
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Switches are PSPACE-Complete

Jonathan Gabor ∗ Aaron Williams †

Abstract

Switches is a grid-based puzzle game invented by
Jonathan Gabor and implemented using MIT’s Scratch
programming language in 2014. The puzzle is based on
the ’switch’ mechanism which allows the player to tog-
gle the presence and absence of barriers by walking over
a switch of the same color. At first glance the mech-
anism seems to be similar to previously studied video
game mechanisms including pressure plates and doors,
but it is in fact quite different. We prove that decid-
ing if a Switches puzzle is solvable is PSPACE-complete
and furthermore, this hardness result is true even when
the puzzle is only r = 3 rows in height. On the other
hand, we provide a polynomial-time algorithm for solv-
ing Switches puzzles with r = 1 row. The computational
complexity of the problem with r = 2 is open.

1 Introduction

Switches is a puzzle game that was invented by
Jonathan Gabor in 2014 while he was a high school
student. The puzzle was implemented using MIT’s vi-
sual programming language called Scratch [8]. This
implementation is available online as Switches v2.1
https://scratch.mit.edu/projects/33587070/. A
new implementation containing playable versions of
every level discussed in this paper is available
as Switches Remastered https://scratch.mit.edu/

projects/203220688/.

The puzzle was designed to be played on an r-by-c
grid, and each object is placed inside of a single cell. The
player’s goal on each level is to move their avatar from
the start location to the goal location called the portal.
The core mechanism involves switches and doors. Each
door is independently on or off and a door is only a
barrier to the player’s movement when it is on. When a
player steps on a switch, then the state of all doors of the
same color are toggled. (The player toggles any switch
they touch, and they must move to another before tog-
gling it again.) There can be multiple switches of the
same color, multiple doors of the same color in either
state, and multiple colors that operate independently.

∗Bard College at Simon’s Rock, Massachusetts,
jgabor16@simons-rock.edu
†Bard College at Simon’s Rock, Massachusetts,

awilliams@simons-rock.edu

A sample level and its solution are given in Figure 1,
along with a legend of graphical symbols.

Figure 1: The player solves the 13-by-5 level by walking
over the red switch, followed by the orange switch, and
then by again walking over the red switch. The images
should be read in column-major order.

At first glance, this mechanism may seem to be quite
similar to previously studied video game mechanisms
such the pressure plate mechanism that was examined
by Viglietta [9]. More specifically, a switch behaves like
an ’on’ pressure plate combined with an ’off’ pressure
plate, so one might try to simulate pressure plates us-
ing switches. However, this is far more difficult than it
sounds, because in all but a few cases, levels of switches
are reversible. In other words, the player can return
to any state they were previously in by performing the
previously made moves in reverse1 order. On the other
hand, this is not true for the pressure plate mechanism.
Similarly, the mechanisms and hardness results obtained
by Aloupis, Demaine, Guo, and Viglietta [1] do not seem
to apply to this puzzle. The authors are unaware of any
previous puzzle that uses the switch mechanism, but it
seems possible that such a puzzle could exist given the
mechanism’s simplicity.

The Switches decision problem takes a Switches level
on an r-by-c grid as input, and the output is ’yes’ or ’no’

1There is some subtlety to reversibility in Switches levels. If
the players avatar is on a blank tile or an open door, then they can
return to any previous state by reversing their previous moves.
Furthermore, if they can reach a blank tile, they can return to
any previous state. However, there are also cases where player
can trap themselves.

https://scratch.mit.edu/projects/33587070/
https://scratch.mit.edu/projects/203220688/
https://scratch.mit.edu/projects/203220688/


30th Canadian Conference on Computational Geometry, 2018

depending on whether the level is solvable or not. We
prove that this decision problem is PSPACE-complete
by a reduction from True Quantified Boolean Formula
(TQBF). More remarkably, we are able to show that
the decision problem remains PSPACE-complete when
restricted to levels that have at most r = 3 rows. This
differentiates it from other PSPACE puzzle games such
as Sokoban [2] and Rush Hour [3]. We refer the read-
ers to Hearn and Demaine [6] for further results on the
hardness of puzzles and games.

To complement our hardness results, we also prove
that Switches puzzles with 1 row can be solved in
polynomial-time. The complexity of the decision prob-
lem for Switch levels with 2 rows is presently unknown
and is a compelling open problem.

The paper is structured as follows. In Section 2 we
show how to determine if a level with r = 1 rows is
solvable in polynomial-time. In Section 3 we show that
Switches is NP-hard via a standard 3SAT reduction.
In Section 4 we provide a level construction that forces
the player to iterate through the well-known binary re-
flected Gray code. Section 5 then combines the results
of Section 3 and 4 to obtain our main PSPACE-hardness
result. Section 6 concludes with open problems.

To our knowledge our this article marks the first time
that an original Scratch game has been proven to be
NP-hard or PSPACE-hard. According to Wikipedia
[10],“Scratch has influenced many other programming
environments and is now considered a standard for in-
troductory coding experiences for children.” As a re-
sult, this paper shows that the ’fun’ of computational
complexity is not just for adults.

2 Polynomial-Time Algorithm for 1 Row

In this section we provide a polynomial-time algorithm
for solving Switches levels with r = 1 row. Figure 2
gives examples of solvable and unsolvable levels with
r = 1.

(a) This level is solvable by alternately moving left and right
to flip switch 1, switch 2, left switch 4, right switch 4, switch
3, right switch 4, switch 5, switch 2, switch 4, and then
moving to the portal.

(b) This level is unsolvable because the player can never
reach switch 5 since one of the two 3-doors will always be
closed.

Figure 2: Two similar levels with r = 1.

Throughout this section we can assume the portal
appears on the rightmost square of a level without loss of

generality. To understand this assumption, first notice
that we can assume that the portal appears to the right
of the player’s initial position, since otherwise we can
instead consider the mirror image of the level. Next
notice that any squares to the right of the portal cannot
be accessed by the player.

We start this section by considering clusters of adja-
cent switches, and then by showing how to manipulate
their state. Then we consider levels in which the avatar
starts on the leftmost square. Finally, we consider lev-
els in which the avatar does not start on the leftmost
square.

2.1 Clusters, Configurations, and Traversals

We define a cluster of switches (or simply a cluster) to be
a maximal sequence of adjacent switches. In a level with
1 row, membership in a cluster is reflexive, symmetric,
and transitive, so the switches partition uniquely into
clusters. Figure 3 gives an illustration of clusters.

Figure 3: This level has three clusters.

A left-to-right traversal of a cluster is a sequence of
moves in which the player starts at the square imme-
diately to the left of the cluster, ends at the square
immediately to the right of the cluster, and at no time
moves outside of this region. The traversal ends when
the player moves to the next square to the right. We
similarly define a right-to-left, right-to-right, and left-to
left traversal of a cluster.

When playing a Switches level each color is in one of
two states which we call the color’s current parity (or
parity for short). A cluster containing switches with d
distinct colors has 2d different configurations based on
the current parities of these colors. We now show that
the player can set a cluster to any configuration during
a left-to-right traversal.

Lemma 1 Suppose the player is standing to the left of
a cluster, and the square to the right of the cluster is
either open or has the same color as a switch within the
cluster. Then the player can set the cluster to any con-
figuration during a left-to-right traversal. Furthermore,
the number of steps is linear in terms of the length of
the cluster.

Proof. Suppose that the cluster contains k switches.
For convenience let us number the squares from left-to-
right starting at 0 from the player’s position. In other
words, we are focused on the squares numbered 0, 1, 2,
. . . , k+1 where 0 and k+1 are immediately outside of
the cluster. The pseudocode below uses ’L’ and ’R’ to
denote left and right moves, respectively. The basic idea



CCCG 2018, Winnipeg, Canada, August 8–10, 2018

is to set the switches to their desired parity from left-to-
right. More specifically, if we are standing on square s
and the switch on square s-1 has the wrong parity, then
we move L then R to correct it, and continue. There are
special cases to handle at the right side of the cluster,
and we discuss those in more detail below.

R

for s = 1, 2, ..., k-1

R

if the switch on square s has the wrong parity

LR

if the switch on square k has the wrong parity

if square k+1 is a door with switch k’s color

LRRLLRR

else

RLR

else

R

After each iteration of the for loop, the avatar will be
one space farther to the right, and the color of switch
to the players left will be in the correct parity. After
completing the for loop, the players avatar will be on
the rightmost switch. If this switch is in the correct
parity, the player can simply exit the cluster by moving
to the right. If it is in the incorrect parity the player will
usually be able to fix this by moving right, and then left.
Then the player can exit the cluster. Doing this will not
affect the parity of any other color because the tile to
the right of the player cannot be a switch. However, it
is possible that there is a door of the last switchs color
directly to the players right. In this case, the player can
move left and then right twice (the first time the player
moves right, they open the door). However, now the
switch on square k−2 will be in the wrong parity. This
can be fixed by moving left twice and then right twice.
This will change the parity of switch k − 2, but leave
the parity of switch k − 1 constant. �

If the player must end on the same side of the cluster
they started on, they can simply move all the way to
the left of the cluster, then follow the above algorithm
ignoring the leftmost switch. Then, if this switch is in
the wrong parity, the player can move all the way to the
left, and all the way to the right to fix it.

Lemma 1 also applies to right-to-left and right-to-
right traversals, respectively, so long as the player starts
on the square to the cluster’s immediate right.

2.2 Left-to-Right Levels

Now we focus on r = 1 levels in which the player starts
on the leftmost square. We refer to these levels as left-
to-right levels; when solving these levels we can prove
that the player never needs to backtrack to a previously
traversed cluster.

For each door, let s(d) be the location of the rightmost
switch of its color to its left.

Lemma 2 A left-to-right level is solvable if and only
if the following conditions both hold: If two doors have
the same s(d), then they have the same parity; If s(d)
is undefined for a door, then that door is initially open.

Proof. We begin by proving the forward direction.
Consider the first point. Obviously, when changing the
parity of a door d, the player must either be to the left
of location s(d) or to the right of that door. To proceed
to the right, they must make that door open. Therefore,
to proceed to the right of two doors with the same s(d),
they must make both of them open when at position
s(d). This is only possible if they have the same parity.

Now consider the second point. If s(d) is undefined,
then there is no switch to the left of that door. Then if
it is initially closed, the player cannot change its parity,
until they go to the right of it, but they cant go to the
right of it until they change its parity.

Now consider the reverse direction. We claim that
any level satisfying the two points above can be solved
using the following linear time algorithm.

Let a clusters ideal configuration be the configuration
such that for each switch in it, if that switch is at lo-
cation s(d) for some door d, the switch is in the parity
such that door d is open.

Moving from left to right, we adjust each cluster to its
ideal configuration. The only way this algorithm could
fail is if the player encounters a closed door which pre-
vents them from traveling farther the right. However,
such a door must have a defined s(d). Then it must
have been made open. Therefore, encountering a closed
door is impossible. �

The algorithms in Lemma 1 runs in linear time in
terms of the length of the cluster. Because each cluster
is only adjusted once, and the total length of all the clus-
ters is capped by the length of the level, this algorithm
runs in linear time.

Theorem 3 Any solvable level with r = 1 row can be
solved in polynomial time.

Proof. Let L0 be the location of the portal. Let Ln+1

be the leftmost location the player must reach before
reaching location Ln if n is even, and the rightmost
such location if n is odd (usually this location will be
a switch of the color of a closed door blocking location
Ln).

The player can travel from Ln+1 to Ln in a linear
amount of time by Lemma 2.

We will now demonstrate that Ln+2 is always in be-
tween Ln+1 and Ln (inclusively). Without loss of gener-
ality assume that n is even. Because Ln+2 is the right-
most location the player must reach before Ln+1, it is to



30th Canadian Conference on Computational Geometry, 2018

the right of Ln+1 (inclusively). Since Ln is the rightmost
location the player must reach before reaching location
Ln−1, and the player must visit Ln+2 before visiting
Ln, Ln+2 must to the left of Ln (if it was to the right,
then it would be the rightmost location before visiting
Ln−1).

It follows that if Ln = Ln+1, for all m > n, Lm =
Ln. Then there is some k which is the lowest value
such that Lk = Lk+1. Then, all La with a < k must
be distinct. Because there are only a linear number of
locations in the level, and moving between each requires
a linear amount of time, the level can be solved in O(n2)
time. �

3 NP-Hardness

In this section we prove that the Switches problem is
NP-hard by a reduction from 3SAT.

Suppose that we are given an instance of 3SAT φ with
clauses c1, c2, . . . , cm and variables x1, x2, x3, . . . , xn.
We construct a Switches level S(φ) that has 3 rows and
n + 2m + 4 columns. The level S(φ) uses n colors in
total and there is a single switch of color i. The num-
ber of initially open or closed doors of color i is given
by the number of positive or negative xi literals in φ,
respectively.

The level is organized as follows. The Avatar starts
on the left side of the level and to their right is a variable
corridor of height 1 and width n+1. The variable cor-
ridor contains a variable cluster which is a cluster con-
taining one switch of each color . This corridor leads
into a room of height 3 and width 2m+1 called the
clause room. Every second column in the clause room
is blank, and between these blank columns are columns
associated with each of the clauses. Each clause column
consists of three doors in a vertical line. The colors
of the doors are given by the variable of the literal in
the associated clause, and these doors are initially open
or closed based on whether the said literals are true or
false. The portal is located to the right of the clause
room. Figure 4 illustrates this construction.

Figure 4: S(φ) for φ = (x3 ∨ ¬x4 ∨ x5) ∧ . . ..

Theorem 4 Switches is NP-hard.

Proof. Given an instance of 3SAT φ we construct the
level S(φ) as described. Suppose that φ is satisfiable
by an assignment A which sets variable xi to ai for all
1 ≤ i ≤ n. By the results of Section 2 the Avatar can

perform a left-to-right traversal of the variable cluster
with the following property: The switch of color i is
switched an even number of times if ai = True and
and odd number of times if ai = False. Now consider
a given clause ci = (`u`v`w) where `u, `v, and `w are
either positive or negative literals of variables xu, xv,
xw, respectively. Observe that the ith clause column is
traversable if and only at least one of its three doors are
open. Also recall that the doors associated with positive
literals start open, and doors associated with negative
literals start closed within S(φ). Since clause ci is sat-
isfied the assignment A, it must be that the Avatar’s
left-to-right traversal of the variable cluster results in
the ith clause column being traversable. Therefore, the
Avatar can traverse the entire clause room and reach
the portal. Therefore, if φ is satisfiable, then S(φ) is
solvable.

Suppose that S(φ) is solvable and consider a partic-
ular solution. When the Avatar reaches the portal let
pi ∈ {0, 1} denote the parity of the number of times
that switch i was switched during this solution. That is,
pi = 0 if switch i was switched an even number of times
during the solution, and pi = 1 if switch i was switched
an odd number of times during the solution. We con-
struct an assignment A for φ as follows: xi = True if
pi = 0, and xi = False if pi = 1. Due to the struc-
ture of the S(φ) level, when the Avatar reaches the por-
tal, it must be that each one of the clause columns is
traversable. Therefore, in each clause in φ there must
be at least one literal that evaluates to true with respect
to assignment A. Therefore, φ is solvable.

The reduction is completed by noting that the size of
S(φ) is polynomially bounded by the size of φ. �

4 Exponentially Long Levels

In this section we construct Switches levels that require
an exponential number of moves to solve. More specif-
ically, the levels contain n distinct colors, and the level
forces the player to iterate over all 2n different states or
parities for these colors.

The binary reflected Gray code was previously used in
a similar manner in a paper by Greenblatt, Kopinsky,
North, Tyrrell, and Williams [5] for the puzzle game
MazezaM. The presentation here closely resembles a
similar section in that paper.

4.1 Binary Reflected Gray Code

Let B(n) be the set of n-bit binary strings. The weight
of b1b2 · · · bn ∈ B(n) is its bitwise sum

∑n
i=1 bi. We use

exponents to denote bitwise concatenation. For exam-
ple, 14 = 1111 is the only string of weight four in B(4).

The binary reflected Gray code (BRGC) is an ordering
of B(n) attributed to Gray [4]. In the order each pair
of consecutive strings have Hamming distance one (i.e.



CCCG 2018, Winnipeg, Canada, August 8–10, 2018

they differ in exactly one bit). The order starts with 0n

and ends with 0n−11. The BRGC for n = 4 is below
with overlines showing the bit that changes to create
the next string:

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,

0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

Now we explain how to create each successive string
in the BRGC starting from the initial string 0n.

Definition 1 Each b1b2 · · · bn ∈ B(n) has up to two ac-
tive bits: (a) its leftmost bit b1, and (b) its bit immedi-
ately to the right of its leftmost 1.

For example, the leftmost 1 in b1b2b3b4b5b6 = 000111
is b4 = 1; therefore, its active bits are b1 and b5. Every
binary string has two active bits except 0n and 0n−11.

The following theorem is well-known (see Knuth [7]).

Theorem 5 If b1b2 · · · bn has even weight, then com-
plementing active bit (a) gives the next string in the
BRGC. Otherwise, if b1b2 · · · bn has odd weight, then
complementing active bit (b) gives the next string.

On the other hand, complementing the ‘other’ active
bit of b1b2 · · · bn gives the previous string in the BRGC.

For example, 000111 has odd weight, so 000101 is the
next string in the BRGC and 100111 is the previous.

4.2 Gray Code Level

Now we construct a level Gray(n) based on the BRGC
for n-bit binary strings. The construction is illustrated
in Figure 5. Remarkably, Gray(n) has only r = 3 rows
c = 2n+ 1 in general.

Figure 5: The level Gray(8) in state b1b2 · · · b8 =
00000000 (top) and b1b2 · · · b8 = 00000100 (bottom).
In the latter case observe that only those columns with
switches 1 and 7 at the top are accessible as per Theo-
rem 5.

The level a corridor along the bottom row, and then
n+1 columns protruding upwards from the bottom row.
The tops of these columns include switches for colors

1, 2, . . . , n and the portal, respectively. The switch for
color 1 is not protected, and the column with switch i
at the top is protected by a door of color i − 1 which
is initially on. Furthermore, the corridor below the col-
umn with switch i at the top is protected by a door of
color i− 2 which is initially off.

We associated a binary string b1b2 · · · bn with the state
of Gray(n)’s switches that is initially 00 · · · 0. Due to
the structure of the level and Theorem 5 we have the
following theorem.

Theorem 6 To complete Gray(n) the player must it-
erate over all 2n states of Gray(n) according to the bi-
nary reflected Gray code.

5 PSPACE Hardness

In this section we prove that Switches is PSPACE-hard.
We do this by combining the results of Sections 3 and
4 to create a level Q(φ) that models a True Quanti-
fied Boolean Formula (TQBF) φ. More specifically, we
model the unquantified Boolean 3SAT formula within
φ as in Section 3, and then we force the player to it-
erate overall all possible 2u states of the u universally
quantified variables according Section 4.

When creating the level we utilize the fact that the
leftmost bit is changed every second time in the binary
reflected Gray code. We leverage this fact by horizon-
tally separating the leftmost bit and the remaining bits
in the level, and placing the 3SAT construction between
them. In other words, we force the player to traverse the
3SAT formula (from left-to-right or right-to-left) every
time they wish to change one of the quantified variable
bits. Thus, the player must ensure that the 3SAT for-
mula is satisfied before they can make progress in the
higher-level problem that is iterating through the binary
reflected Gray code.

A sample construction involving n = 8 variables is
shown in Figure 6. Due to width restrictions we illus-
trate the sample level with 9 rows; the taller rows can
easily be turned (at the expense of making the level
much wider) to create a level with 3 rows.

Theorem 7 The Switches decision problem is
PSPACE-hard even when restricted to levels with
r = 3 rows.

Finally, we prove membership in PSPACE below.

Lemma 8 The Switches decision problem is in
PSPACE.

Proof. Consider an r-by-c level with d distinct colors of
switches. There are at most 2d ·rc possible states for this
level, where 2d counts the number of different states for
the colors, and rc is an upper bound on the number of



30th Canadian Conference on Computational Geometry, 2018

Figure 6: Level P (φ) which models the TQBF formula φ
with quantified variables ∃x1∀x2∃x3∀x4∃x5∀x6∃x7∀x8.
The bottom of the level contains clause gadgets includ-
ing the rightmost clause x7 ∨ x4 ∨ x6.

locations for the player’s avatar. Therefore, we can rep-
resent an individual state of the level with d · log2(rc)
bits. Similarly, d · log2(rc) bits bits are sufficient for
counting from 0 to 2d · rc − 1. Therefore, we can now
establish membership in NPSPACE by nondeterministi-
cally moving the avatar in one of the four cardinal direc-
tions, and it keeping a counter for the number of times
we have done this. If the avatar reaches the portal, then
we stop the algorithm and answer yes. Otherwise, once
the counter exceeds the number of possible states then
we terminate the algorithm and answer no. If there is
a solution to the level, then there will be at least one
path through the computation that answers yes. Since
we used only d · log2(rc) bits of storage, this establishes
membership in NPSPACE, and by Savitch’s theorem,
PSPACE. �

Corollary 1 The Switches decision problem is
PSPACE-Complete.

6 Final Remarks

In this paper we investigated the computational com-
plexity of the Switches puzzle game. There are a num-
ber of interesting open problems:

• What is the computational complexity of solving
Switches levels with r = 2 rows?

• Our PSPACE-hardness reduction uses an arbitrar-
ily large number of colors. What is the computa-
tional complexity if the number of colors is a con-
stant?

• Our PSPACE-hardness reduction uses an arbitrar-
ily large number of doors per color. What is the
computational complexity if each doors color can
be used only a constant number of times?

• Our PSPACE-hardness reduction uses up to two
switches per color. What is the computational com-
plexity if no two switches have the same color?

• Are there any other geometric puzzle games created
on Scratch that are NP-hard or PSPACE-hard?

Regarding the 2-row case, there are several reasons
to think that it should be solvable in polynomial time.
First, when there are two rows, if the player’s avatar
is in the same column as a square, then the player can
immediately reach that square. This means that the
player cannot ”pass by” an object while being unable to
interact with it, something essential to constructing ex-
ponential orderings. Second, with only two rows, there
is no obvious way to implement clause gadgets. Third,
if there are no switches between 2 points in a level, de-
termining whether there exists a set of parities to travel
between those points can be done in polynomial time,
since it can be reduced to a 2-sat problem.

We also mention that the original Switches imple-
mentation has an additional dual switch mechanism in
which two switches are toggled simultaneously. We did
not require its use to establish PSPACE-hardness, and
its inclusion does not change the problem’s inclusion in
PSPACE.

References

[1] G. Aloupis, Erik D. Demaine, A. Guo, and G. Vigli-
etta. Classic Nintendo games are (computationally)
hard. Theoretical Computer Science, 586:135–160,
2015.

[2] J. Culbertson. Sokoban is PSPACE-complete. In
Fun With Algorithms (FUN 1998), Lecture Notes
in Computer Science, pages 65–76. Carleton Scien-
tific, 1998.

[3] G. W. Flake and E. B. Baum. Rush hour is
PSPACE-complete, or “why you should generously
tip parking lot attendants”. Theor. Comput. Sci.,
270:895–911, 2002.

[4] F. Gray. Pulse code communication. U.S. Patent
2,632,058, 1947.

[5] A. Greenblatt, J. Kopinsky, B. North, M. Tyrrell,
and A. Williams. MazezaM levels with exponen-
tially long solutions. In 20th Japan Conference
on Discrete and Computational Geometry, Graphs,
and Games (JCDCGGG 2017), page 2 pages, 2017.

[6] Robert A. Hearn and Erik D. Demaine. Games,
Puzzles, and Computation. A. K. Peters, Ltd., Nat-
ick, MA, USA, 2009.

[7] D. E. Knuth. The Art of Computer Programming,
volume 4: Generating All Tuples and Permuta-
tions. Addison-Wesley, 2005.

[8] Scratch. About scratch, 2018. URL: https://

scratch.mit.edu/about.

https://scratch.mit.edu/about
https://scratch.mit.edu/about


CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[9] G. Viglietta. Gaming is a hard job, but some-
one has to do it! Theory of Computing Systems,
54(4):595–621, 2014.

[10] Wikipedia. Scratch (programming language),
2018. URL: https://en.wikipedia.org/wiki/

Scratch_(programming_language).

https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Scratch_(programming_language)

	Introduction
	Polynomial-Time Algorithm for 1 Row
	Clusters, Configurations, and Traversals
	Left-to-Right Levels

	NP-Hardness
	Exponentially Long Levels
	Binary Reflected Gray Code
	Gray Code Level

	PSPACE Hardness
	Final Remarks

