.

Near-Delaunay Triangulations
Joseph O’Rourke
Smith College
jorourke@smith.edu

Let T be a triangulation of a finite point set in the
plane. Say that a triangulation is near-Delaunay if
the opposite angles α and β of each pair of trian-
gles that share an edge sum to at most π + ε, for
ε > 0. Note that, if ε = 0, then T is Delaunay;
see Figure 1. Near-Delaunay triangulations can be
constructed by an edge-flipping algorithm.

Figure 1: Left: Delaunay triangles. Right: Near-
Delaunay triangles.

Have these triangulations been defined previ-
ously? Do they have any nice properties?

Update. Scott Mitchell suggested “measuring the
signed distance between circumcenters of triangles
sharing an edge; for Delaunay triangulations this
is simply the dual edge length and non-negative,
but for non-DT the circumcenters can be in the
wrong order and hence have a negative distance
between them. So one could look at the ratio of the
dual edge signed-length to the primal edge length
(for 2D triangulations) as a continuous measure of
how close it is to non-Delaunay.” This concept has
appeared in the literature on Hodge-optimized
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triangulations, e.g., [MM+11].
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Counting Closed Billiard Paths
Joseph O’Rourke
Smith College
jorourke@smith.edu

Let a collection of rectangles, all axis-aligned, all
enclosed in one rectangle, have a total of n edges.
A simple, closed billiard path is a path that is
(a) closed, (b) non-self-intersecting, and so forms a
simple polygon, (c) never touches a rectangle cor-
ner, and (d) all reflections are mirror reflections.
Label all rectangle edges, and define the signature
of a billiard path by the labels of the edges from
which it reflects, reducing repeated edge reflections
(ab)k to ab. Thus in Figure 2, the path 12373(56)24

Figure 2: A billiard path of signature length 8.

has signature 12373564, reducing (56)2 to 56.

For simple, closed billiard paths, for any arrange-
ment of rectangles of a total of n edges:

1. What is the maximum length of such a signa-
ture?
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2. What is the largest number of distinct signa-
tures achievable for one fixed reflection angle
(45◦ in the figure).

3. What is the largest number of distinct signa-
tures achievable for paths at arbitrary reflec-
tion angles?

Tubes in Space
Joseph O’Rourke
Smith College
jorourke@smith.edu

Let S be a unit-radius sphere in R3. Place n lines
intersecting S to minimize the maximum distance
between any two points in S, where distance is mea-
sured as follows. Distance off the lines is Euclidean
distance, but the distance between any two points
on one line is zero. The lines are like very fast trans-
portation tubes. See Figure 3. One line L (n = 1)

Figure 3: n = 2 skew transport tubes.

is useless for pairs of points on antipoldal on the
equator formed by the plane perpendicular to L:
their distance remains 2. It was observed at the
presentation that two lines are also useless: antipo-
dal points on a great circle orthogonal to the two
lines are still 2 apart. Three x, y, z-axis lines seem
best, apparently reducing the maximum distance

to 2
√

2
3 ≈ 1.63. In two dimensions, it seems that

equi-angular lines through the center of a circle is
the optimal arrangement. All these are conjectures.

Variations:

• Within a unit cube rather than a sphere.

• Assign off-tube speeds 1, and in-tube speeds
s > 1.

• The same questions in Rd.

General-position subconfigurations
David Eppstein
University of California, Irvine
eppstein@uci.edu

For the purposes of this problem, a set of points is
in general position if no line contains three or more
of its points. This problem’s first two parts concern
the d-dimensional point set {−1, 0, 1}d (a grid of
size three in each dimension), shown in Figure 4 in
projection to the plane.

Figure 4: {−1, 0, 1}d for d = 4, from [E17].

(a) These points can be partitioned into d + 1
subsets, each in general position, by group-
ing points according to how many coordinates
are zero. (The figure’s colors show this parti-
tion.) The Hales–Jewett theorem [HJ63, S88]
implies that any general-position partition has
ω(1) subsets. (This holds even for the weaker
condition that no three points form a mono-
tonic line, one in which the three points can be
ordered so that all coordinates are increasing
or constant.) Can these points be partitioned
into fewer than d+1 general-position subsets?

(b) The largest subset in this partition (for which
the number of zero coordinates of each point is
approximately d/3) has size Θ(3d/

√
d). The

density version of the Hales–Jewett theorem
implies that all general-position subsets have
size o(3d) [FK89, F91]. Is there a general-
position subset with size ω(3d/

√
d)?

(c) How well can the largest general-position sub-
set and the partition into the fewest general-
position subsets be approximated? Is it
achievable in polynomial time for arbitrary
planar point sets? Both problems are NP-
complete and APX-hard, and can be approx-
imated within a factor of O(

√
n) by a sim-

ple greedy algorithm that adds each point
(in arbitrary order) to the first subset in
which it is in general position [E17]. Re-
sults of Füredi, Payne and Wood, relating
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general-position subsets to lines with many
points [F91, PW13], suggest that it may be
possible to shave a logarithmic factor from this
approximation ratio. But is O(n1/2−ε) possi-
ble, for some ε > 0? (It is safe to consider
only two dimensions, because points in higher
dimensions can be projected to the plane with-
out changing collinearity.)
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Constructing separators for Geometric Graphs
Stefan Langerman
Université Libre de Bruxelles (ULB)
stefan.langerman@ulb.ac.be

Given a planar graph G = (V,E), |V | = n, the Pla-
nar Separator theorem of Lipton and Tarjan [LT79]
states that there always exists a set of O(

√
n) ver-

tices in V whose removal partitions the graph G
into disjoint connected subgraphs, each of size at
most 2n/3. Such a separator can be constructed in
O(n) time when the graph is provided.

There are many situations however when a graph
is defined implicitly, by a collection of points or
of geometric objects, such as for example, the De-
launay triangulation of a set of n points, the edge
structure of the convex hull of n points in R3, or
the intersection graph of a collection of disks in the
plane where no point is covered by more than two
disks. The explicit construction of, e.g., a Delau-
nay triangulation for n points in the plane requires
O(n log n) time, however it might be possible to
construct a separator without having to construct
the graph explicitly.

Question 1: Given a set S of n points in R2,
is it possible to find a separator of the Delaunay
triangulation of P in time O(n)?

Question 2: Given a set S of n points in R3, is
it possible to find a separator of the convex hull of
P in time O(n)?

For some geometric graphs, e.g., the disk-
intersection graph mentioned above, a separator
can be found in O(n) time [MTTV97].
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Optimizing Sum of Products
Bereg et. al. (posed by Lily Li)
Simon Fraser University
xyl9@sfu.ca

Given sequences A = 〈a0, a1, ..., an−1〉 and B =
〈b0, b1, ..., bn−1〉 of real numbers, find a permutation
π of A which maximizes

n−1∑
i=0

aπ(i)aπ(i+1)bi

where the indices are taken modulo n. If bi = 1
for all i, then the solution is any cyclic shift of the
sequence 〈a′0, a′2, ..., a′3, a′1〉 where a′0 ≥ a′1 ≥ a′2 ≥
a′3 ≥ · · · .

This problem is a modified version of an open
problem presented in [BD+16]. The paper showed
that a variant of the problem allowing the permu-
tation of both A and B can be solved optimally
in O(n log n) time. It is not known if the posed
problem is NP−Hard.
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Compatible Triangulations of Labeled Point Sets
Debajyoti Mondal and Anna Lubiw
University of Waterloo, Canada
dmondal@uwaterloo.ca, alubiw@uwaterloo.ca

Let P1, P2 be a pair of point sets, each containing
n points that are labeled from 1 to n. A pair of
triangulations T1 and T2 of P1 and P2 are called
compatible triangulations or joint triangulations if
for every face, the clockwise cyclic order of vertices
on the boundary is the same, e.g., see Fig. 5(a).
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Figure 5: (a) A pair of point sets and their compatible
triangulations. (b) A pair of point sets that do not admit
compatible triangulations. Any triangulation of P1 would
contain the edges (v1, v4), (v2, v5), (v3, v6), and they in-
tersect in P2.

Not all pairs of point sets admit compatible tri-
angulations, even when they have the same num-
ber of points on the convex-hulls, e.g., see Fig 5(b).
Saalfeld in 1987 [S87] proved that, using Steiner
points, any pair of point sets with rectangular
convex-hull can be triangulated compatibly. In
fact, O(n2) Steiner points suffice for every point
set [BSW97], and Ω(n2) Steiner points are some-
times necessary [PSS96]. If we are allowed to
choose the labels, then such compatible triangula-
tions are conjectured to exist without Steiner points
(when P1 and P2 have the same number of points
on the convex hull) [AAHK03].

In this context we ask the following question:
Does there exist an algorithm that, given a pair
of labeled point sets, can decide in polynomial
time whether they admit compatible triangulations

without Steiner points?

The analogous question for compatible trian-
gulations of polygons is solvable in polynomial
time [ASS93]. The more general question of min-
imizing the number of Steiner points required for
compatible triangulations of polygonal regions is
NP-hard [LM17].
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Binary trees in the {�,�,—}-grid
Therese Biedl
University of Waterloo
biedl@uwaterloo.ca

The {�,�,—}-grid consists of the points with in-
teger coordinates, and all horizontal or diagonal
lines through such points. Given a binary tree T ,
we want an embedding of T in the {�,�,—}-grid,
i.e., vertices are mapped to distinct grid-points,
and edges are mapped to straight-line segments
along the grid in such a way that no two edges
cross. The width of such a drawing is the maxi-
mal x-coordinate (presuming that the minimal x-
coordinate is 1). The main question is:

How much width (relative to the number
of vertices n) is sufficient to embed any
binary tree in the {�,�,—}-grid?

The question could also be asked for variations
where we want an upward drawing (i.e., the tree
is rooted and the y-coordinate of the parent of a
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node v is no smaller than the y-coordinate of v)
and/or an order-preserving drawing (i.e., the order
of edges around each node is fixed and must be
respected in the drawing).

Figure 6: The {�,�,—}-grid, and embedding a com-
plete binary tree in it.

It is known that for the complete binary tree
we need width Ω(

√
n/ log n) [B17]. In the same

paper, it was also argued that width O(
√
n) can

be achieved for the complete binary tree, by tak-
ing an orthogonal construction due to Creszenci et
al. [CDP92] and rotating it by 45◦. Can we achieve
width O(

√
n) for all binary trees?
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Gabriel Circle Range Counting
Rasoul Shahsavarifar
University New Brunswick
Ra.Shahsavari@unb.ca

Suppose that S = {x1, x2, ...., xn} ⊆ R2 and
q ∈ R2. Can we answer the following question
with O(n) storage, O(n log n) expected preprocess-
ing time, and sub-O(n1/2+ε) (optimally O(log n))
query time?
Question: How many xi fall inside the Gabriel
circle GC(q, xk) for some 1 ≤ k ≤ n? See Figure 7.

The Gabriel circle GC(a, b) is the circle with di-
ameter ab. The characteristic of having a com-
mon point q among all Gabriel circles may help
to answer the question. A query time O(n1/2+ε) is
achieved in [AMM13] for general circle range count-
ing.

Figure 7: Point q is shared among all Gabriel circles
GC(q, xk).
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Hamiltonian Order-k Delaunay Graphs
Prosenjit Bose
Carleton University
jit@scs.carleton.ca

Given a set P of n points in the plane, a pair of
points x, y ∈ P has order k if there exists a disk
with x and y on its boundary containing at most
k points of P . The edges of a standard Delaunay
triangulation have order 0. A graph whose edges
consist of every pair of points with order at most k
will be referred to as the order-k Delaunay graph.
The order-k Gabriel graph, which is a subgraph of
the order-k Delaunay graph, is the graph whose
edges consist of every pair of points whose Gabriel
disk has contains at most k points.

Dillencourt [Dil87] showed that there exist point
sets whose Delaunay triangulation is not Hamilto-
nian. Dillencourt [Dil90] also showed that the De-
launay triangulation is 1-tough, which when n is
even implies that it contains a perfect matching.
Abellanas et al. [ABG+09] showed that the order-
15 Gabriel graph is Hamiltonian. Subsequently,
Kaiser et al. [KSC15] showed that the order-10
Gabriel graph is Hamiltonian.

Conjecture: The order-1 Delaunay graph is
Hamiltonian.
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