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On the Coverage of Points in the Plane by Disks Centered at a Line
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Abstract

Given a set P of n points and a line L in the plane,
we consider the problem of computing a set S of disks
centered at L such that their union covers all points of
P . The cost of a disk is defined as a function f(r) = rα,
where α ≥ 1 is a constant and r is the radius of the disk.
The objective is to minimize the total sum of the cost
of all disks of S. Previously [Alt et al., SoCG 2006], the
problem was solved in O(n4 log n) time in any fixed Lp

metric (and in O(n2 log n) time if α = 1). In this paper,
we present a new algorithm that runs in O(n2) time for
any α ≥ 1 in any fixed Lp metric. In addition, we also
give algorithms for two variations of the 1D problem
where all points of P are in L: (1) there is an upper
bound k on |S|, and (2) the disk centers must be chosen
from another given set of potential locations on L.

1 Introduction

In this paper, we consider the following disk coverage
problem. Given a set P of n points and a line L in the
plane, we want to find a set S of disks centered at L such
that each point of P is covered by at least one disk and
the total sum of the cost of all disks of S is minimized.
Here, the cost of a disk of S is defined to be f(r) = rα for
a given constant α ≥ 1, where r is the radius of the disk.
Note that if α = 1 (resp., α = 2), we are minimizing the
total sum of the radii (resp., areas) of all disks. The
problem is motivated by power consumption models in
wireless network design, where α is often larger than or
equal to 2 [3, 13, 21]. We consider the general metric
Lp for any p ≥ 1, where a point q is said to be covered
by a disk centered at a point c with radius r if the Lp

distance between q and c is at most r. We refer to the
problem as the disk coverage problem.

Previously, Alt et al. [3] gave an algorithm that solves
the problem in O(n4 log n) time in any Lp metric and
for any α ≥ 1. Better algorithms for some special cases
of the problem were also presented in [3]. If α = 1, then
they solved the problem in O(n2 log n) time in any Lp

metric. In the L∞ metric, they gave an O(n3 log n) time
algorithm for any α ≥ 1.
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In this paper, we propose a new algorithm of O(n2)
time for any Lp metric and any α ≥ 1, which improves
the O(n4 log n) time algorithm in [3] by a more than
quadratic factor. Our algorithm first reduces the prob-
lem to finding a shortest path in a directly acyclic graph
(DAG) G, with n + 1 vertices and Θ(n2) edges. One
difficulty is to compute the weights of the edges of G.
We propose an algorithm that can compute each edge
weight in O(1) amortized time. Consequently, a short-
est path in G can be found in O(n2) time by a textbook
dynamic programming algorithm [12].

In addition, we consider the one-dimensional version
of the problem where the points of P are all on L (in
contrast, we may consider the above more general prob-
lem as a “1.5D” problem). Note that if there are no
constraints on the disks, then one could obtain an opti-
mal solution by placing a disk with zero radius at each
point of P . Thus, we consider two variations with con-
straints on the disks.

In the first problem, we are allowed to place at most
k disks, for a given k ∈ [1, n]. To our best knowl-
edge, we have not seen any previous work on this prob-
lem before. We reduce the problem to computing a
k-link shortest path in a DAG of n + 1 vertices and
O(n2) edges, which can then be solved in O(kn2) time
by an easy dynamic programming algorithm. Further,
we show that the edge weights of the graph obey the
concave Monge condition, and consequently, we can
solve it in O(nk) [1], O(n

√
k log n + n log n) [2], or

n2O(
√
log k log logn) time [22], after the points of P are

sorted on L. We refer to this problem as the k-interval
coverage problem because a disk in 1D becomes an in-
terval on L.

In the second problem, in addition to P , we are given
another set Q ofm points on L as the potential locations
for the centers of the disks (i.e., the center of each disk of
S must be in Q). This problem has been studied before.
Bilò et al. [6] first showed that the problem is solvable
in polynomial time. Lev-Tov and Peleg [17] gave an
algorithm of O((n + m)3) time for any α ≥ 1. Some
progress has been made recently by Biniaz et al. [7],
who proposed an O((n + m)2) time algorithm for the
case α = 1. In this paper, we solve the problem in
O(n(n + m) + m logm) time for any α ≥ 1, again by
reducing it to finding a shortest path in a DAG. We
refer to this problem as the discrete interval coverage

problem.
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1.1 Related Work

Some faster approximation algorithms are also known
for these problems. For the discrete interval coverage
problem, Lev-Tov and Peleg [17] derived a linear time
algorithm with approximation ratio 4 for the case α = 1,
and the ratio was reduced to 3 by Alt et al. [3] with the
same running time. Alt et al. [3] also proposed a 2-
approximation algorithm with O(m+ n logm) time for
the case α = 1. Efficient approximation algorithms were
also given by Alt et al. [3] for the 1.5D disk coverage
problem in the L∞ metric for any α ≥ 1. In addition,
Alt et al. [3] considered a variation of the 1.5D disk
coverage problem where we are given the slope of L
but its location may be chosen freely to minimize the
total cost. The problem was shown not computable by
radicals when α = 1, but FPTAS were given for α = 1
and α > 1 [3].
The discrete case of the 2D disk coverage problem

where both P and Q are points in the Euclidean plane
is shown to be NP-hard for any α > 1 [3]. For the case
α = 1, Lev-Tov and Peleg [17] gave a PTAS, and later,
Gibson et al. [14] showed that the problem is solvable
in polynomial time1. A variant of the problem in which
P = Q but there is an upper bound k on the number of
disks is also solved in polynomial time [14]. Other varia-
tions of the problem are considered elsewhere, e.g., [5, 6]
The traditional k-center and k-median problems are

closely related to the disk coverage problem. Roughly
speaking, the k-center problem is to minimize the
largest radius of the disks and the k-median problem
is to minimize the total sum of distances from all points
to their closest disk centers. Both problems have an up-
per bound k on the number of disks that can be used.
These problems are in general NP-hard [19], but have
polynomial time solutions in some special cases, e.g.,
the 1D case [4, 10, 11, 15, 20], the 1.5D case [8, 16, 23],
1 or 2-center in the Euclidean plane [9, 18], etc.

Paper Outline. The rest of the paper is organized as
follows. Section 2 defines some notation. In Section 3,
we present our algorithm for the 1.5D disk coverage
problem. The algorithms for the 1D problems are given
in Section 4. Section 5 concludes the paper with remarks
on possible extensions of our results to other more gen-
eral cost functions f(r) and possible improvements on
our results.

2 Preliminaries

For ease of exposition, for all three problems studied
in the paper, we make a general position assumption

1The result is based on the assumption that the two sums
of square roots of integers can be compared in polynomial time.
The algorithm can be extended to L1 and L∞ cases without the
assumption [14].

that no two points of P have the same x-coordinate.
Without loss of generality, we assume that the line L
is the x-axis. These assumptions can be easily lifted
without affecting the performance of our algorithms.
In each problem, we first sort all points of P by their

x-coordinates from left to right, and let the sorted list
be p1, p2, . . . pn. For any i, j with 1 ≤ i ≤ j ≤ n, let
P [i, j] denote the sublist pi, pi+1, . . . , pj .
For any point q in the plane, let x(q) and y(q) denote

the x- and y-coordinates of q, respectively.
For any two points q and q′ in the plane, we use

dp(q, q
′) to denote their Lp distance. We say that q

is to the left of q′ if x(q) ≤ x(q′), and q is to the right of
q′ if x(q) ≥ x(q′).
In any solution of each problem, if a point pi is covered

by a disk centered at c, then we call c a server and we
say that pi is “served” or “covered” by c.

3 The 1.5D Disk Coverage Problem

In this section, we present our O(n2) time algorithm for
the 1.5D disk coverage problem. In this problem, the
points of P are in the plane. Recall that L is the x-axis.
We assume that all points of P are above or on the

x-axis (since otherwise if a point p ∈ P was below the
x-axis, we could replace p by its symmetrical point with
the x-axis without affecting the optimal solution).
Recall that P = {p1, p2, . . . pn}, already sorted on

L from left to right. We first model the problem to a
shortest path problem in a directly acyclic graph (DAG)
G. To this end, the following lemma is critical (the
lemma is also applicable to the two 1D problems).

Lemma 1 In any fixed Lp metric, for any α ≥ 1,
there exists an optimal solution in which the points of P
served by the same server are consecutive in their index

order.

Proof. Consider an optimal solution in which the
lemma statement does not hold. Then, there must exist
two consecutive points pi and pi+1 (we call them a con-

flict pair) and two servers c1 and c2 with x(c1) < x(c2)
such that pi is served by c2 and pi+1 is served by c1 in
the solution (e.g., see Fig. 1). In the following, we show
that we can switch the service of pi and/or pi+1 so that
either they are served by the same server, or we can use
c1 to serve pi and use c2 to serve pi+1, without affecting
the total cost of the solution.
Let r1 be the radius of the disk centered at c1, and r2

the radius of the disk centered at c2. Since pi+1 is served
by c1 and pi is served by c2, we have dp(c1, pi+1) ≤
r1 and dp(c2, pi) ≤ r2. Without loss of generality, we
assume that y(pi) ≥ y(pi+1). Depending on whether
x(pi+1) ≤ x(c2), there are two cases.
If x(pi+1) ≤ x(c2), then since y(pi) ≥ y(pi+1) and

x(pi) < x(pi+1), it holds that dp(c2, pi+1) ≤ dp(c2, pi) ≤
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Figure 1: Illustrating the case where pi is served by c2
and pi+1 is served by c1.

r2. Hence, we can use c2 to serve pi+1 without increasing
the total cost of the solution.
If x(pi+1) > x(c2), since y(pi) ≥ y(pi+1) and x(pi) <

x(pi+1), the two line segments pic2 and pi+1c1 cross
each other (e.g., see Fig. 2). By triangle inequality of
the metric space, we have the following

dp(c1, pi) + dp(c2, pi+1) ≤ dp(c2, pi) + dp(c1, pi+1). (1)

If dp(c2, pi+1) ≤ dp(c2, pi), then since dp(c2, pi) ≤ r2,
we obtain dp(c2, pi+1) ≤ r2. Thus, we can use c2 to serve
pi+1 without increasing the total cost of the solution.
Otherwise, by Equation (1), we can derive dp(c1, pi) <
dp(c1, pi+1), which implies that we can use c1 to serve
pi without increasing the total cost of the solution.

x
c1 c2

pi
pi+1

Figure 2: The two segments pic2 and pi+1c1 cross each
other. By triangle inequality, the sum of the lengths
of the two solid segments is larger than or equal to the
sum of the lengths of the two dotted segments.

The above shows that our switch operation “fixed”
a conflict pair without increasing the total cost of the
solution. If after the switch operation the new opti-
mal solution still does not satisfy the lemma statement,
then there must exist another conflict pair and we can
continue applying the switch operation on them. Note
that this procedure will be finite and thus eventually
we will obtain an optimal solution without any conflict
pairs, which implies that the optimal solution satisfies
the lemma statement. �

Based on Lemma 1, we define a DAG G as follows.
The vertex set consists of n+1 vertices v0, ...vn so that
each vertex vi corresponds to an imaginary point be-
tween pi and pi+1 (v0 is to the left of p1 and vn is to
the right of pn). For all 0 ≤ i < j ≤ n, we create a di-
rected edge e(i, j) from vi to vj , and the weight w(i, j)
of the edge is defined as f(r), where r is the radius of
the smallest disk centered at L that can cover all points
of P [i + 1, j] (which is {pi+1, pi+2, . . . , pj}). Lemma 1
immediately leads to the following result.

Corollary 2 A shortest path π from v0 to vn in G
corresponds to an optimal solution to the disk cover-

age problem, i.e., the length of π is equal to the total

cost and each edge e(i, j) corresponds to a smallest disk

centered at L covering all points of P [i+ 1, j].

Since G is a DAG and has O(n2) edges, a shortest
path from v0 to vn can be computed in O(n2) time by
a dynamic programming algorithm [12] if the weights of
all graph edges are known. In the following, we show
that the weights of all edges of G can be computed in
O(n2) time. In particular, we have the following lemma.

Lemma 3 For each vertex vi, the weights of all its out-

going edges, i.e., w(i, j) for all j ∈ [i + 1, n], can be

computed in O(n− i) time.

Proof. To simplify the notation, we only consider the
case i = 0. The algorithm can be generalized to any
other index i in a straightforward manner. Our goal is
to compute w(0, j) for all j ∈ [1, n] in O(n) time.

For each j ∈ [1, n], define cj and rj respectively as
the center and the radius of the smallest disk centered
at L that covers all points of P [1, j]. By definition,
w(0, j) = f(rj). Below, we will give an incremental
algorithm to compute cj and rj for all j = 1, 2, . . . , n in
a total of O(n) time.

Note that since x(p1) < x(p2) < · · · < x(pn), we have
x(c1) ≤ x(c2) ≤ · · · ≤ x(cn). This implies that when
computing cj from j = 1 to j = n, we only need to
consider the locations of L from left to right.

For any two points pi and pj of P with i < j, there is
a point, denoted by q(i, j), on L such that for any point
c ∈ L, dp(c, pi) ≤ dp(c, pj) if c is to the left of q(i, j) and
dp(c, pi) ≥ dp(c, pj) otherwise. We assume that given pi
and pj , q(i, j) can be computed in O(1) time.

For any point pi, we use p′i to denote the point on
L with the same x-coordinate as pi. Clearly, for each
j ∈ [1, n], rj ≥ dp(p

′
j , pj).

As a warm-up and for better understanding the ra-
tionale of our algorithm, we first show how to process
the first two points p1 and p2 (to compute cj and rj for
j = 1, 2).

Initially, when j = 1, c1 is p′1 and r1 = dp(c1, p1).
Next, consider j = 2. We first compute the point q(1, 2).
The two points p′1 (which is also c1) and p′2 divide L
into three parts, and depending on which part contains
q(1, 2), there are three cases.

If x(q(1, 2)) ≤ x(c1), then dp(c1, p2) ≤ dp(c1, p1) =
r1. Thus, c2 = c1 and r2 = r1. Further, the point
p2 can be ignored in the future algorithm. Indeed,
for any point c ∈ L to the right of c1, it holds that
dp(c, p1) ≥ dp(c, p2). Since x(cj) ≥ x(c2) for all j ≥ 3,
when computing cj for any j ≥ 3, p1 “dominates” p2,
and thus p2 can be ignored.
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Figure 3: Illustrating a canonical list of three points in
the L2 metric. Each dotted segment is a perpendicu-
lar bisector of the segment connecting two consecutive
points in the canonical list.

If x(c1) < x(q(1, 2)) ≤ x(p2), then c2 = q(1, 2) and
r2 = dp(c2, p1) = dp(c2, p2). Further, as the above ar-
gument, p2 can be ignored in the future algorithm.
If x(q(1, 2)) > x(p2), then dp(p

′
2, p1) ≤ dp(p

′
2, p2).

Thus, c2 = p′2 and r2 = dp(p
′
2, p2). However, in this

case, neither p1 nor p2 should be ignored because we
do not know whether cj is to the left or right of q(1, 2),
e.g., for j = 3.
The above discusses our algorithm for processing p1

and p2. In the following, we describe our general algo-
rithm. The pseudocode is given in Algorithm 1.
Suppose our algorithm has processed the points

p1, p2, . . . , pj (and thus ci and ri for all i ∈ [1, j] have
been computed) and is about to preprocess pj+1. Then,
our algorithm maintains a canonical list of h points
pi1 , pi2 , . . . , pih for h ≤ j with the following invariants
(e.g., see Fig. 3).

1. i1 < i2 < · · · < ih.

2. x(q(ih, ih−1)) < x(q(ih−1, ih−2)) < · · · <
x(q(i2, i1)).

3. x(pih) ≤ x(cj) < x(q(ih, ih−1)).

4. rj = dp(cj , pih).

5. To simplify the discussion, let q(ih+1, ih) = cj
and q(i1, i0) be the point on L with x-coordinate
+∞. For each t ∈ [1, h], with respect to any
point c between q(it+1, it) and q(it, it−1) on L, the
point pit dominates all other points of P [1, j], i.e.,
dp(c, pit) ≥ dp(c, pi) for all i ∈ [1, j].

Initially, after p1 is processed, our canonical list con-
sists of a single point p1, and all algorithm invariants
hold (as an exercise, one can check that after p2 is
processed as discussed above the invariants also hold).
Next, we discuss a general step of our algorithm for pro-
cessing pj+1.
We first compute the point q(ih, j + 1) on L, and

depending on its location with respect to cj and

x
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i2

i3 j + 1

q(i2; i1)q(i3; i2)

q(i3; j + 1)

cj+1

Figure 4: Update the canonical list of Fig. 3 by adding
pj+1 to the end (i.e., setting i4 = j + 1).

q(ih, ih−1), there are three cases. Note that accord-
ing to our algorithm invariants, x(pih) ≤ x(cj) <
x(q(ih, ih−1)).

If x(q(ih, j + 1)) ≤ x(cj), then dp(cj , pj+1) ≤
dp(cj , pih) = rj . By definition, the disk centered at
cj with radius rj is the smallest one covering all points
of P [1, j]. As dp(cj , pj+1) ≤ rj , the disk also covers
pj+1 and thus is the smallest one covering all points of
P [1, j + 1]. Hence, cj+1 = cj and rj+1 = rj . Further,
for any point c on L to the right of cj+1, dp(c, pih) ≥
dp(c, pj+1), and thus pj+1 is dominated by pih and can
be ignored in the future algorithm. Therefore, in this
case the canonical list pi1 , pi2 , . . . , pih does not change,
and all algorithm invariants hold since cj+1 = cj .

If x(cj) < x(q(ih, j + 1)) < x(q(ih, ih−1)) (this in-
cludes the case h = 1; recall that we have assumed
x(q(i1, i0)) = +∞), depending on whether q(ih, j + 1)
is to the left of p′j+1, there are two subcases.

1. If x(q(ih, j+1)) ≤ x(pj+1), then cj+1 = q(ih, j+1)
and rj+1 = dp(cj+1, pih). Indeed, by our algorithm
invariants, since x(cj) < x(cj+1) < x(q(ih, ih−1)),
cj+1 covers all points of P [1, j] with distance rj+1.
On the other hand, by the definition of cj+1 and
rj+1, the disk centered at cj+1 with radius rj+1 is
the smallest one covering pih and pj+1.

Further, for any point c to the right of cj+1,
dp(c, pih) ≥ dp(c, pj+1), and thus pj+1 is dominated
by pih and can be ignored in the future algorithm.
Therefore, in this case the canonical list does not
change, and all algorithm variants still hold since
x(cj) < x(cj+1) < x(q(ih, ih−1)).

2. If x(q(ih, j + 1)) > x(pj+1), then again by our
algorithm invariants, cj+1 = p′j+1 and rj+1 =
dp(cj+1, pj+1). In this case, we add pj+1 to the
end of our canonical list by setting ih+1 = j + 1
and incrementing h by one (e.g., see Fig. 4). Due
to x(cj+1) < x(q(ih, j + 1)) < x(q(ih, ih−1)), one
can verify that all our algorithm invariants hold.
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If x(q(ih, j + 1)) ≥ x(q(ih, ih−1)), then observe that
pih is dominated by pj+1 with respect to any location
c ∈ L to the left of q(ih, ih−1). Further, according to our
algorithm invariants, pih is dominated by at least one
point of pit for t ∈ [1, h−1] with respect to any location
c ∈ L to the right of q(ih, ih−1). Hence, in this case we
remove pih from the canonical list, by decrementing h by
one. In the following discussion, we assume h has been
decremented and thus use pih+1

to denote the removed
point. We consider the location of q(ih, j + 1) (again,
this h has been decremented) and proceed as follows. As
x(q(ih+1, j+1)) ≥ x(q(ih+1, ih)), dp(q(ih+1, ih), pj+1) ≥
dp(q(ih+1, ih), pih+1

) = dp(q(ih+1, ih), pih). Hence,
q(ih, j + 1) is to the right of q(ih+1, ih). Since
x(q(ih+1, ih)) > x(cj) (by algorithm invariants), we ob-
tain x(q(ih, j + 1)) > x(cj). If h > 1 and x(q(ih, j +
1)) ≥ x(q(ih, ih−1)), then we repeat the same pro-
cedure as above. Otherwise, depending on whether
x(q(ih, j+1)) ≤ x(pj+1), there are two subcases, whose
processing is the same as above for the case x(cj) <
x(q(ih, j+1)) < x(q(ih, ih−1)), and we omit the details.

The above describes a general step of our algorithm
for processing pj+1. The algorithm stops once pn is
processed. For the running time, processing pj+1 takes
O(1 + t) time, where t is the number of points removed
from the canonical list. Observe that each point of P
will be added to the list and removed from the list at
most once in the entire algorithm. Therefore, the total
time of the algorithm is O(n). �

Algorithm 1: Computing cj and rj for all j ∈ [1, n]

1 c1 ← p′1, r1 ← dp(p1, p
′
1), i1 ← 1, h← 1;

2 for j ← 1 to n− 1 do

3 compute q(ih, j + 1);
4 if x(q(ih, j + 1)) ≤ x(cj) then
5 cj+1 ← cj , rj+1 ← rj ;
6 else /* The following combines the

second and third cases in the algorithm

description */

7 while h > 1 and

x(q(ih, j + 1)) ≥ x(q(ih, ih−1)) do
8 h← h− 1, compute q(ih, j + 1);

9 if x(q(ih, j + 1)) ≤ x(pj+1) then
10 cj+1 ← q(ih, j + 1), rj+1 ← dp(cj+1, pih);
11 else

12 cj+1 ← p′j+1, rj+1 ← dp(cj+1, pj+1),

ih+1 ← j + 1, h← h+ 1;

By Lemma 3, we can compute a shortest path from
v0 to vn in G in O(n2) time, after which an optimal so-
lution for our original problem can be readily obtained
according to Corollary 2. Note that the shortest path

algorithm can be implemented in O(n) space. Indeed,
whenever a vertex vi is processed, it is sufficient to know
the weights of the outgoing edges of vi by applying
Lemma 3, and the weights of other edges of the graph
can be ignored. Thus, we have the following theorem.

Theorem 4 In any fixed Lp metric, for any α ≥ 1, the
1.5D disk coverage problem can be solved in O(n2) time

and O(n) space.

4 The One-Dimensional Problem

In this section, we consider the two variations of the
1D problem. Note that in the 1D problem, for any two
points q and q′ on the x-axis, dp(q, q

′) = |x(q)−x(q′)| in
any Lp metric. Therefore, we will use d(q, q′) to denote
the value |x(q) − x(q′)|. We begin with the k-interval
coverage problem.

4.1 The k-Interval Coverage Problem

In this problem, we are given a set P of n points on
L (the x-axis), an integer k ∈ [1, n], and α ≥ 1. The
goal is to compute a set of at most k disks centered at
L covering all points of P such that the total cost of all
disks is minimized.
We follow the same notation as before and use

p1, p2, . . . , pn as the sorted list of P from left to right.
Observe that Lemma 1 still holds for this problem.
Thus, we build the same DAG G as before. The weights
of the edges of G are also defined in the same way as
before. Consequently, our problem is equivalent to com-
puting a shortest path from v0 to vn in G with at most k
edges (this is usually called a k-link shortest path). Fur-
ther, we have a simple algorithm to compute the edge
weights of the graph, as shown in the following lemma.

Lemma 5 For any edge e(i, j) with 0 ≤ i < j ≤ n, the
weight w(i, j) can be computed in constant time.

Proof. According to the definition, w(i, j) = f(r) =
rα, where r is the radius of the smallest disk centered
at L covering all points of P [i + 1, j]. Observe that
r = |x(pj)−x(pi+1)|/2. Hence, w(i, j) can be computed
in constant time. �

Using Lemma 5, we can find a k-link shortest path
from v0 to vn in G in O(kn2) time by a straightforward
dynamic programming algorithm. However, we can do
better due to that the edge weights of the graph obey
the concave Monge condition [1, 2], which is proved in
the following lemma.

Lemma 6 The graph G has the concave Monge prop-

erty, i.e., for any i and j with 0 < i+1 < j < n, it holds
that w(i, j) + w(i+ 1, j + 1) ≤ w(i, j + 1) + w(i+ 1, j).
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Proof. For any i′, j′ with 1 ≤ i′ ≤ j′ ≤ n, define
r(i′, j′) = |x(pj′)− x(pi′)|/2.
As discussed in the proof of Lemma 5, we have

w(i, j) = (r(i+1, j))α, w(i+1, j+1) = (r(i+2, j+1))α,
w(i, j + 1) = (r(i + 1, j + 1))α, and w(i + 1, j) =
(r(i+2, j))α. Observe that r(i+1, j)+ r(i+2, j+1) =
r(i+1, j+1)+r(i+2, j). Since r(i+1, j+1) > r(i+1, j),
r(i + 1, j + 1) > r(i + 2, j + 1), and α ≥ 1, we can ob-
tain that (r(i+1, j))α+(r(i+2, j+1))α ≤ (r(i+1, j+
1))α+(r(i+2, j))α. Therefore, w(i, j)+w(i+1, j+1) ≤
w(i, j + 1) + w(i+ 1, j) holds. �

Due to the concave Monge property, we can resort
to faster algorithms for computing a k-link shortest
path from v0 to vn in G in O(nk) [1], O(n

√
k log n +

n log n) [2], or n2O(
√
log k log logn) time [22]. Note that

when applying these algorithms, we will not compute
the graph G explicitly; rather, whenever the algorithm
needs an edge weight, we use the algorithm in Lemma 5
to compute it in O(1) time. Therefore, we have the
following result.

Theorem 7 For any α ≥ 1, after the points of

P are sorted on L, the k-interval coverage prob-

lem can be solved in min{O(nk), O(n
√
k log n +

n log n), n2O(
√
log k log logn)} time.

4.2 The Discrete Interval Coverage Problem

In this problem, we are given a set P of n points and
another set Q of m points on L (the x-axis), as well as
α ≥ 1. The goal is to compute a set of disks centered
at the points of Q to cover all points of P such that the
total cost of the disks is minimized.
Again, let p1, p2, . . . , pn be the sorted list of P from

left to right. We also sort all points of Q from left to
right on L, and let q1, q2, . . . , qm be the sorted list. One
can verify that Lemma 1 still applies. With respect
to the sorted list of P , we define the same DAG G as
before. Here, the weight w(i, j) of each edge e(i, j) is
defined as the smallest disk centered at a point in Q
covering all points of P [i+ 1, j]. Hence, our problem is
equivalent to finding a shortest path from v0 to vn in G.
The following lemma gives an algorithm for computing
the weights of the edges of G.

Lemma 8 For each vertex vi, the weights of all its out-

going edges, i.e., w(i, j) for all j ∈ [i + 1, n], can be

computed in O(m+ n− i) time.

Proof. For any j ∈ [i+1, n], let D be the smallest disk
covering all points of P [i+1, j] such that the center is a
point in Q. Let q(i+1, j) be the middle point of the line
segment pi+1pj on L. Let c a point of Q that is closest to
q(i+1, j), and r = max{|x(c)−x(pi+1)|, |x(c)−x(pj)|}.
Observe that c must be a center of D and r must be
the radius. Therefore, to compute the weight w(i, j),

it is sufficient to determine the point of Q closest to
q(i+ 1, j).

We first compute the points q(i + 1, j) for all j ∈
[i+1, n] in O(n− i) time. Then the points of Q closest
to q(i + 1, j)’s for all j ∈ [i + 1, n] can be found in
O(m + n − i) time by a linear scan simultaneously on
both the sorted list of Q and the list q(i+1, i+1), q(i+
1, i + 2), . . . , q(i + 1, n), which is also sorted on L from
left to right. Consequently, the weights w(i, j) for all
j ∈ [i+1, n] can be computed in O(m+n− i) time. �

By Lemma 8, we can compute a shortest path from
v0 to vn in G in O(n(m + n)) time, after which an op-
timal solution for our original problem can be readily
obtained. As in Section 3, with Lemma 8, the algorithm
can be implemented in O(n +m) space. Therefore, we
have the following theorem, where the O(m logm) fac-
tor is due to the sorting of Q.

Theorem 9 For any α ≥ 1, the discrete interval cov-

erage problem can be solved in O(n(m + n) +m logm)
time and O(m+ n) space.

5 Concluding Remarks

In this paper, we present new algorithms for covering
points by disks. We have been considering the cost
function f(r) = rα for a constant α ≥ 1. In fact,
our algorithms for the 1.5D case and for the discrete
1D case also work with the same complexities for any
non-decreasing function f(r) as long as the following as-
sumption holds: given any r, f(r) can be computed in
constant time. Our algorithm for the k-interval coverage
problem, however, may not work for all non-decreasing
functions, because the Monge property in Lemma 6 may
not hold any more (in which case we can still use the
straightforward O(kn2) time dynamic programming al-
gorithm to solve the problem).

In addition, for the 1.5D case and the discrete 1D
case, if there is an upper bound k on the number of disks
that are allowed to be used, then the problem is equiv-
alent to computing a k-link shortest path from v0 to vn
in the DAG G, which can be done in O(kn2) time by
dynamic programming after the graph G is computed.

It would be interesting to see whether the algorithms
can be further improved, especially for the 1.5D prob-
lem and the discrete 1D problem. One might wonder
whether the DAGs for these two problems also have
Monge properties (either convex or concave). Unfortu-
nately, we have found examples showing that the DAG
for each problem does not have either convex or con-
cave Monge property. Therefore, new techniques may
be needed for further improvement.
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