An efficient approximation for point-set diameter in higher dimensions

Mahdi Imanparast*

Seyed Naser Hashemi*
Ali Mohades ${ }^{* \dagger}$

Abstract

In this paper, we study the problem of computing the diameter of a set of n points in d-dimensional Euclidean space for a fixed dimension d, and propose a new $(1+\varepsilon)$ approximation algorithm with $O\left(n+1 / \varepsilon^{d-2}\right)$ time and $O(n)$ space, where $0<\varepsilon \leqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(\varepsilon))$ approximation algorithm with $O\left(n+1 / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)$ running time. These results provide some improvements in comparison with existing algorithms in terms of simplicity, and data structure.

1 Introduction

Given a finite set \mathcal{S} of n points, the diameter of \mathcal{S}, denoted by $D(\mathcal{S})$ is the maximum distance between two points of \mathcal{S}. Namely, we want to find a diametrical pair p and q such that $D(\mathcal{S})=\max _{p, q \in \mathcal{S}}(\|p-q\|)$. Computing the diameter of a set of points has a large history, and it may be required in various fields such as database, data mining, and vision. A trivial brute-force algorithm for this problem takes $O\left(d n^{2}\right)$ time, but this is too slow for large-scale data sets that occur in the fields. Hence, we need a faster algorithm which may be exact or is an approximation.
By reducing from the set disjointness problem, it can be shown that computing the diameter of n points in \mathbb{R}^{d} requires $\Omega(n \log n)$ operations in the algebraic computation-tree model [1]. It is shown by Yao that it is possible to compute the diameter in sub-quadratic time in each dimension [2]. There are well-known solutions in two and three dimensions. In the plane, this problem can be computed in optimal time $O(n \log n)$, but in three dimensions, it is more difficult. Clarkson and Shor [3] present an $O(n \log n)$-time randomized algorithm. Their algorithm needs to compute the intersection of n balls (with the same radius) in \mathbb{R}^{3}. It may be slower than the brute-force algorithm for the most practical data sets, and it is not an efficient method for higher dimensions because the intersection of n balls with the same radius has a large size. Some deter-

[^0]ministic algorithms with running time $O\left(n \log ^{3} n\right)$ and $O\left(n \log ^{2} n\right)$ are found for this problem in three dimensions. Finally, Ramos [4] introduced an optimal deterministic $O(n \log n)$-time algorithm in \mathbb{R}^{3}.

In the absence of fast algorithms, many attempts have been made to approximate the diameter in low and high dimensions. A 2 -approximation algorithm in $O(d n)$ time can be found easily by selecting a point of \mathcal{S} and then finding the farthest point of it by bruteforce manner for the dimension d. The first nontrivial approximation algorithm for the diameter is presented by Egecioglu and Kalantari [5] that approximates the diameter with factor $\sqrt{3}$ and operations cost $O(d n)$. They also present an iterative algorithm with $t \leq n$ iterations and the cost $O(d n)$ for each iteration that has approximate factor $\sqrt{5-2 \sqrt{3}}$. Agarwal et al. [6] present a $(1+\varepsilon)$-approximation algorithm in \mathbb{R}^{d} with $O\left(n / \varepsilon^{(d-1) / 2}\right)$ running time by projection to directions. Barequet and Har Peled [7] present a \sqrt{d}-approximation diameter method with $O(d n)$ time. They also describe a $(1+\varepsilon)$-approximation approach with $O\left(n+1 / \varepsilon^{2 d}\right)$ time. They show that the running time can be improved to $O\left(n+1 / \varepsilon^{2(d-1)}\right)$. Similarly, Har Peled [8] presents an approach which for the most inputs is able to compute very fast the exact diameter, or an approximation with $O\left(\left(n+1 / \varepsilon^{2 d}\right) \log 1 / \varepsilon\right)$ running time. Although, in the worst case, the algorithm running time is still quadratic, and it is sensitive to the hardness of the input. Chan [9] observes that a combination of two approaches in [6] and [7] yields a $(1+\varepsilon)$-approximation with $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time and a $(1+O(\varepsilon))$-approximation with $O\left(n+1 / \varepsilon^{d-\frac{1}{2}}\right)$ time. He also introduces a core-set theorem, and shows that using this theorem, a $(1+O(\varepsilon))$-approximation in $O\left(n+1 / \varepsilon^{d-\frac{3}{2}}\right)$ time can be found [10]. Recently, Chan [11] has proposed an approximation algorithm with $O\left(\left(n / \sqrt{\varepsilon}+1 / \varepsilon^{\frac{d}{2}+1}\right)\left(\log \frac{1}{\varepsilon}\right)^{O(1)}\right)$ time by applying the Chebyshev polynomials in low constant dimensions, and Arya et al. [12] show that by applying an efficient decomposition of a convex body using a hierarchy of Macbeath regions, it is possible to compute an approximation in $O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{\frac{(d-1)}{2}+\alpha}\right)$ time, where α is an arbitrarily small positive constant.

1.1 Our results

In this paper, we propose a new $(1+\varepsilon)$-approximation algorithm for computing the diameter of a set \mathcal{S} of

Table 1: A summary on the complexity of some nonconstant approximation algorithm for the diameter of a point set. Our results are denoted by + .

Ref.	Approx. Factor	Running Time
$[6]$	$1+\varepsilon$	$O\left(\frac{n}{\varepsilon^{(d-1) / 2}}\right)$
$[7]$	$1+\varepsilon$	$O\left(n+1 / \varepsilon^{2(d-1)}\right)$
$[8]$	$1+\varepsilon$	$O\left(\left(n+1 / \varepsilon^{2 d}\right) \log \frac{1}{\varepsilon}\right)$
$[9]$	$1+\varepsilon$	$O\left(n+1 / \varepsilon^{\frac{3(d-1)}{2}}\right)$
+	$1+\varepsilon$	$O\left(n+1 / \varepsilon^{d-2}\right)$
$[9]$	$1+O(\varepsilon)$	$O\left(n+1 / \varepsilon^{d-\frac{1}{2}}\right)$
$[10]$	$1+O(\varepsilon)$	$O\left(n+1 / \varepsilon^{d-\frac{3}{2}}\right)$
$[11]$	$1+O(\varepsilon)$	$O\left(\left(\frac{n}{\sqrt{\varepsilon}}+1 / \varepsilon^{\frac{d}{2}+1}\right)\left(\log \frac{1}{\varepsilon}\right)^{O(1)}\right)$
$[12]$	$1+O(\varepsilon)$	$O\left(n \log \frac{1}{\varepsilon}+1 / \varepsilon^{\frac{(d-1)}{2}}+\alpha\right)$
+	$1+O(\varepsilon)$	$O\left(n+1 / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)$

n points in \mathbb{R}^{d} with $O\left(n+1 / \varepsilon^{d-2}\right)$ time and $O(n)$ space, where $0<\varepsilon \leqslant 1$. Moreover, we show that the proposed algorithm can be modified to a $(1+O(\varepsilon))$ approximation algorithm with $O\left(n+1 / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)$ time and $O(n)$ space. As stated above, two new results have been recently presented for this problem in [11] and [12]. It should be noted that our algorithms are completely different in terms of computational technique. The polynomial technique provided by Chan [11] is based on using Chebyshev polynomials and discrete upper envelope subroutine [10], and the method presented by Arya et al. [12] requires the use of complex data structures to approximately answer queries for polytope membership, directional width, and nearest-neighbor. While our algorithms in comparison with these algorithms are simpler in terms of understanding and data structure. We have provided a summary on the non-constant approximation algorithms for the diameter in Table 1.

2 The proposed algorithm

In this section, we describe our new approximation algorithm to compute the diameter of a point set. In our algorithm, we first find the extreme points in each coordinate and compute the axis-parallel bounding box of \mathcal{S}, which is denoted by $B(\mathcal{S})$. We use the largest length side ℓ of $B(\mathcal{S})$ to impose grids on the point set. In fact, we first decompose $B(\mathcal{S})$ to a grid of regular hypercubes with side length ξ, where $\xi=\varepsilon \ell / 2 \sqrt{d}$. We call each hypercube a cell. Then, each point of \mathcal{S} is rounded to its corresponding central cell-point. See Figure 1. In the following, we impose again an ξ_{1}-grid to $B(\mathcal{S})$ for $\xi_{1}=\sqrt{\varepsilon} \ell / 2 \sqrt{d}$. We round each point of the rounded point set $\hat{\mathcal{S}}$ to its nearest grid-point in this new grid that

Figure 1: (a) A set of points in \mathbb{R}^{2} and an ξ-grid. Initial points are shown by blue points and their corresponding central cell-points are shown by circle points. (b) Rounded point set $\hat{\mathcal{S}}$.
results in a point set $\hat{\mathcal{S}_{1}}$. Let, $\mathcal{B}_{\delta}(p)$ be a hypercube with side length δ and central-point p. We restrict our search domain for finding diametrical pairs of the first rounded point set $\hat{\mathcal{S}}$ into two hypercubes $\mathcal{B}_{2 \xi_{1}}\left(\hat{p}_{1}\right)$ and $\mathcal{B}_{2 \xi_{1}}\left(\hat{q}_{1}\right)$ corresponding to two diametrical pair points \hat{p}_{1} and \hat{q}_{1} in the point set $\hat{\mathcal{S}}_{1}$. Let us use two point sets \mathcal{B}_{1} and \mathcal{B}_{2} for maintaining points of the rounded point set $\hat{\mathcal{S}}$, which are inside two hypercubes $\mathcal{B}_{2 \xi_{1}}\left(\hat{p}_{1}\right)$ and $\mathcal{B}_{2 \xi_{1}}\left(\hat{\mathcal{q}}_{1}\right)$, respectively (see Figure 2). Then, it is sufficient to find a diameter between points of $\hat{\mathcal{S}}$, which are inside two point sets \mathcal{B}_{1} and \mathcal{B}_{2}. We use notation $\operatorname{Diam}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ for the process of computing the diameter of the point set $\mathcal{B}_{1} \cup \mathcal{B}_{2}$. Altogether, we can present the following algorithm.

```
Algorithm 1: APPROXIMATE DIAMETER \((\mathcal{S}, \varepsilon)\)
    Input: a set \(\mathcal{S}\) of \(n\) points in \(\mathbb{R}^{d}\) and an error parameter \(\varepsilon\).
Output: Approximate diameter \(\tilde{D}\).
    1: Compute the axis-parallel bounding box \(B(\mathcal{S})\) for
        the point set \(\mathcal{S}\).
        \(\ell \leftarrow\) Find the length of the largest side in \(B(\mathcal{S})\).
        Set \(\xi \leftarrow \varepsilon \ell / 2 \sqrt{d}\) and \(\xi_{1} \leftarrow \sqrt{\varepsilon} \ell / 2 \sqrt{d}\).
        \(\hat{\mathcal{S}} \leftarrow\) Round each point of \(\mathcal{S}\) to its central-cell point
                in a \(\xi\)-grid.
5: \(\quad \hat{\mathcal{S}}_{1} \leftarrow\) Round each point of \(\hat{\mathcal{S}}\) to its nearest grid-point
                in a \(\xi_{1}\)-grid.
6: \(\quad \hat{D}_{1} \leftarrow\) Compute the diameter of the point set \(\hat{\mathcal{S}}_{1}\) by brute-
                force manner, and simultaneously, a list of the diam-
                etrical pairs ( \(\hat{p}_{1}, \hat{q}_{1}\) ), such that \(\hat{D}_{1}=\left\|\hat{p}_{1}-\hat{q}_{1}\right\|\).
7: Find points of \(\hat{\mathcal{S}}\) which are in two hypercubes \(\mathcal{B}_{1}=\mathcal{B}_{2 \xi_{1}}\left(\hat{p}_{1}\right)\)
        and \(\mathcal{B}_{2}=\mathcal{B}_{2 \xi_{1}}\left(\hat{q}_{1}\right)\), for each diametrical pair ( \(\left.\hat{p}_{1}, \hat{q}_{1}\right)\).
8: \(\hat{D} \leftarrow\) Compute \(\operatorname{Diam}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)\), corresponding to each diamet-
        rical pair ( \(\hat{p}_{1}, \hat{q}_{1}\) ) by brute-force manner and return the
        maximum value between them.
9: \(\quad \tilde{D} \leftarrow \hat{D}+\varepsilon \ell / 2\).
10: Output \(\tilde{D}\).
```


2.1 Analysis

In this subsection, we analyze the proposed algorithm.
Theorem 1 Algorithm 1 computes an approximate diameter for a set \mathcal{S} of n points in \mathbb{R}^{d} in $O\left(n+1 / \varepsilon^{d-2}\right)$ time and $O(n)$ space, where $0<\varepsilon \leqslant 1$.

Figure 2: Points of the set $\hat{\mathcal{S}}$ are shown by circle points and their corresponding nearest grid-points in set $\hat{\mathcal{S}}_{1}$ are shown by blue square points.

Proof. Finding the extreme points in all coordinates and finding the largest side of $B(\mathcal{S})$ can be done in $O(d n)$ time. The rounding step takes $O(d)$ time for each point, and for all of them takes $O(d n)$ time. But for computing the diameter over the rounded point set $\hat{\mathcal{S}}_{1}$ we need to know the number of points in the set $\hat{\mathcal{S}}_{1}$. We know that the largest side of the bounding box $B(\mathcal{S})$ has length ℓ and the side length of each cell in ξ_{1}-grid is $\xi_{1}=\sqrt{\varepsilon} \ell / 2 \sqrt{d}$. On the other hand, the volume of a hypercube of side length L in d-dimensional space is L^{d}. Since, corresponding to each point in the point set $\hat{\mathcal{S}}_{1}$, we can take a hypercube of side length ξ_{1}. Therefore, in order to count the maximum number of points inside the set $\hat{\mathcal{S}}_{1}$, it is sufficient to calculate the number of hypercubes of length ξ_{1} in a hypercube (bounding box) with length $\ell+\xi_{1}$. See Figure 2. This means that the number of grid-points in an imposed ξ_{1}-grid to the bounding box $B(\mathcal{S})$ is at most

$$
\begin{equation*}
\frac{\left(\ell+\xi_{1}\right)^{d}}{\left(\xi_{1}\right)^{d}}=\left(\frac{2 \sqrt{d}}{\sqrt{\varepsilon}}+1\right)^{d}=O\left(\frac{(2 \sqrt{d})^{d}}{\varepsilon^{\frac{d}{2}}}\right) \tag{1}
\end{equation*}
$$

So, the number of points in $\hat{\mathcal{S}}_{1}$ is at most $O\left((2 \sqrt{d})^{d} / \varepsilon^{\frac{d}{2}}\right)$. Hence, by the brute-force quadratic algorithm, we need $\left.O\left((2 \sqrt{d})^{d} / \varepsilon^{\frac{d}{2}}\right)^{2}\right)=O\left((2 \sqrt{d})^{2 d} / \varepsilon^{d}\right)$ time for computing all distances between grid-points of the set $\hat{\mathcal{S}}_{1}$, and its diametrical pair list. Then, for a diametrical pair (\hat{p}_{1}, \hat{q}_{1}) in the point set $\hat{\mathcal{S}}_{1}$, we compute two sets \mathcal{B}_{1} and \mathcal{B}_{2}. This work takes $O(d n)$ time. In addition, for computing the diameter of point set $\mathcal{B}_{1} \cup \mathcal{B}_{2}$, we need to know the number of points in each of them. On the other hand, the number of points in two sets \mathcal{B}_{1} or \mathcal{B}_{2} is at most

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(\mathcal{B}_{2 \xi_{1}}\right)}{\operatorname{Vol}\left(\mathcal{B}_{\xi}\right)}=\frac{(2 \sqrt{\varepsilon} \ell / 2 \sqrt{d})^{d}}{(\varepsilon \ell / 2 \sqrt{d})^{d}}=\frac{(2 \sqrt{\varepsilon})^{d}}{\varepsilon^{d}}=\frac{(2)^{d}}{\varepsilon^{\frac{d}{2}}} \tag{2}
\end{equation*}
$$

Hence, for computing $\operatorname{Diam}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$, we need $O\left(\left((2)^{d} / \varepsilon^{\frac{d}{2}}\right)^{2}\right)=O\left((2)^{2 d} / \varepsilon^{d}\right)$ time by brute-force manner, but we might have more than one diametrical pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$. Since the point set $\hat{\mathcal{S}}_{1}$ is a set
of grid-points, so we could have in the worst-case $O\left(2^{d}\right)$ different diametrical pairs $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ in the point set $\hat{\mathcal{S}}_{1}$. This means that this step takes at most $O\left(2^{d} \cdot(2)^{2 d} / \varepsilon^{d}\right)=O\left((2 \sqrt{2})^{2 d} / \varepsilon^{d}\right)$ time. Now, we can present the complexity of our algorithm as follows:

$$
\begin{align*}
& T_{d}(n)=O(d n)+O\left(\frac{(2 \sqrt{d})^{2 d}}{\varepsilon^{d}}\right)+O\left(2^{d} d n\right)+O\left(\frac{(2 \sqrt{2})^{2 d}}{\varepsilon^{d}}\right), \\
& \leqslant O\left(2^{d} d n+\frac{(2 \sqrt{d})^{2 d}}{\varepsilon^{d}}\right) \tag{3}
\end{align*}
$$

Since d is fixed, we have: $T_{d}(n)=O\left(n+\frac{1}{\varepsilon^{d}}\right)$.
We can also reduce the running time of the Algorithm 1 by discarding some internal points which do not have any potential to be the diametrical pairs in rounded point set $\hat{\mathcal{S}}_{1}$, and similarly, in two point sets \mathcal{B}_{1} and \mathcal{B}_{2}. By considering all the points which are same in their $(d-1)$ coordinates and keep only highest and lowest [7]. Then, the number of points in $\hat{\mathcal{S}}_{1}$, and two point sets \mathcal{B}_{1} and \mathcal{B}_{2} can be reduced to $O\left(1 / \varepsilon^{\frac{d}{2}-1}\right)$. So, using the brute-force quadratic algorithm, we need $O\left(\left(1 / \varepsilon^{\frac{d}{2}-1}\right)^{2}\right)$ time to find the diametrical pairs. Hence, this gives us the total running time $O\left(n+1 / \varepsilon^{d-2}\right)$. About the required space, we only need $O(n)$ space for storing required point sets. So, this completes the proof.

Now, we explain the details of the approximation factor.
Theorem 2 Algorithm 1 computes an approximate diameter \tilde{D} such that: $D \leqslant \tilde{D} \leqslant(1+\varepsilon) D$, where $0<\varepsilon \leqslant 1$.

Proof. In line 7 of the Algorithm 1, we compute two point sets \mathcal{B}_{1} and \mathcal{B}_{2}, for each diametrical pair $\left(\hat{p}_{1}, \hat{q}_{1}\right)$ in the point set $\hat{\mathcal{S}}_{1}$. We know that a grid-point \hat{p}_{1} in point set $\hat{\mathcal{S}}_{1}$ is formed from points of the set $\hat{\mathcal{S}}$ which are inside hypercube $B_{\xi_{1}}\left(\hat{p}_{1}\right)$. We use a hypercube \mathcal{B}_{1} of side length $2 \xi_{1}$ to make sure that we do not lose any candidate diametrical pair of the first rounded point set $\hat{\mathcal{S}}$ around a diametrical point \hat{p}_{1} (see Figure 2). In the next step, we should find the diametrical pair $(\hat{p}, \hat{q}) \in$ $\hat{\mathcal{S}}$ for points which are inside two point sets \mathcal{B}_{1} and \mathcal{B}_{2}. Hence, it is remained to show that the diameter, which is computed by two points \hat{p} and \hat{q}, is a $(1+\varepsilon)$ approximation of the true diameter. Let \hat{p} and \hat{q} are two central-cell points of the first rounded point set $\hat{\mathcal{S}}$ which are used in line 8 of the Algorithm 1 for computing the approximate diameter \hat{D}. Then, we have two cases, either two true points p and q are in far distance from each other in their corresponding cells (Figure 3 (a)), or they are in near distance from each other (Figure 3 (b)). It is obvious that the other cases are between these two cases.

For first case (Figure 3 (a)), let for two projected points \hat{p}^{\prime} and \hat{q}^{\prime}, we set $d_{1}=\left\|p-\hat{p}^{\prime}\right\|$ and $d_{2}=\left\|q-\hat{q}^{\prime}\right\|$.
(a)

Figure 3: Two cases in proof of the Theorem 2.

We know that the side length of each cell in a grid which is used for $\hat{\mathcal{S}}$ is ξ. So, the hypercube (cell) diagonal is $\xi \sqrt{d}$. From Figure 3 (a) it can be found that $d_{1}<\xi \sqrt{d} / 2$ and $d_{2}<\xi \sqrt{d} / 2$. Therefore, we have

$$
\begin{gather*}
D=\hat{D}+d_{1}+d_{2} \\
D \leqslant \hat{D}+\xi \sqrt{d} \\
D-\xi \sqrt{d} \leqslant \hat{D} \tag{4}
\end{gather*}
$$

Similarly, for the second case (Figure $3(\mathrm{~b})$), we know that $c_{1}=\left\|\hat{p}-p^{\prime}\right\|<\xi \sqrt{d} / 2$ and $c_{2}=\left\|\hat{q}-q^{\prime}\right\|<\xi \sqrt{d} / 2$. So,

$$
\begin{gather*}
\hat{D}=D+c_{1}+c_{2} \\
\hat{D} \leqslant D+\xi \sqrt{d} \tag{5}
\end{gather*}
$$

Then, from (4) and (5) we can result:

$$
\begin{equation*}
D-\xi \sqrt{d} \leqslant \hat{D} \leqslant D+\xi \sqrt{d} \tag{6}
\end{equation*}
$$

Since we know that $\xi=\varepsilon \ell / 2 \sqrt{d}$, we have:

$$
\begin{gather*}
D-\varepsilon \ell / 2 \leqslant \hat{D} \leqslant D+\varepsilon \ell / 2 \\
D \leqslant \hat{D}+\varepsilon \ell / 2 \leqslant D+\varepsilon \ell \tag{7}
\end{gather*}
$$

We know that $\ell \leqslant D$. For this reason we can result:

$$
\begin{equation*}
D \leqslant \hat{D}+\varepsilon \ell / 2 \leqslant(1+\varepsilon) D \tag{8}
\end{equation*}
$$

Finally, if we assume that $\tilde{D}=\hat{D}+\varepsilon \ell / 2$, we have:

$$
\begin{equation*}
D \leqslant \tilde{D} \leqslant(1+\varepsilon) D \tag{9}
\end{equation*}
$$

Therefore, the theorem is proven.

2.2 The modified algorithm

In this subsection, we present a modified version of our proposed algorithm by combining it with a recursive approach due to Chan [9]. Hence, we first explain Chan's recursive approach. As mentioned before, Agarwal et al. [6] proposed a $(1+\varepsilon)$-approximation algorithm for
computing the diameter of a set of points in \mathbb{R}^{d}. Their result is based on the following simple fact that we can find $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ numbers of directions in \mathbb{R}^{d}, for example by constructing a uniform grid on a unit sphere, such that for each vector $x \in \mathbb{R}^{d}$, there is a direction that the angle between this direction and x be at most $\sqrt{\varepsilon}$. In fact, they found a small set of directions which can approximate well all directions. This can be done by forming unit vectors which start from origin to gridpoints of a uniform grid on a unit sphere [6], or to gridpoints on the boundary of a box [10]. These sets of directions have cardinality $O\left(1 / \varepsilon^{(d-1) / 2}\right)$. The following observation explains how we can find these directions on the boundary of a box.

Observation 1 ([10]) Consider a box B which includes origin o such that the boundary of this box (∂B) be in the distance at least 1 from the origin. For a $\sqrt{\varepsilon / 2}$-grid on ∂B and for each vector \vec{x}, there is a grid point \boldsymbol{a} on ∂B such that the angle between two vectors \vec{a} and \vec{x} is at most $\arccos (1-\varepsilon / 8) \leqslant \sqrt{\varepsilon}$.

This observation explains that grid-points on the boundary of a box (∂B) form a set V_{d} of $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ numbers of unit vectors in \mathbb{R}^{d} such that for each $x \in \mathbb{R}^{d}$, there is a vector $a \in V_{d}$ from the origin o to a grid-point a on ∂B, where the angle between two vectors x and a is at most $\sqrt{\varepsilon}$. On the other hand, according to observation 1 , there is a vector $a \in V_{d}$ such that if α be the angle between two vectors x and a, then, $\alpha \leqslant \arccos (1-\varepsilon / 8)$, and so $\cos \alpha \geqslant(1-\varepsilon / 8)$. If x^{\prime} is the projection of the vector x on the vector a, then:

$$
\begin{align*}
\|x\|= & \frac{\left\|x^{\prime}\right\|}{\cos \alpha} \leqslant\left\|x^{\prime}\right\| \frac{1}{\left(1-\frac{\varepsilon}{8}\right)} \\
& \leqslant\left\|x^{\prime}\right\|\left(1+\frac{\varepsilon}{8}+\frac{\varepsilon^{2}}{8^{2}}+\frac{\varepsilon^{3}}{8^{3}}+\cdots\right) \\
& \leqslant\left\|x^{\prime}\right\|(1+\varepsilon) \tag{10}
\end{align*}
$$

So, we have:

$$
\begin{equation*}
\left\|x^{\prime}\right\| \leqslant\|x\| \leqslant(1+\varepsilon)\left\|x^{\prime}\right\| \tag{11}
\end{equation*}
$$

This means that if pair (p, q) be the diametrical pair of a point set, then there is a vector $a \in V_{d}$ such that the angle between two vectors $p q$ and a is at most $\sqrt{\varepsilon}$. See Figure 4. Then, pair $\left(p^{\prime}, q^{\prime}\right)$ which is the projection of the pair (p, q) on the vector a, is a $(1+\varepsilon)$-approximation of the true diametrical pair (p, q), and we have:

$$
\begin{equation*}
\left\|p^{\prime}-q^{\prime}\right\| \leqslant\|p-q\| \leqslant(1+\varepsilon)\left\|p^{\prime}-q^{\prime}\right\| \tag{12}
\end{equation*}
$$

In other words, we can project point set \mathcal{S} on $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ directions for all $a \in V_{d}$, and compute a $(1+\varepsilon)$-approximation of the diameter by finding maximum diameter between all directions. We project n

Figure 4: Projecting a point set on a direction a.
points on $\left|V_{d}\right|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ directions. Since, computing the extreme points on each direction $a \in V_{d}$ takes $O(n)$ time. Consequently, Agarwal et al. [6] algorithm computes a $(1+\varepsilon)$-approximation of the diameter in $O\left(n / \varepsilon^{(d-1) / 2}\right)$ time. Chan [9] proposes that if we reduce the number of points from n to $O\left(1 / \varepsilon^{d-1}\right)$ by rounding to a grid and then apply Agarwal et al. [6] method on this rounded point set, we need $O\left(\left(1 / \varepsilon^{d-1}\right) / \varepsilon^{(d-1) / 2}\right)=O\left(1 / \varepsilon^{3(d-1) / 2}\right)$ time to compute the maximum diameter over all $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ directions. Taking into account $O(n)$ time for rounding to a grid, this new approach takes $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time. Moreover, Chan [9] observed that the bottleneck of this approach is the large number of projection operations. Hence, he proposes that we can project points on a set of $O(1 / \sqrt{ } \bar{\varepsilon}) 2$-dimensional unit vectors instead of $O\left(1 / \varepsilon^{(d-1) / 2}\right) d$-dimensional unit vectors to reduce the problem to $O(1 / \sqrt{\varepsilon})$ numbers of ($d-1$)-dimensional subproblems which can be solved recursively. In fact, according to the relation (11), for a vector $x \in \mathbb{R}^{2}$, there is a vector a such that:

$$
\begin{equation*}
\left\|x^{\prime}\right\| \leqslant\|x\| \leqslant(1+\varepsilon)\left\|x^{\prime}\right\|, \quad x \in \mathbb{R}^{2} \tag{13}
\end{equation*}
$$

where x^{\prime} is the projection of the vector x on vector a. Since a is a unit vector $(\|a\|=1)$, therefore, $\left\|x^{\prime}\right\|=$ $(a \cdot x) /\|a\|=a \cdot x$. Hence, we can rewrite the previous relation as follows:

$$
\begin{equation*}
(a \cdot x)^{2} \leqslant\|x\|^{2} \leqslant(1+\varepsilon)^{2}(a \cdot x)^{2}, x \in \mathbb{R}^{2}, a \in V_{2} \tag{14}
\end{equation*}
$$

or
$\left(a_{1} x_{1}+a_{2} x_{2}\right)^{2} \leqslant\left(x_{1}^{2}+x_{2}^{2}\right) \leqslant(1+\varepsilon)^{2}\left(a_{1} x_{1}+a_{2} x_{2}\right)^{2}, a \in V_{2}$.
where x_{i} be the i th coordinate for a point $x \in \mathbb{R}^{d}$. We can expand (15) to:

$$
\begin{gather*}
\left(a_{1} x_{1}+a_{2} x_{2}\right)^{2}+\cdots+x_{d}^{2} \leqslant\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}\right) \leqslant \\
\quad(1+\varepsilon)^{2}\left(\left(a_{1} x_{1}+a_{2} x_{2}\right)^{2}+\cdots+x_{d}^{2}\right) \tag{16}
\end{gather*}
$$

Now, define the projection $\pi_{a}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}: \pi_{a}(x)=$ $\left(a_{1} x_{1}+a_{2} x_{2}, x_{3}, \cdots, x_{d}\right) \in \mathbb{R}^{d-1}$. Then, we can rewrite relation (16) for each vector $x \in \mathbb{R}^{d}$ as follows:

$$
\begin{equation*}
\left\|\pi_{a}(x)\right\|^{2} \leqslant\|x\|^{2} \leqslant(1+\varepsilon)^{2}\left\|\pi_{a}(x)\right\|^{2}, \quad a \in V_{2} \tag{17}
\end{equation*}
$$

So, since $\left\|\pi_{a}(p-q)\right\|=\left\|\pi_{a}(p)\right\|-\left\|\pi_{a}(q)\right\|$ we have for diametrical pair (p, q) :

$$
\begin{equation*}
\left\|\pi_{a}(p-q)\right\| \leqslant\|p-q\| \leqslant(1+\varepsilon)\left\|\pi_{a}(p-q)\right\|, \quad a \in V_{2} \tag{18}
\end{equation*}
$$

Therefore, for finding a $(1+O(\varepsilon))$-approximation for the diameter of point set $P \subseteq \mathbb{R}^{d}$, it is sufficient that we approximate recursively the diameter of a projected point set $\pi_{a}(P) \subset \mathbb{R}^{d-1}$ over each of the vectors $a \in V_{2}$. Then, the maximum diametrical pair computed in the recursive calls is a $(1+O(\varepsilon))$-approximation to the diametrical pair. Now, let us reduce the number of points from n to $m=O\left(1 / \varepsilon^{d-1}\right)$ by rounding to a grid, and we denote the required time for computing the diameter of m points in d-dimensional space with $t_{d}(m)$. Then, for $m=O\left(1 / \varepsilon^{d-1}\right)$ grid points, this approach breaks the problem into $O(1 / \sqrt{\varepsilon})$ subproblems in a $(d-1)$ dimension. Hence, we have a recurrence $t_{d}(m)=O\left(m+1 / \sqrt{\varepsilon} t_{d-1}\left(O\left(1 / \varepsilon^{d-1}\right)\right)\right)$. By assuming $E=1 / \varepsilon$, we can rewrite the recurrence as:

$$
\begin{equation*}
t_{d}(m)=O\left(m+E^{\frac{1}{2}} t_{d-1}\left(O\left(E^{d-1}\right)\right)\right) \tag{19}
\end{equation*}
$$

This can be solved to: $t_{d}(m)=O\left(m+E^{d-\frac{1}{2}}\right)$. In this case, $m=O\left(1 / \varepsilon^{d-1}\right)$, so, this recursive takes $O\left(1 / \varepsilon^{d-\frac{1}{2}}\right)$ time. Taking into account $O(n)$ time, we spent for rounding to a grid at the first, Chan's recursive approach computes a $(1+O(\varepsilon))$-approximation for the diameter of a set of n points in $O\left(n+1 / \varepsilon^{d-\frac{1}{2}}\right)$ time [9].

In the following, we use Chan's recursive approach in a phase of our proposed algorithm.

[^1]Now, we will analyze the Algorithm 2.
Theorem $3 A(1+O(\varepsilon))$-approximation for the diameter of a set of n points in d-dimensional Euclidean space can be computed in $O\left(n+1 / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)$ time and $O(n)$ space, where $0<\varepsilon \leqslant 1$.

Proof. As it can be seen, lines 1 to 6 of the Algorithm 2 are the same as the Algorithm 1. In this case, the number of points in rounded points set $\hat{\mathcal{S}_{1}}$ is at most:

$$
\begin{equation*}
\frac{\left(\ell+\xi_{2}\right)^{d}}{\left(\xi_{2}\right)^{d}}=\left(\frac{2 \sqrt{d}}{\varepsilon^{\frac{1}{3}}}+1\right)^{d}=O\left(\frac{(2 \sqrt{d})^{d}}{\varepsilon^{\frac{d}{3}}}\right) \tag{20}
\end{equation*}
$$

This can be reduced to $O\left((2 \sqrt{d})^{d} / \varepsilon^{\frac{d}{3}-1}\right)$, by keeping only highest and lowest points which are the same in their $(d-1)$ coordinates. So, for finding all diametrical pairs of the point set $\hat{\mathcal{S}}_{1}$, we need $\left.O\left((2 \sqrt{d})^{d} / \varepsilon^{\frac{d}{3}-1}\right)^{2}\right)=$ $O\left((2 \sqrt{d})^{2 d} / \varepsilon^{\frac{2 d}{3}-2}\right)$ time. Moreover, the number of points in two sets \mathcal{B}_{1} or \mathcal{B}_{2} is at most

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(\mathcal{B}_{2 \xi_{2}}\right)}{\operatorname{Vol}\left(\mathcal{B}_{\xi}\right)}=\frac{\left(2 \varepsilon^{\frac{1}{3}} \ell / 2 \sqrt{d}\right)^{d}}{(\varepsilon \ell / 2 \sqrt{d})^{d}}=\frac{\left(2 \varepsilon^{\frac{1}{3}}\right)^{d}}{\varepsilon^{d}}=\frac{(2)^{d}}{\varepsilon^{\frac{2 d}{3}}} \tag{21}
\end{equation*}
$$

This can be reduced to $O\left((2)^{d} / \varepsilon^{\frac{2 d}{3}-1}\right)$. Now, for computing $\operatorname{Diam}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$, we use Chan's [9] recursive approach instead of using the quadratic brute-force algorithm on the point set $\mathcal{B}_{1} \cup \mathcal{B}_{2}$. On the other hand, computing the diameter on a set of $O\left(1 / \varepsilon^{\frac{2 d}{3}-1}\right)$ points using Chan's recursive approach takes the following recurrence based on the relation (19): $t_{d}(m)=O(m+$ $\left.1 / \sqrt{\varepsilon} t_{d-1}\left(O\left(1 / \varepsilon^{\frac{2 d}{3}-1}\right)\right)\right)$. By assuming $E=1 / \varepsilon$, we can rewrite the recurrence as:

$$
\begin{equation*}
t_{d}(m)=O\left(m+E^{\frac{1}{2}} t_{d-1}\left(O\left(E^{\frac{2 d}{3}-1}\right)\right)\right) \tag{22}
\end{equation*}
$$

This can be solved to: $t_{d}(m)=O\left(m+E^{\frac{2 d}{3}-\frac{1}{2}}\right)$. In this case, $m=O\left(E^{\frac{2 d}{3}-1}\right)$, so, this recursive takes $O\left(E^{\frac{2 d}{3}-\frac{1}{2}}\right)=O\left(1 / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)$ time. Moreover, if we have more than one diametrical pair (\hat{p}_{1}, \hat{q}_{1}) in point set $\hat{\mathcal{S}}_{1}$, then this step takes at most $O\left(\left(2^{d}\right)(2)^{d} / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)=$ $O\left(2^{2 d} / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)$ time. So, we have total time:

$$
\begin{align*}
T_{d}(n)=O(d n) & +O\left(\frac{(2 \sqrt{d})^{2 d}}{\varepsilon^{\frac{2 d}{3}-2}}\right)+O\left(2^{d} d n\right)+O\left(\frac{2^{2 d}}{\varepsilon^{\frac{2 d}{3}-\frac{1}{2}}}\right) \\
& \leqslant O\left(2^{d} d n+\frac{(2 \sqrt{d})^{2 d}}{\varepsilon^{\frac{2 d}{3}-\frac{1}{2}}}\right) \tag{23}
\end{align*}
$$

Since d is fixed, we have: $T_{d}(n)=O\left(n+\frac{1}{\varepsilon^{\frac{2 d}{3}-\frac{1}{2}}}\right)$.
In addition, Chan's recursive approach in line 8 of the Algorithm 2 returns a diametrical pair $\left(p^{\prime}, q^{\prime}\right)$ which is a $(1+O(\varepsilon))$-approximation for the diametrical pair $(\hat{p}, \hat{q}) \in \hat{\mathcal{S}}$. So, according to relation (12), we have:

$$
\begin{equation*}
\left\|p^{\prime}-q^{\prime}\right\| \leqslant\|\hat{p}-\hat{q}\| \leqslant(1+O(\varepsilon))\left\|p^{\prime}-q^{\prime}\right\| . \tag{24}
\end{equation*}
$$

Moreover, the diametrical pair (\hat{p}, \hat{q}) is an approximation of the true diametrical pair $(p, q) \in \mathcal{S}$, and according to the relation (8), we have:

$$
\begin{equation*}
\|p-q\| \leqslant\|\hat{p}-\hat{q}\|+\varepsilon \ell / 2 \leqslant(1+\varepsilon)\|p-q\| \tag{25}
\end{equation*}
$$

Hence, from (24) and (25) we can result:

$$
\begin{align*}
\|p-q\| & \leqslant\|\hat{p}-\hat{q}\|+\varepsilon \ell / 2 \\
& \leqslant\|\hat{p}-\hat{q}\|+\varepsilon\|\hat{p}-\hat{q}\| \\
& \leqslant(1+\varepsilon)\|\hat{p}-\hat{q}\| \\
& \leqslant(1+\varepsilon)\left((1+O(\varepsilon))\left\|p^{\prime}-q^{\prime}\right\|\right) \\
& \leqslant(1+O(\varepsilon))\left\|p^{\prime}-q^{\prime}\right\| . \tag{26}
\end{align*}
$$

So, Algorithm 2 finds a $(1+O(\varepsilon))$-approximation in $O\left(n+1 / \varepsilon^{\frac{2 d}{3}-\frac{1}{2}}\right)$ time and $O(n)$ space.

3 Conclusion

We have presented two new non-constant approximation algorithms to compute the diameter of a point set \mathcal{S} of n points in \mathbb{R}^{d} for a fixed dimension d, which provide some improvements in terms of simplicity, and data structure.

References

[1] F. P. Preparata, and M. I. Shamos. Computational Geometry: an Introduction. New York, Springer-Verlag, pages 176-182, 1985.
[2] A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing, 11:721-736, 1982.
[3] K. L. Clarkson, and P. W. Shor. Applications of random sampling in computational geometry. Discrete and Computational Geometry, 4:387-421, 1989.
[4] E. A. Ramos. An optimal deterministic algorithm for computing the diameter of a three-dimensional point set. Discrete and Computational Geometry, 26:245-265, 2001.
[5] O. Egecioglu, and B. Kalantari. Approximating the diameter of a set of points in the Euclidean space. Information Processing Letters, 32(4):205-211, 1989.
[6] P. K. Agarwal, J. Matousek, and S. Suri. Farthest neighbors maximum spanning trees and related problems in higher dimensions. Computational Geometry: Theory and Applications, 1:189-201, 1992.
[7] G. Barequet, and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. Journal of Algorithms, 38:91-109, 2001.
[8] S. Har-Peled. A practical approach for computing the diameter of a point set. In Proceedings of the 17th annual Symposium on Computational Geometry (SoCG'01), pages 177-186, 2001.
[9] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. International Journal of Computational Geometry and Applications, 12:67-85, 2002.
[10] T. M. Chan. Faster core-set constructions and data stream algorithms in fixed dimensions. Computational Geometry: Theory and Applications, 35:20-35, 2006.
[11] T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry. In Proceedings of the 33rd International Symposium on Computational Geometry (SoCG'17), 26:1-15, 2017.
[12] S. Arya, G. D. da Fonseca, and D. M. Mount. Nearoptimal ε-kernel construction and related problems. In Proceedings of the 33rd International Symposium on Computational Geometry (SoCG'17), 10:1-15, 2017.

[^0]: *Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran, m.imanparast@aut.ac.ir, nhashemi@aut.ac.ir
 ${ }^{\dagger}$ Laboratory of Algorithms and Computational Geometry, Amirkabir University of Technology, Tehran, Iran, mohades@aut.ac.ir

[^1]: Algorithm 2: APPROXIMATE DIAMETER $2(\mathcal{S}, \varepsilon)$
 Input: a set \mathcal{S} of n points in \mathbb{R}^{d} and an error parameter ε.
 Output: Approximate diameter \tilde{D}.
 1: Compute the axis-parallel bounding box $B(\mathcal{S})$ for the point set \mathcal{S}.
 $\ell \leftarrow$ Find the length of the largest side in $B(\mathcal{S})$.
 Set $\xi \leftarrow \varepsilon \ell / 2 \sqrt{d}$ and $\xi_{2} \leftarrow \varepsilon^{\frac{1}{3}} \ell / 2 \sqrt{d}$.
 $\hat{\mathcal{S}} \leftarrow$ Round each point of \mathcal{S} to its central-cell point in a ξ-grid.
 5: $\quad \hat{\mathcal{S}}_{1} \leftarrow$ Round each point of $\hat{\mathcal{S}}$ to its nearest grid-point in a ξ_{2}-grid.
 6: $\quad \hat{D}_{1} \leftarrow$ Compute the diameter of the point set $\hat{\mathcal{S}_{1}}$ by brute-force, and simultaneously, a list of the diametrical pairs (\hat{p}_{1}, \hat{q}_{1}), such that $\hat{D}_{1}=\left\|\hat{p}_{1}-\hat{q}_{1}\right\|$.
 7: Find points of $\hat{\mathcal{S}}$ which are in two hypercubes $\mathcal{B}_{1}=\mathcal{B}_{2 \xi_{2}}\left(\hat{p}_{1}\right)$ and $\mathcal{B}_{2}=\mathcal{B}_{2 \xi_{2}}\left(\hat{q}_{1}\right)$ for each diametrical pair ($\left.\hat{p}_{1}, \hat{q}_{1}\right)$.
 8: $\tilde{D} \leftarrow$ Compute $\operatorname{Diam}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$, corresponding to each diametrical pair (\hat{p}_{1}, \hat{q}_{1}) using Chan's [9] recursive approach and return the maximum value $\left\|p^{\prime}-q^{\prime}\right\|$ over all of them. : Output \tilde{D}.

