
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Away from Rivals

Kazuyuki Amano ∗ Shin-ichi Nakano †

Abstract

Let P be a set of n points, and d(p, q) be the distance
between a pair of points p, q in P . We assume the dis-
tance is symmetric and satisfies the triangle inequality.
For a point p ∈ P and a subset S ⊂ P with |S| ≥ 3, the
2-dispersion cost cost2(p, S) of p with respect to S is
the sum of (1) the distance from p to the nearest point
in S \ {p} and (2) the distance from p to the second
nearest point in S \ {p}. The 2-dispersion cost cost2(S)
of S ⊂ P with |S| ≥ 3 is minp∈S{cost2(p, S)}.
In this paper we give a simple 1/8−approximation

algorithm for the 2-dispersion problem.

1 Introduction

Many facility location problems compute locations min-
imizing some cost or distance [4, 5]. While in this paper
we consider a dispersion problem which computes loca-
tions maximizing some cost or distance [1, 2, 3, 6, 9, 10,
11].
Dispersion problems has an important application for

information retrieval. It is desirable to find a small sub-
set of a large data set, so that the small subset have a
certain diversity. Such a small subset may be a good
sample to overview the large data set [2], and diver-
sity maximization has became an important concept in
information retrieval.
A typical dispersion problem is as follows. Given a

set P of points and an integer k, find k points subset
S of P maximizing a designated cost. If the cost is
the minimum distance between a pair of points in S
then it is called the max-min dispersion problem, and
if the cost is the sum of the distances between all pair
of points in S then it is called the max-sum dispersion
problem. Unfortunately both problems are NP-hard,
even the distance satisfies the triangle inequality [9].
In this paper we consider a recently proposed related

problem called the 2-dispersion problem [7, 8]. We give
a simple approximation algorithm for the 2-dispersion
problem, where the cost of a point in S is the sum of the
distances to the nearest two points in S, and the cost of
S is the minimum among the cost of points in S. Intu-
itively we wish to locate our k chain stores so that each

∗Department of Computer Science, Gunma University,

amano@cs.gunma-u.ac.jp
†Department of Computer Science, Gunma University,

nakano@cs.gunma-u.ac.jp

store is located far away from the nearest two “rival”
stores to avoid self-competition. We call the problem
2-dispersion problem. In [7, 8] more general variants,
including max-min and max-sum dispersion problems
are studied.

In this paper we give a simple approximation algo-
rithm for the 2-dispersion problem defined above. Our
algorithm computes a 1/8-approximate solution for the
2-dispersion problem. This is the first approximation
algorithm for the 2-dispersion problem.

The remainder of the paper is organized as follows.
Section 2 gives some definitions. Section 3 gives our sim-
ple approximation algorithm for the 2-dispersion prob-
lem. In Section 4 we consider more general problem
called c-dispersion problem. Finally Section 4 is a con-
clusion.

2 Definitions

Let P be a set of n points, and d(p, q) be the distance be-
tween a pair of points p, q in P . We assume that the dis-
tance is symmetric and satisfies the triangle inequality,
meaning d(p, q) = d(q, p) and d(p, q) + d(q, r) ≥ d(p, r).

For a point p ∈ P and a subset S ⊂ P with |S| ≥ 3,
the 2-dispersion cost cost2(p, S) of p with respect to S is
the sum of (1) the distance from p to the nearest point
in S \ {p} and (2) the distance from p to the second
nearest point in S \ {p}. The 2-dispersion cost cost2(S)
of S ⊂ P with |S| ≥ 3 is minp∈S{cost2(p, S)}.

Given P, d and an integer k ≥ 3, the 2-dispersion
problem is the problem to find the subset S of P with
|S| = k such that the 2-dispersion cost cost2(S) is max-
imized.

3 Greedy Algorithm

Now we give an approximation algorithm to solve the 2-
dispersion problem. See Algorithm 1. The algorithm
is a simple greedy algorithm.

Now we consider the approximation ratio of the solu-
tion obtained by the algorithm.

Let S∗ ⊂ P be the optimal solution for a given
2-dispersion problem, and S ⊂ P the solution ob-
tained by the algorithm above. We are going to show
cost2(S) ≥ cost2(S

∗)/8, namely the approximation ra-
tio of our algorithm is at least 1/8.

30th Canadian Conference on Computational Geometry, 2018

Algorithm 1 greedy(P, d, k)

compute S3 ⊂ P consisting of the three points
p1, p2, p3 with maximum cost cost2(S3)
for i = 4 to k do

find a point pi ∈ P \ Si−1 such that cost2(pi, Si−1)
is maximized
Si = Si−1 ∪ {pi}

end for

output S

Let Dp be the disk with center at p and the radius
r∗ = cost2(S

∗)/4. Let D∗ = {Dp|p ∈ S∗}. We have the
following three lemmas.

Lemma 1 For any p ∈ P , Dp properly contains at

most two points in S∗.

Proof. Assume for a contradiction that Dp properly
contains three points p1, p2, p3 ∈ S∗. Now d(p1, p2) <
2r∗ and d(p1, p3) < 2r∗ hold, then cost2(p1, S

∗) <
d(p1, p2) + d(p1, p3) < 4r∗ = cost2(S

∗), a contradic-
tion. �

Lemma 2 For each i = 3, 4, . . . , k, cost2(pi, Si−1) ≥ r∗

holds.

Proof. Clearly the claim holds for i = 3. Assume j −
1 < k and the claim holds for each i = 3, 4, . . . , j − 1.
Now we consider for i = j. We have the following two
cases.
Case 1: There is a point p∗ in S∗ such that Dp∗

properly contains at most one point in Sj−1. Note
that Dp∗ is the disk with center at p∗ and the radius
r∗ = cost2(S

∗)/4.
Then the distance from p∗ to the 2nd nearest point

in Sj−1 is at least r∗ so cost2(p
∗, Sj−1) ≥ r∗. Since the

algorithm choose pj in a greedy manner, cost2(pj , Sj−1)
is also at least r∗. Thus cost2(pj , Sj−1) ≥ r∗ holds.
Case 2: Otherwise. (For each point p∗ in S∗, Dp∗

contains at least two points in Sj−1.)
We now count the number N of distinct pairs (p∗, q)

with (1) p∗ ∈ S∗, (2) q ∈ Sj−1 and (3) d(p∗, q) < r∗.
By Lemma 1 each Dq with q ∈ Sj−1 contains at most

two points in S∗. Thus N ≤ 2(j − 1) < 2k. Since Case
1 does not occur, each Dp∗ with p∗ ∈ S∗ contains two
or more points in Sj−1, so N ≥ 2k. A contradiction.
Thus Case 2 never occurs. �

Lemma 3 For each i = 3, 4, . . . , k, cost2(Si) ≥ r∗/2
holds.

Proof. Clearly the claim holds for i = 3. Assume that
j−1 < k and the claim holds for each i = 3, 4, . . . , j−1.
Now we consider for i = j.
To prove cost2(Sj) ≥ r∗/2 we only need to show for

any three points u, v, w in Sj , d(u, v) + d(u,w) ≥ r∗/2.
We have the following four cases.

If none of u, v, w is pj , then d(u, v) + d(u,w) ≥ r∗/2
is clearly held as it was held in Sj−1.
If u is pj , then by Lemma 2 d(pj , v) + d(pj , w) ≥

cost2(pj , Sj−1) ≥ r∗. Thus d(u, v) + d(u,w) ≥ r∗/2
holds.
If v is pj , assume for a contradiction that d(u, pj) +

d(u,w) < r∗/2. Then clearly d(u, pj) = d(pj , u) <
r∗/2 and by the triangle inequality d(pj , w) ≤
d(pj , u) + d(u,w) = d(u, pj) + d(u,w) < r∗/2. Then
cost2(pj , Sj−1) ≤ d(pj , u)+ d(pj , w) < r∗, contradiction
to Lemma 2. Thus if v is pj then d(u, pj) + d(u,w) ≥
r∗/2 holds.
If w is pj , then we can prove the claim in a similar

manner to the case v is pj . �

Since Sk = S, we have the following theorem.

Theorem 4 cost2(S) ≥ cost2(S
∗)/8.

Thus the approximation ratio of Algorithm 1 is at
least 1/8.
Is the approximation ratio above best possible? We

now provide an example for which our algorithm com-
putes a solution with approximation ratio asymp-
totically 1/4. See an example in Fig.1. P =
{q1, q2, q3, q4, q5, q6, r, s} and k = 6 for which our algo-
rithm computes a solution S = {q1, q2, . . . , q6}, where
the points are chosen in this order. The distances be-
tween points are as follows. d(q1, q2) = d(q2, q3) =
d(q3, q1) = 1. q5 is the midpoint between q1 and
q2. q6 is on the line segment between q1 and q3 and
d(q1, q6) = 0.75 and d(q3, q6) = 0.25. Finally we set
d(q1, r) = d(q2, s) = d(q3, q4) = ǫ, where ǫ is small
enough.
Note that cost2(S) = cost2(q3, S) ≤ 0.25 + ǫ while

cost2(S
∗) = 1 for S∗ = {q1, q2, q3, q4, r, s}. Thus the

approximation ratio is 1/4.
Thus we still have a chance to improve the approxi-

mation ratio of our simple greedy algorithm, or we can
find an example of P for which our algorithm generates
a solution with approximation ratio smaller than 1/4.

4 Generalization

The 2-dispersion problem can be naturally generalized
to the c-dispersion problem as follows.
For a point p ∈ P and a subset S ⊂ P with |S| ≥ c+1,

the c-dispersion cost costc(p, S) of p ∈ S with respect
to S is the sum of the distances from p to the nearest
c points in S \ {p}. The c-dispersion cost costc(S) of
S ⊂ P with |S| ≥ c + 1 is minp∈S{costc(p, S)}. Given
P, d and an integer k ≥ c+ 1, the c-dispersion problem
is the problem to find the subset S of P with |S| = k
such that the c-dispersion cost costc(S) is maximized.
We can naturally generalize our greedy algorithm in

Section 3 to the algorithm to solve the c-dispersion prob-
lem. See Algorithm 2.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

q
1

q
2q

5

q
3

q

r s

6

q
4

Figure 1: An example of a solution S = {q1, q2, . . . , q6}
with approximation ratio 1/4.

Algorithm 2 greedy-c(P, d, k)

compute Sc+1 ⊂ P consisting of the c + 1 points
p1, p2, . . . , pc+1 with maximum cost costc(Sc)
for i = c+ 2 to k do

find a point pi ∈ P \ Si−1 such that costc(pi, Si−1)
is maximized
Si = Si−1 ∪ {pi}

end for

output S

Let S∗ be the optimal solution for a given c-dispersion
problem, and S ⊂ P the solution obtained by the greedy
algorithm above. We now consider the approximation
ratio of the solution obtained by the greedy algorithm.
Let Dp be the disk with center at p and the radius

r∗∗ = costc(S
∗)/(2c). Let D∗∗ = {Dp|p ∈ S∗}. We

have the following three lemmas.

Lemma 5 For any p ∈ P , Dp properly contains at

most c points in S∗.

Proof. Assume for a contradiction that Dp properly
contains c + 1 points, say q1, q2, . . . , qc+1 ∈ S∗. Now
d(qc+1, qt) < 2r∗∗ holds for each t = 1, 2, . . . , c.
Then cost2(qc+1, S

∗) < d(qc+1, q1) + d(qc+1, q2) + · · ·+
d(qc+1, qc) < 2cr∗∗ = costc(S

∗), a contradiction. �

Lemma 6 For each i = c + 1, c + 2, . . . , k,
costc(pi, Si−1) ≥ r∗∗ holds.

Proof. Clearly the claim holds for i = c + 1. Assume
j − 1 < k and the claim holds for each i = c + 1, c +
2, . . . , j − 1. Now we consider for i = j. We have the
following two cases.
Case 1: There is a point p∗ in S∗ such that Dp∗ prop-
erly contains at most c− 1 point in Sj−1.
Then the distance from p∗ to the c-th nearest point in

Sj−1 is at least r∗∗ so costc(p
∗, Sj−1) ≥ r∗∗. Since the

algorithm choose pj in a greedy manner, costc(pj , Sj−1)
is also at least r∗∗. Thus costc(pj , Sj−1) ≥ r∗∗ holds.
Case 2: Otherwise.
We now count the number N of distinct pairs (p∗, q)

with (1) p∗ ∈ S∗, (2) q ∈ Sj−1 and (3) d(p∗, q) < r∗∗.
By Lemma 5 each Dq with q ∈ Sj−1 contains at most

c points in S∗. Thus N ≤ c(j − 1) < ck. Since Case
1 does not occur, each Dp∗ with p∗ ∈ S∗ contains c or
more points in Sj−1, so N ≥ ck. A contradiction.

Thus Case 2 never occurs. �

Lemma 7 For each i = c+ 1, c+ 2, . . . , k, costc(Si) ≥
r∗∗/c holds.

Proof. Clearly the claim holds for i = c + 1. Assume
that j−1 < k and the claim holds for each i = c+1, c+
2, . . . , j − 1. Now we consider for i = j.
For any point u in Sj we show costc(u, Sj) ≥ r∗∗/c

holds. We have three cases. Let S(u) be the set of point
in Sj \ {u} consisting of the nearest c points to u.
If pj /∈ {u} ∪ S(u), then clearly costc(u, Sj) ≥ r∗∗/c

holds, since costc(u, Sj−1) ≥ r∗∗/c holds.
If pj = u, then by Lemma 6 costc(u, Sj) ≥ r∗∗ holds,

so costc(u, Sj) ≥ r∗∗/c holds.
If pj ∈ S(u), then assume for a contradiction that

costc(u, Sj) < r∗∗/c. Let S(u) = {q1, q2, . . . , qc} and
qx = pj . Then clearly d(u, pj) < costc(u, Sj) <
r∗∗/c and by the triangle inequality for each t 6= x
d(pj , qt) ≤ d(pj , u) + d(u, qt) = costc(u, Sj) < r∗∗/c.
Then costc(pj , Sj) ≤ d(pj , q1)+d(pj , q2)+ · · ·+d(pj , qc)
< r∗∗, contradiction to Lemma 6. �

Since Sk = S, we have the following theorem.

Theorem 8 costc(S) ≥ costc(S
∗)/(2c2).

5 Conclusion

In this paper we have presented a simple
1/8−approximation algorithm to solve the 2-dispersion
problem. The running time of the algorithm is
O(n3). Similarly we have presented a simple
1/(2c2)−approximation algorithm to solve the c-
dispersion problem. The running time of the algorithm
is O(nc+1).

References

[1] C. Baur and S.P. Fekete, Approximation of Geo-
metric Dispersion Problems, Pro. of APPROX ’98,
Pages 63-75 (1998).

[2] A. Cevallos, F. Eisenbrand and R. Zenklusen, Local
search for max-sum diversification, Proc. of SODA
’17, pp.130-142 (2017).

30th Canadian Conference on Computational Geometry, 2018

[3] B. Chandra and M. M. Halldorsson, Approxima-
tion Algorithms for Dispersion Problems, J. of Al-
gorithms, 38, pp.438-465 (2001).

[4] Z. Drezner, Facility Location: A Survey of Applica-
tions and Methods, Springer (1995).

[5] Z. Drezner and H.W. Hamacher, Facility Location:
Applications and Theory, Springer (2004).

[6] R. Hassin, S. Rubinstein and A. Tamir, Approxi-
mation Algorithms for Maximum Dispersion, Oper-
ation Research Letters, 21, pp.133-137 (1997).

[7] T. L. Lei, R. L. Church, A unified model for dispers-
ing facilities, Geographical Analysis, 45, pp.401-418
(2013).

[8] T. L. Lei, R. L. Church, On the unified disper-
sion problem: Efficient formulations and exact algo-
rithms, European Journal of Operational Research,
241, pp.622-630 (2015).

[9] S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi,
Heuristic and Special Case Algorithms for Disper-
sion Problems, Operations Research, 42, pp.299-310
(1994).

[10] M. Sydow, Approximation Guarantees for Max
Sum and Max Min Facility Dispersion with Param-
eterised Triangle Inequality and Applications in Re-
sult Diversification, Mathematica Applicanda, 42,
pp.241-257 (2014).

[11] D. W. Wang and Yue-Sun Kuo, A study on Two
Geometric Location Problems, Information Process-
ing Letters, 28, pp.281-286 (1988).

