Away from Rivals

Kazuyuki Amano * Shin-ichi Nakano ${ }^{\dagger}$

Abstract

Let P be a set of n points, and $d(p, q)$ be the distance between a pair of points p, q in P. We assume the distance is symmetric and satisfies the triangle inequality. For a point $p \in P$ and a subset $S \subset P$ with $|S| \geq 3$, the 2 -dispersion cost $\operatorname{cost}_{2}(p, S)$ of p with respect to S is the sum of (1) the distance from p to the nearest point in $S \backslash\{p\}$ and (2) the distance from p to the second nearest point in $S \backslash\{p\}$. The 2-dispersion cost $\operatorname{cost}_{2}(S)$ of $S \subset P$ with $|S| \geq 3$ is $\min _{p \in S}\left\{\operatorname{cost}_{2}(p, S)\right\}$.

In this paper we give a simple $1 / 8$-approximation algorithm for the 2-dispersion problem.

1 Introduction

Many facility location problems compute locations minimizing some cost or distance $[4,5]$. While in this paper we consider a dispersion problem which computes locations maximizing some cost or distance $[1,2,3,6,9,10$, 11].

Dispersion problems has an important application for information retrieval. It is desirable to find a small subset of a large data set, so that the small subset have a certain diversity. Such a small subset may be a good sample to overview the large data set [2], and diversity maximization has became an important concept in information retrieval.

A typical dispersion problem is as follows. Given a set P of points and an integer k, find k points subset S of P maximizing a designated cost. If the cost is the minimum distance between a pair of points in S then it is called the max-min dispersion problem, and if the cost is the sum of the distances between all pair of points in S then it is called the max-sum dispersion problem. Unfortunately both problems are NP-hard, even the distance satisfies the triangle inequality [9].

In this paper we consider a recently proposed related problem called the 2-dispersion problem [7, 8]. We give a simple approximation algorithm for the 2-dispersion problem, where the cost of a point in S is the sum of the distances to the nearest two points in S, and the cost of S is the minimum among the cost of points in S. Intuitively we wish to locate our k chain stores so that each

[^0]store is located far away from the nearest two "rival" stores to avoid self-competition. We call the problem 2 -dispersion problem. In $[7,8]$ more general variants, including max-min and max-sum dispersion problems are studied.

In this paper we give a simple approximation algorithm for the 2-dispersion problem defined above. Our algorithm computes a $1 / 8$-approximate solution for the 2 -dispersion problem. This is the first approximation algorithm for the 2-dispersion problem.

The remainder of the paper is organized as follows. Section 2 gives some definitions. Section 3 gives our simple approximation algorithm for the 2-dispersion problem. In Section 4 we consider more general problem called c-dispersion problem. Finally Section 4 is a conclusion.

2 Definitions

Let P be a set of n points, and $d(p, q)$ be the distance between a pair of points p, q in P. We assume that the distance is symmetric and satisfies the triangle inequality, meaning $d(p, q)=d(q, p)$ and $d(p, q)+d(q, r) \geq d(p, r)$.

For a point $p \in P$ and a subset $S \subset P$ with $|S| \geq 3$, the 2-dispersion cost $\operatorname{cost}_{2}(p, S)$ of p with respect to S is the sum of (1) the distance from p to the nearest point in $S \backslash\{p\}$ and (2) the distance from p to the second nearest point in $S \backslash\{p\}$. The 2-dispersion cost $\operatorname{cost}_{2}(S)$ of $S \subset P$ with $|S| \geq 3$ is $\min _{p \in S}\left\{\operatorname{cost}_{2}(p, S)\right\}$.

Given P, d and an integer $k \geq 3$, the 2 -dispersion problem is the problem to find the subset S of P with $|S|=k$ such that the 2 -dispersion cost $\operatorname{cost}_{2}(S)$ is maximized.

3 Greedy Algorithm

Now we give an approximation algorithm to solve the 2dispersion problem. See Algorithm 1. The algorithm is a simple greedy algorithm.

Now we consider the approximation ratio of the solution obtained by the algorithm.

Let $S^{*} \subset P$ be the optimal solution for a given 2-dispersion problem, and $S \subset P$ the solution obtained by the algorithm above. We are going to show $\operatorname{cost}_{2}(S) \geq \operatorname{cost}_{2}\left(S^{*}\right) / 8$, namely the approximation ratio of our algorithm is at least $1 / 8$.

```
Algorithm 1 greedy \((P, d, k)\)
    compute \(S_{3} \subset P\) consisting of the three points
    \(p_{1}, p_{2}, p_{3}\) with maximum cost \(\operatorname{cost}_{2}\left(S_{3}\right)\)
    for \(i=4\) to \(k\) do
        find a point \(p_{i} \in P \backslash S_{i-1}\) such that \(\operatorname{cost}_{2}\left(p_{i}, S_{i-1}\right)\)
        is maximized
        \(S_{i}=S_{i-1} \cup\left\{p_{i}\right\}\)
    end for
    output \(S\)
```

Let D_{p} be the disk with center at p and the radius $r^{*}=\operatorname{cost}_{2}\left(S^{*}\right) / 4$. Let $D^{*}=\left\{D_{p} \mid p \in S^{*}\right\}$. We have the following three lemmas.

Lemma 1 For any $p \in P, D_{p}$ properly contains at most two points in S^{*}.

Proof. Assume for a contradiction that D_{p} properly contains three points $p_{1}, p_{2}, p_{3} \in S^{*}$. Now $d\left(p_{1}, p_{2}\right)<$ $2 r^{*}$ and $d\left(p_{1}, p_{3}\right)<2 r^{*}$ hold, then $\operatorname{cost}_{2}\left(p_{1}, S^{*}\right)<$ $d\left(p_{1}, p_{2}\right)+d\left(p_{1}, p_{3}\right)<4 r^{*}=\operatorname{cost}_{2}\left(S^{*}\right)$, a contradiction.

Lemma 2 For each $i=3,4, \ldots, k, \operatorname{cost}_{2}\left(p_{i}, S_{i-1}\right) \geq r^{*}$ holds.

Proof. Clearly the claim holds for $i=3$. Assume $j-$ $1<k$ and the claim holds for each $i=3,4, \ldots, j-1$. Now we consider for $i=j$. We have the following two cases.
Case 1: There is a point p^{*} in S^{*} such that $D_{p^{*}}$ properly contains at most one point in S_{j-1}. Note that $D_{p^{*}}$ is the disk with center at p^{*} and the radius $r^{*}=\operatorname{cost}_{2}\left(S^{*}\right) / 4$.

Then the distance from p^{*} to the 2 nd nearest point in S_{j-1} is at least r^{*} so $\operatorname{cost}_{2}\left(p^{*}, S_{j-1}\right) \geq r^{*}$. Since the algorithm choose p_{j} in a greedy manner, $\operatorname{cost}_{2}\left(p_{j}, S_{j-1}\right)$ is also at least r^{*}. Thus $\operatorname{cost}_{2}\left(p_{j}, S_{j-1}\right) \geq r^{*}$ holds.
Case 2: Otherwise. (For each point p^{*} in $S^{*}, D_{p^{*}}$ contains at least two points in S_{j-1}.)

We now count the number N of distinct pairs $\left(p^{*}, q\right)$ with (1) $p^{*} \in S^{*},(2) q \in S_{j-1}$ and (3) $d\left(p^{*}, q\right)<r^{*}$.

By Lemma 1 each D_{q} with $q \in S_{j-1}$ contains at most two points in S^{*}. Thus $N \leq 2(j-1)<2 k$. Since Case 1 does not occur, each $D_{p^{*}}$ with $p^{*} \in S^{*}$ contains two or more points in S_{j-1}, so $N \geq 2 k$. A contradiction.

Thus Case 2 never occurs.
Lemma 3 For each $i=3,4, \ldots, k, \operatorname{cost}_{2}\left(S_{i}\right) \geq r^{*} / 2$ holds.

Proof. Clearly the claim holds for $i=3$. Assume that $j-1<k$ and the claim holds for each $i=3,4, \ldots, j-1$. Now we consider for $i=j$.

To prove $\operatorname{cost}_{2}\left(S_{j}\right) \geq r^{*} / 2$ we only need to show for any three points u, v, w in $S_{j}, d(u, v)+d(u, w) \geq r^{*} / 2$. We have the following four cases.

If none of u, v, w is p_{j}, then $d(u, v)+d(u, w) \geq r^{*} / 2$ is clearly held as it was held in S_{j-1}.

If u is p_{j}, then by Lemma $2 d\left(p_{j}, v\right)+d\left(p_{j}, w\right) \geq$ $\operatorname{cost}_{2}\left(p_{j}, S_{j-1}\right) \geq r^{*}$. Thus $d(u, v)+d(u, w) \geq r^{*} / 2$ holds.

If v is p_{j}, assume for a contradiction that $d\left(u, p_{j}\right)+$ $d(u, w)<r^{*} / 2$. Then clearly $d\left(u, p_{j}\right)=d\left(p_{j}, u\right)<$ $r^{*} / 2$ and by the triangle inequality $d\left(p_{j}, w\right) \leq$ $d\left(p_{j}, u\right)+d(u, w)=d\left(u, p_{j}\right)+d(u, w)<r^{*} / 2$. Then $\operatorname{cost}_{2}\left(p_{j}, S_{j-1}\right) \leq d\left(p_{j}, u\right)+d\left(p_{j}, w\right)<r^{*}$, contradiction to Lemma 2. Thus if v is p_{j} then $d\left(u, p_{j}\right)+d(u, w) \geq$ $r^{*} / 2$ holds.

If w is p_{j}, then we can prove the claim in a similar manner to the case v is p_{j}.

Since $S_{k}=S$, we have the following theorem.
Theorem $4 \operatorname{cost}_{2}(S) \geq \operatorname{cost}_{2}\left(S^{*}\right) / 8$.
Thus the approximation ratio of Algorithm 1 is at least $1 / 8$.

Is the approximation ratio above best possible? We now provide an example for which our algorithm computes a solution with approximation ratio asymptotically $1 / 4$. See an example in Fig.1. $P=$ $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, r, s\right\}$ and $k=6$ for which our algorithm computes a solution $S=\left\{q_{1}, q_{2}, \ldots, q_{6}\right\}$, where the points are chosen in this order. The distances between points are as follows. $d\left(q_{1}, q_{2}\right)=d\left(q_{2}, q_{3}\right)=$ $d\left(q_{3}, q_{1}\right)=1 . \quad q_{5}$ is the midpoint between q_{1} and $q_{2} . q_{6}$ is on the line segment between q_{1} and q_{3} and $d\left(q_{1}, q_{6}\right)=0.75$ and $d\left(q_{3}, q_{6}\right)=0.25$. Finally we set $d\left(q_{1}, r\right)=d\left(q_{2}, s\right)=d\left(q_{3}, q_{4}\right)=\epsilon$, where ϵ is small enough.

Note that $\operatorname{cost}_{2}(S)=\operatorname{cost}_{2}\left(q_{3}, S\right) \leq 0.25+\epsilon$ while $\operatorname{cost}_{2}\left(S^{*}\right)=1$ for $S^{*}=\left\{q_{1}, q_{2}, q_{3}, q_{4}, r, s\right\}$. Thus the approximation ratio is $1 / 4$.

Thus we still have a chance to improve the approximation ratio of our simple greedy algorithm, or we can find an example of P for which our algorithm generates a solution with approximation ratio smaller than $1 / 4$.

4 Generalization

The 2-dispersion problem can be naturally generalized to the c-dispersion problem as follows.

For a point $p \in P$ and a subset $S \subset P$ with $|S| \geq c+1$, the c-dispersion cost $\operatorname{cost}_{c}(p, S)$ of $p \in S$ with respect to S is the sum of the distances from p to the nearest c points in $S \backslash\{p\}$. The c-dispersion cost $\operatorname{cost}_{c}(S)$ of $S \subset P$ with $|S| \geq c+1$ is $\min _{p \in S}\left\{\operatorname{cost}_{c}(p, S)\right\}$. Given P, d and an integer $k \geq c+1$, the c-dispersion problem is the problem to find the subset S of P with $|S|=k$ such that the c-dispersion cost $\operatorname{cost}_{c}(S)$ is maximized.

We can naturally generalize our greedy algorithm in Section 3 to the algorithm to solve the c-dispersion problem. See Algorithm 2.

Figure 1: An example of a solution $S=\left\{q_{1}, q_{2}, \ldots, q_{6}\right\}$ with approximation ratio $1 / 4$.

```
Algorithm 2 greedy-c( }P,d,k
    compute S}\mp@subsup{S}{c+1}{}\subsetP\mathrm{ consisting of the c+1 points
    p},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{c+1}{}\mathrm{ with maximum cost }\mp@subsup{\operatorname{cost}}{c}{}(\mp@subsup{S}{c}{}
    for }i=c+2\mathrm{ to }k\mathrm{ do
        find a point p}\mp@subsup{p}{i}{}\inP\\mp@subsup{S}{i-1}{}\mathrm{ such that }\mp@subsup{\operatorname{cost}}{c}{}(\mp@subsup{p}{i}{},\mp@subsup{S}{i-1}{}
        is maximized
        Si}=\mp@subsup{S}{i-1}{}\cup{\mp@subsup{p}{i}{}
    end for
    output S
```

Let S^{*} be the optimal solution for a given c-dispersion problem, and $S \subset P$ the solution obtained by the greedy algorithm above. We now consider the approximation ratio of the solution obtained by the greedy algorithm.

Let D_{p} be the disk with center at p and the radius $r^{* *}=\operatorname{cost}_{c}\left(S^{*}\right) /(2 c)$. Let $D^{* *}=\left\{D_{p} \mid p \in S^{*}\right\}$. We have the following three lemmas.

Lemma 5 For any $p \in P, D_{p}$ properly contains at most c points in S^{*}.

Proof. Assume for a contradiction that D_{p} properly contains $c+1$ points, say $q_{1}, q_{2}, \ldots, q_{c+1} \in S^{*}$. Now $d\left(q_{c+1}, q_{t}\right)<2 r^{* *}$ holds for each $t=1,2, \ldots, c$. Then $\operatorname{cost}_{2}\left(q_{c+1}, S^{*}\right)<d\left(q_{c+1}, q_{1}\right)+d\left(q_{c+1}, q_{2}\right)+\cdots+$ $d\left(q_{c+1}, q_{c}\right)<2 c r^{* *}=\operatorname{cost}_{c}\left(S^{*}\right)$, a contradiction.

Lemma 6 For each $i=c+1, c+2, \ldots, k$, $\operatorname{cost}_{c}\left(p_{i}, S_{i-1}\right) \geq r^{* *}$ holds.

Proof. Clearly the claim holds for $i=c+1$. Assume $j-1<k$ and the claim holds for each $i=c+1, c+$ $2, \ldots, j-1$. Now we consider for $i=j$. We have the following two cases.
Case 1: There is a point p^{*} in S^{*} such that $D_{p^{*}}$ properly contains at most $c-1$ point in S_{j-1}.

Then the distance from p^{*} to the c-th nearest point in S_{j-1} is at least $r^{* *}$ so $\operatorname{cost}_{c}\left(p^{*}, S_{j-1}\right) \geq r^{* *}$. Since the
algorithm choose p_{j} in a greedy manner, $\operatorname{cost}_{c}\left(p_{j}, S_{j-1}\right)$ is also at least $r^{* *}$. Thus $\operatorname{cost}_{c}\left(p_{j}, S_{j-1}\right) \geq r^{* *}$ holds.
Case 2: Otherwise.
We now count the number N of distinct pairs $\left(p^{*}, q\right)$ with (1) $p^{*} \in S^{*}$, (2) $q \in S_{j-1}$ and (3) $d\left(p^{*}, q\right)<r^{* *}$.

By Lemma 5 each D_{q} with $q \in S_{j-1}$ contains at most c points in S^{*}. Thus $N \leq c(j-1)<c k$. Since Case 1 does not occur, each $D_{p^{*}}$ with $p^{*} \in S^{*}$ contains c or more points in S_{j-1}, so $N \geq c k$. A contradiction.

Thus Case 2 never occurs.

Lemma 7 For each $i=c+1, c+2, \ldots, k, \operatorname{cost}_{c}\left(S_{i}\right) \geq$ $r^{* *} / c$ holds.

Proof. Clearly the claim holds for $i=c+1$. Assume that $j-1<k$ and the claim holds for each $i=c+1, c+$ $2, \ldots, j-1$. Now we consider for $i=j$.

For any point u in S_{j} we show $\operatorname{cost}_{c}\left(u, S_{j}\right) \geq r^{* *} / c$ holds. We have three cases. Let $S(u)$ be the set of point in $S_{j} \backslash\{u\}$ consisting of the nearest c points to u.

If $p_{j} \notin\{u\} \cup S(u)$, then clearly $\operatorname{cost}_{c}\left(u, S_{j}\right) \geq r^{* *} / c$ holds, since $\operatorname{cost}_{c}\left(u, S_{j-1}\right) \geq r^{* *} / c$ holds.

If $p_{j}=u$, then by Lemma $6 \operatorname{cost}_{c}\left(u, S_{j}\right) \geq r^{* *}$ holds, so $\operatorname{cost}_{c}\left(u, S_{j}\right) \geq r^{* *} / c$ holds.

If $p_{j} \in S(u)$, then assume for a contradiction that $\operatorname{cost}_{c}\left(u, S_{j}\right)<r^{* *} / c$. Let $S(u)=\left\{q_{1}, q_{2}, \ldots, q_{c}\right\}$ and $q_{x}=p_{j}$. Then clearly $d\left(u, p_{j}\right)<\operatorname{cost}_{c}\left(u, S_{j}\right)<$ $r^{* *} / c$ and by the triangle inequality for each $t \neq x$ $d\left(p_{j}, q_{t}\right) \leq d\left(p_{j}, u\right)+d\left(u, q_{t}\right)=\operatorname{cost}_{c}\left(u, S_{j}\right)<r^{* *} / c$. Then $\operatorname{cost}_{c}\left(p_{j}, S_{j}\right) \leq d\left(p_{j}, q_{1}\right)+d\left(p_{j}, q_{2}\right)+\cdots+d\left(p_{j}, q_{c}\right)$ $<r^{* *}$, contradiction to Lemma 6.

Since $S_{k}=S$, we have the following theorem.
Theorem $8 \operatorname{cost}_{c}(S) \geq \operatorname{cost}_{c}\left(S^{*}\right) /\left(2 c^{2}\right)$.

5 Conclusion

In this paper we have presented a simple $1 / 8$-approximation algorithm to solve the 2-dispersion problem. The running time of the algorithm is $O\left(n^{3}\right)$. Similarly we have presented a simple $1 /\left(2 c^{2}\right)$-approximation algorithm to solve the c dispersion problem. The running time of the algorithm is $O\left(n^{c+1}\right)$.

References

[1] C. Baur and S.P. Fekete, Approximation of Geometric Dispersion Problems, Pro. of APPROX '98, Pages 63-75 (1998).
[2] A. Cevallos, F. Eisenbrand and R. Zenklusen, Local search for max-sum diversification, Proc. of SODA '17, pp.130-142 (2017).
[3] B. Chandra and M. M. Halldorsson, Approximation Algorithms for Dispersion Problems, J. of Algorithms, 38, pp.438-465 (2001).
[4] Z. Drezner, Facility Location: A Survey of Applications and Methods, Springer (1995).
[5] Z. Drezner and H.W. Hamacher, Facility Location: Applications and Theory, Springer (2004).
[6] R. Hassin, S. Rubinstein and A. Tamir, Approximation Algorithms for Maximum Dispersion, Operation Research Letters, 21, pp.133-137 (1997).
[7] T. L. Lei, R. L. Church, A unified model for dispersing facilities, Geographical Analysis, 45, pp.401-418 (2013).
[8] T. L. Lei, R. L. Church, On the unified dispersion problem: Efficient formulations and exact algorithms, European Journal of Operational Research, 241, pp.622-630 (2015).
[9] S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi, Heuristic and Special Case Algorithms for Dispersion Problems, Operations Research, 42, pp.299-310 (1994).
[10] M. Sydow, Approximation Guarantees for Max Sum and Max Min Facility Dispersion with Parameterised Triangle Inequality and Applications in Result Diversification, Mathematica Applicanda, 42, pp.241-257 (2014).
[11] D. W. Wang and Yue-Sun Kuo, A study on Two Geometric Location Problems, Information Processing Letters, 28, pp.281-286 (1988).

[^0]: *Department of Computer Science, Gunma University, amano@cs.gunma-u.ac.jp
 ${ }^{\dagger}$ Department of Computer Science, Gunma University, nakano@cs.gunma-u.ac.jp

