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A Paper on Pencils: A Pencil and Paper Puzzle
Pencils is NP-Complete
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Abstract

Pencils is a paper-and-pencil puzzle created by
Japanese publisher Nikoli. A puzzle is an m-by-n grid
where some squares hold a number or a pencil tip that
is pointed in one of the cardinal directions. The goal is
to draw ‘pencils’ that partition the squares of the grid.
Each pencil occupies 2k + 1 squares for some k ≥ 1. A
k-pencil has a horizontal or vertical body of length k,
a tip pointing away from one end of the body, and a
lead that is a path of k squares starting from the tip.
In addition, any number inside a body must match the
body’s size. We show that Pencils is NP-complete even
when limited to 1-pencils and 2-pencils.

1 Introduction

This article proves the NP-completeness of a new paper-
and-pencil puzzle by Japanese publisher Nikoli. The
puzzle is Pencils (ペンシルズ) and it was introduced
in Puzzle Communication magazine Volume 158 [2].

In this article we use adjacent and connected to mean
orthogonally adjacent and orthogonally connected.

1.1 Rules of the Puzzle

Pencils is played on a board, which is an m-by-n grid
where each square is initially empty or filled with a
number or pencil tip pointed in a cardinal direction.
A player draws pencils which each occupy 2k + 1 con-
nected squares for some k ≥ 1. A k-pencil consists of
the following parts:

(P1) The body is a horizontal or vertical line of k squares.
(P2) The tip is 1 square after one end of the body, and

it is pointed away from the body.
(P3) The lead is a line through the center of k + 1 con-

nected squares starting from and including the tip.

The goal of Pencils is to draw pencils on the given grid
subject to the following rules [3]:

(P4) The pencils partition the m · n squares of the grid.
(P5) If x is a number on the board, then x must be

drawn inside of the body of some x-pencil.
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With regard to (P5), an individual x-pencil may have
a single x, multiple x’s, or no x’s inside of it.

(a) Pencils puzzle. (b) Solution.

Figure 1: A 4-by-4 Pencils puzzle that uses 1-pencils
and 2-pencils.

A simple puzzle and its solution (originally published
in Puzzle Communication Nikoli Volume 162 [4]) is dis-
played in Figure 1, and its solution process is shown in
Figure 2. The Pencils decision problem answers ‘yes’
or ‘no’ depending on whether an input board is valid
and is solvable based on rules (P1)-(P5).

(a) The tip above
the 1-pencil forces
a pencil body.
The tip above
the 2-pencil must
be part of the 2-
pencil due to the
2-pencil position.

(b) Placement of
the 1-pencil and 2-
pencil bodies and
tips are forced.

(c) Leads for the
1-pencil and the
left 2-pencil are
drawn in, leaving
only one solution
for the remaining
leads.

Figure 2: Solving the Pencils puzzle in Figure 1.

Notice that a solution to an m-by-n board must fill
each of the m ·n squares with a finite number of possible
symbols. More specifically, a square is covered by a hor-
izontal or vertical body, a tip that points in one of four
directions, or by a lead that proceeds horizontally, ver-
tically, or turns 90o. Therefore, we can guess a possible
solution in non-deterministic polynomial-time. Rules
(P1)–(P5) can then be checked in polynomial-time.

Remark 1 Pencils is in NP.
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1.2 Outline

The central proof of this paper will be done by reduc-
tion from a Boolean satisfiability problem. The spe-
cific source problem is included in Section 3 along with
an outline of the reduction. Section 4 introduces our
gadgets, and then Section 5 proves that Pencils is
NP-complete even when restricted to 1-pencils and 2-
pencils. Section 6 concludes with open problems. We
begin by characterizing the rectangular regions that can
be filled with pencils in Section 2.

A preliminary unpublished version of this article was
announced on twitter by @postpostdoc [5].

2 Empty Rectangles

When solving a pencils puzzle, the solver sometimes
faces empty regions of the board that must be com-
pletely filled with new pencils. Similarly, we will need
to understand how empty space can be filled during our
reduction. In this section we provide a full character-
ization of when rectangular regions can be filled. We
formulate this result in terms of solving empty puzzle
boards, but we will use the result to solve rectangular
“sub-puzzles” inside of larger puzzles.

Define an empty board to be an m-by-n grid where
each square is empty.

Lemma 1 Suppose that B is an empty m-by-n board.
The decision problem Pencils(B) is True if and only
if m · n /∈ {1, 2, 4}.

Proof. We begin by considering the negative cases.
Observe that the smallest individual pencil (i.e. a 1-
pencil) covers 3 squares. Thus, if B has area 1 or 2,
then is too small to be filled with a pencil. Similarly,
rectangles of area 4 can only admit a 1-pencil, which
then leaves one unfillable square.

Now we consider the remaining positive cases. Since
the board B can be rotated 90o without changing the
result of Pencils(B), we can assume without loss of
generality that m ≤ n. If the area of B is 3, then it
must be that m = 1 and n = 3, and in this case it can
be filled with a single 1-pencil. In the remaining cases
the area of B is greater than 4, so we can assume that
n ≥ 3.

Figure 3: A 5-by-4 grid with a line moving back-and-
forth along each row though the centers of the squares
in boustrophedon order.

Our strategy is to draw the pencils one after another
from end-to-lead in a single line. This line will proceed
back-and-forth along each row starting from the top-left
square, as illustrated in Figure 31. More specifically, we
will primarily draw 1-pencils along the line, since they
can turn corners. Since 1-pencils occupy 3 squares, we
now proceed in three cases based on the area modulo 3.

• If the area is 3k, then we draw successive 1-pencils
along the line until they fill the entire rectangle.

• If the area 3k + 2, then recall that our previous
assumption that n ≥ 3. Therefore, we can begin
the line with a 2-pencil. This is because the board
is wide enough to contain its body and tip, and its
lead can bend if n = 3 or n = 4. Then we fill the
remainder of the line with 1-pencils.

• If the area is 3k+ 1, then we consider two cases. If
k = 1, then the area is 3k + 1 = 7, and it must be
that n = 1 and m = 7. In this case the rectangle
can be filled with a single 3-pencil. Otherwise, if
k > 1, then the area is 3k+ 1 ≥ 10. In this case we
can draw two 2-pencils along the line, one starting
at the beginning of the line and one starting at the
end of the line, and then fill in the remainder of the
line with 1-pencils.

�

Now we specialize the previous lemma based on 1-
pencils and 2-pencils.

Corollary 1 If B is an empty m-by-n board, then it
can be filled entirely with 1-pencils and 2-pencils if and
only if m · n /∈ {1, 2, 4, 7}.

Proof. Observe that the proof of Lemma 1 uses only 1-
pencils and 2-pencils, except in the case that m · n = 7.
Furthermore, 1-pencils and 2-pencils occupy 3 and 5
squares respectively, so it is impossible for them to fill
a board of area 7. �

3 Source Problem

Our hardness proof reduces from a satisfiability prob-
lem, and in this section we review relevant terminology
and results. Then we give a high-level outline of our
reduction.

3.1 Rectilinear Planar 1-in-3SAT

A (Boolean) variable can be assigned a truth value of
True or False. If xi is a variable, then its positive
literal is xi, and its negative literal is ¬xi. A (Boolean)
formula is in 3 conjunctive normal form (3CNF) if it is

1This back-and-forth order can be described as boustrophedo-
nic which is Greek for “as the ox plows”.
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written φ = C1 ∧ C2 ∧ . . . ∧ Cm where each clause Ci

has the form (`i,1 ∨ `i,2 ∨ `i,3) and each `i,j is a literal.
A clause is positive if every one of its literals is posi-
tive, and a 3CNF formula is positive if every clause is
positive. The 3CNF formula φ is a yes instance of the
3sat decision problem if its variables can be assigned so
that φ evaluates to true; otherwise φ is a no instance.
In other words, 3sat asks if there is an assignment in
which every clause has at least one literal that evalu-
ates to true. The 1-in-3sat decision problem instead
asks if there is a variable assignment in which exactly
one literal evaluates to true. A formula is planar if the
bipartite incidence graph of variables and clauses is pla-
nar. A formula is rectilinear planar if the graph can be
embedded into a grid in such a way that the vertices
can be represented by horizontal line segments and the
edges can be drawn as vertical lines.

Theorem 2 (Mulzer and Röte [1]) rectilinear
positive planar 1-in-3sat is NP-Complete.

We will drop the positive condition from Theorem 2
and instead use rectilinear planar 1-in-3sat as our
source problem. Since every instance of the former prob-
lem is an instance of the latter problem, we can easily
conclude that the latter is also NP-complete.

3.2 Reduction Outline

Our reduction constructs a planar graph that represents
the 1-in-3 satisfiability (or not) of a logical statement
in 3CNF. The graph connects variables to their literals
in the statement, with not gates appearing along the
connections to negative literals. The reduction will use
“variable assignment” gadgets—one for each variable—
where the player will be able to select whether a variable
has a truth value of True or False. Then, wires will
carry these truth values to the corresponding literals in
each clause. Because a variable can appear more than
once in a statement, we include a gadget to duplicate its
truth value onto two different wires, thereby ensuring
that the choice is consistent in each clause it appears
in. Finally, because the statement is in 3CNF, we will
also create a gadget that represents an arbitrary 1-in-3
clause, with wire inputs. Using these gadgets, we will
reduce the decision problem, Planar 1-in-3 sat to
Pencils, by transforming a particular logical statement
to a pencils board.

4 Gadgets

In this section we present the various gadgets used in
our reduction.

Lemma 3 (Wire) The gadget shown in Figure 4a
transmits a truth value from one part of the puzzle to
another as an edge in planar 1-in-3 sat.

Proof. Suppose that we have the left 2-pencil already
filled in, pointing into the wire (the direction is forced
by the variable assignment gadget, shown later). Then
the adjacent 2-pencil must point in the same direction
as its neighbor, since there is not room for it to point in
the opposite direction. Furthermore, the pencil can nei-
ther overlap with its neighbor nor leave a gap of size 1
between itself and its neighbor (as this would be unfill-
able), so the pencil must have the same position relative
to the predrawn 2 as its neighboring 2-pencil. Thus, a
2-pencil/predrawn 2 positioning assigned at the front of
the wire gets precisely transmitted to all other parts of
the wire. �

Using this lemma, we can establish the formalism that
if a wire has its 2-pencils with the number 2 in the square
adjacent to the tip, then it carries False, and if the 2
is in the other square, then it carries True.

Currently, our wires require that all of our gadgets are
a multiple of five squares apart, since the 2’s are spaced
exactly that far apart in our wire gadget. However, we
can deal with this issue with the “modularity switcher”
gadget in Figure 5a.

Lemma 4 (Modularity Switch) The gadget shown
in Figure 5a preserves the truth value that a surrounding
wire gadget is carrying.

Proof. Suppose that the incoming truth value is True.
Then there will be six unfilled squares between the end
of incoming 2’s lead and the pair of 2’s. Since the 2’s
on the right are only one square apart from each other,
they must both be pointing outward. Thus, the left 2
must have a 2-pencil pointing left, which will occupy
either three or four of the empty middle squares. If the
2-pencil fills four middle squares, then there will only
be two unfilled middle squares, which cannot be filled
by any pencil. Thus, the 2-pencil must fill three middle
squares, which must be filled by a 1-pencil. This then
forces play on the last 2-pencil, as seen in Figure 5b.

If the incoming truth value is false, then there will
seven unfilled squares between the end of the incom-
ing 2’s lead and the pair of 2’s on the right. Again,
the left of the pair of 2-pencils must fill either three or
four squares. This 2-pencil cannot occupy three mid-
dle squares, for it would leave four squares unoccupied,
which cannot be filled. Thus, the 2-pencil must occupy
four middle squares, with the remaining three filled by
a 1-pencil. This forces the subsequent 2-pencil to play
as in Figure 5c. Thus, regardless of the incoming truth
value, the modularity switcher does not alter the truth
value carried by the wire. �

Lemma 5 (Variable Assignment) The gadget pre-
sented in Figure 6a allows the player to assign a value to
a variable that will be transmitted out through the wire
on the right.
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(a) The initial wire gadget. (b) The board filled in with True. (c) The board filled in with False.

Figure 4: The initial wire gadget and the manners it can be filled in.

(a) The initial modularity switching
gadget.

(b) The modularity gadget filled in
with value True.

(c) The modularity gadget filled in
with value False.

Figure 5: The initial modularity gadget and the manners it can be filled in.

Proof. The area in which new pencils may be added is
limited to a space of size 9 (there are two possible ways
for this to happen, depending on whether the one pencil
in the lower right has an upward or leftward pointing
lead). Next, the first 2 is located such that its tip must
be leftward pointing. If it pointed to the right, there
would not be room for the two squares that the line
would need to occupy. Thus, the other 2-pencil must
be rightward pointing with its body either filling in the
square between the 2’s or not. Figures 6b and 6c de-
scribe how to fill the 3x3 space for True and False
variable assignments.

Since the player is not able to play the right 2-pencil
another way than the two variable assignments, and the
player is able to assign either truth value, our Lemma
is proven. �

Lemma 6 (Not Gate) Figure 7a presents a not gate
for a leftward facing wire.

Proof. First, consider the scenario where the initial
value of the wire is true. Then, the remaining number
of squares up to the next 2 is 7. The next 2 must have
its pencil pointing to the left, so it will occupy either
three or four of the open spaces. This would leave either
three or four consecutive unoccupied spaces. However,
we cannot fill four unoccupied spaces by Lemma 1, so
we must play the second 2 so that it occupies four of
the internal spaces. This forces the last 2 (which must
be played to the right) to occupy the empty space be-
tween the 2’s, making the transmitted value false. On
the other hand, if the initial value is false, then there
will be eight open squares in the middle. The second 2

can be played so that it occupies three or four spaces.
This corresponds to four or five open middle spaces. Of
the two options, we can only fill five consecutive middle
spaces, so the the second 2 must be played to occupy the
empty space between the 2’s. This forces the final 2 to
be played in the true position. Both of these scenarios
are illustrated in Figures 7b and 7c. �

Lemma 7 (Split Gate) For a given input in the wire
on the left, the gadget in Figure 8a assigns truth values
to two wires on the right and bottom each carrying the
opposite of the given input (to make this a true split
gate, we would add a not gate between the input and the
gadget or add two more not gates to the ends).

Proof. Of the 2-pencils on the right and on the bot-
tom, the inner pencils of each must be pointing inward;
there is not room for them to point outward. If the en-
tering wire is true, then there are 8 remaining spaces
within the center of the gadget. The right and bottom
inner 2’s can occupy either 3 or 4 spaces. If they both
occupy 3 squares, then there will be 2 squares unfilled,
which cannot be filled by the addition of another pencil.
If one occupies 3 squares and the other 4, there will be
one square unfilled, which is not fillable by the addition
of another pencil. If they both occupy 4 squares, then
there are no squares left unfilled, and the gadget is sat-
isfied. This case is forced if the input is true, since there
are no other ways to fill the gadget. In this case, the
output 2’s are both forced to be false, so the input was
flipped and placed into two wires, as in the statement
of the lemma.

If the entering wire is false, then there are 9 remaining
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(a) Unfilled assignment. (b) Filled with True. (c) Filled with False.

Figure 6: The assignment gadget unfilled and filled.

(a) An unfilled not gate. (b) Turning True to False. (c) Turning False to True.

Figure 7: A not gate unfilled and filled with both truth values.

open squares. If either of the inward pointing 2-pencils
occupy 4 squares, then the gadget is unfillable, since
there will be either 1 or 2 unfilled squares. Thus, the
2 inward pointing pencils must occupy 3 of the inner
squares, leaving 3 open squares, which can be filled with
a single 1-pencil. This scenario also forces the output
2’s to both be true as desired. �

Lemma 8 (1-in-3 Gate) The gadget of Figure 9
(which takes in input from three wires) is only fillable if
exactly one of the input wires is true.

Proof. Note that each input wire ends its line at either
{RT, LT, BT} if it is true or {RF, LF, BF} if it is
false. If all the statements are false, then there are four
unoccupied squares, so the gadget is unsolvable if all the
wires are carrying false values. If all the the statements
are true, then there is only one unoccupied square, so
the gadget is unsolvable in this case as well. If two of
the statements are true, then there exactly two unfilled
squares, so the gadget is unsolvable if two statements
are true. If only one statement is true, then there are
three connected unoccupied squares, which can be filled
with a 1-pencil, so the gadget is solvable if and only if
exactly one statement is true. Thus, the gadget serves
the purpose of a 1-in-3 Gate. �

5 NP-Completeness of Pencils

Now we are ready to prove our main result.

Theorem 9 (Pencils is NP-Complete) For a given
board, B, the decision problem Pencils(B) is NP-
Complete. Furthermore, this is true when the puzzle
designer and solver are restricted to using 1-pencils and
2-pencils.

Proof. We use Theorem 2 and reduce rectilinear
planar 1-in-3sat(S) to Pencils(B). Starting with
GS , the graph corresponding to S, we will encode this
graph into a pencils game.

We replace each source variable with the variable as-
signment gadget and add sufficiently many split and not
gates such that each source vector has as many outward
going wires as edges leading to literals in the formula.
We can then create each clause by leading in the cor-
responding literals with wires (with not gates if they
appear with a ¬ modifier in the formula). This is pos-
sible since GS was planar and we can line up the wires
to fit in perfectly by inserting modularity switchers suf-
ficiently many times. Call this pencil board BS .

By the lemmas for each gadget, if rectilinear pla-
nar 1-in-3sat(S) is true, then by matching up our vari-
able assignment to that which solves S, we can solve the
corresponding pencil board, BS . Thus, rectilinear
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(a) An unfilled split gate. (b) True input. (c) False input.

Figure 8: A split gate unfilled and filled with both truth values.

Figure 9: An unfilled 1-in-3 Gate. The non-numeral
entries exist to refer to potential pencil endings (and
will not affect the actual puzzle).

planar 1-in-3sat(S) = True implies Pencils(BS) =
True.

If Pencils(BS) = True, then there must be some
assignment of the variable assignment gadgets such
that each 1-in-3 gadget was satisfied. However, be-
cause this board was derived directly from the graph,
it provides a variable assignment for S such that S
is true (under 1-in-3 satisfiability rules). Thus, Pen-
cils(BS) = True true implies rectilinear planar
1-in-3sat(S) = True. So, Pencils is NP-Hard.

Membership in NP was given in Remark 1. Thus,
Pencils is both NP-Hard and in NP, so it is NP-
Complete. �

6 Final Remarks and Open Problems

We proved that a restricted form of the Pencils de-
cision problem is NP-complete in which only 1-pencils
and 2-pencils are used. In this section we provide open

problems in several different directions.

Define PencilsS(B) as the decision problem in which
the puzzle designer and solver are restricted to pen-
cils whose lengths appear in the set S. For example,
we proved the NP-completeness of Pencils{1,2}(B), or
simply Pencils1,2(B). This raises the following open
problems:

• Is Pencils1(B) in P? In other words, is there a
polynomial-time algorithm for solving Pencils when
only 1-pencils are allowed?

• Is Pencils2(B) NP-complete?

• More generally, what is the complexity of
Pencils`(B) for single fixed values of `?

Besides pencil sizes, we could also consider other re-
strictions to the pencil bodies and leads. For example,
we can define a straight-line pencil as one in which the
lead is a straight line. Similarly, we can define a horizon-
tal pencil and a vertical pencil based on the orientation
of the pencil’s body.

• What is the complexity of Pencils when restricted
to straight-line pencils?

• What is the complexity of Pencils when restricted
to horizontal pencils?

Nikoli typically designs individual puzzle instances to
have a unique solution. The associated complexity class
is Another Solution Problem (ASP) in which the input
is a problem and a solution and the goal is to deter-
mine if there is a second solution. This complexity class
was popularized by Ueda and Nagao [6]. We pose the
question: is Pencils ASP-hard?

The authors would like to thank the referees whose
comments led to many improvements throughout the
article.
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