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Abstract

A set of points P in a metric space and a constant inte-
ger k are given. The k-center problem finds k points as
centers among P , such that the maximum distance of
any point of P to their closest centers (r) is minimized.

Doubling metrics are metric spaces in which for any r,
a ball of radius r can be covered using a constant num-
ber of balls of radius r/2. Fixed dimensional Euclidean
spaces are doubling metrics. The lower bound on the
approximation factor of k-center is 1.822 in Euclidean
spaces, however, (1 + ε)-approximation algorithms with
exponential dependency on 1

ε and k exist.

For a given set of sets P1, . . . , PL, a composable coreset
independently computes subsets C1 ⊂ P1, . . . , CL ⊂ PL,
such that ∪Li=1Ci contains an approximation of a mea-
sure of the set ∪Li=1Pi.

We introduce a (1 + ε)-approximation composable
coreset for k-center, which in doubling metrics has size
sublinear in P . This results in a (2 + ε)-approximation
algorithm for k-center in MapReduce with a constant
number of rounds and sublinear communications, which
improves upon the previous 4-approximation algorithm.
We also prove a trade-off between the size and the ap-
proximation factor of our coreset, and give a composable
coreset for a related problem called dual clustering.

1 Introduction

Coresets are subsets of points that approximate a mea-
sure of the point set. A method of computing core-
sets on big data sets is composable coresets. Com-
posable coresets [20] provide a framework for adapting
constant factor approximation algorithms to streaming
and MapReduce models. Composable coresets summa-
rize distributed data so that the scalability is increased,
while keeping the desirable approximation factor and
time complexity.

There is a general algorithm for solving problems us-
ing coresets which known by different names in different
settings: mergeable summaries [1] and merging in a tree-
like structure [2] for streaming (1 + ε)-approximation
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algorithms, small space (divide and conquer) for con-
stant factor approximations in streaming [15], and com-
posable coresets in MapReduce [20]. A consequence of
using constant factor approximations instead of (1 + ε)-
approximations with the same merging method is that
it can add a O(log n) factor to the approximation factor
of the algorithm on an input of size n.

Composable coresets [20] require only a single round
and sublinear communications in the MapReduce
model, and the partitioning is done arbitrarily.

Definition 1 (Composable Coreset) A composable
coreset on a set of sets {Si}Li=1 is a set of subsets
C(Si) ⊂ Si whose union gives an approximation solu-
tion for an objective function f : (∪Li=1Si) → R. For-
mally, a composable coreset of a minimization problem
is an α-approximation if

f(∪iSi) ≤ f(∪iC(Si)) ≤ α.f(∪iSi),

for a minimization problem. The maximization version
is similarly defined.

A partitioned composable coreset is a composable core-
set in which the initial sets are a partitioning, i.e. sets
{Si}Li=1 are disjoint. Using Gonzalez’s algorithm for k-
center [14], Indyk, et al. designed a composable coreset
for a similar problem known as the diversity maximiza-
tion problem [20]. Other variations of composable core-
sets are randomized composable coresets and mapping
coresets. Randomized composable coresets [26] share
the same divide and conquer approach as other compos-
able coresets and differ from composable coresets only
in the way they partition the data. More specifically,
randomized composable coresets, randomly partition-
ing the input, as opposed to other composable core-
sets which make use of arbitrary partitioning. Map-
ping coresets [5] extend composable coresets by adding
a mapping between coreset points and other points to
their coresets and keep almost the same amount of data
in all machines. Algorithms for clustering in `p norms
using mapping coresets are known [5]. Further improve-
ments of composable coresets for diversity maximization
[20] include lower bounds [3] and multi-round compos-
able coresets in metrics with bounded doubling dimen-
sion [6].

Metric k-center is a NP-hard problem for which 2-
approximation algorithms that match the lower bound
for the approximation factor of this problem are
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known [28, 14]. Among approximation algorithms for
k-center is a parametric pruning algorithm, based on
the minimum dominating set [28]. In this algorithm,
an approximate dominating set is computed on the disk
graph of the input points. The running time of the al-
gorithm is O(n3). The greedy algorithm for k-center
requires only O(nk) time [14] and unlike the algorithm
based on the minimum dominating set[28], uses r-nets
[17]. A (1 + ε)-approximation coreset exists for k-center
[4] with size exponentially dependent on 1

ε .
Let the optimal radius of k-center for a point set P be

r. The problem of finding the smallest set of points that
cover P using radius r is known as the dual clustering
problem [7].

Metric dual clustering (of k-center) has an unbounded
approximation factor [7]. In Euclidean metric, there ex-
ists a streaming O(2dd log d)-approximation algorithm
for this problem [7]. Also, any α-approximation algo-
rithm for the minimum disk/ball cover problem gives
a 2-approximation coreset of size αk for k-center, so
2-approximation coresets of size (1 + ε)k exist for this
problem [23]. A greedy algorithm for dual clustering of
k-center has also been used as a preprocessing step of
density-based clustering (DBSCAN) [11]. Implement-
ing DBSCAN efficiently in MapReduce is an important
problem [18, 9, 13, 27, 21].

Randomized algorithms for metric k-center and k-
median in MapReduce [10] exist. These algorithms take
α-approximation offline algorithms and return (4α+2)-
approximation and (10α+ 3)-approximation algorithms
for k-center and k-median in MapReduce, respectively.
The round complexity of these algorithms depends on
the probability of the algorithm for finding a good ap-
proximation.

Current best results on metric k-center in MapRe-
duce have 2 rounds and give the approximation factor
4 [24]. However, a 2-approximation algorithm exists if
the cost of the optimal solution is known [19]. Experi-
ments in [25] suggest that running Gonzalez’s algorithm
on a random partitioning and an arbitrary partitioning
results in the same approximation factor.

Warm-Up

Increasing the size of coresets in the first step of comput-
ing composable coresets can improve the approximation
factor of some problems. The approximation factor of k-
median algorithm of [15] is 2c(1+2b)+2b, where b and c
are the approximation factors of k-median and weighted
k-median, respectively. This algorithm computes a com-
posable coreset, where a coreset for k-median is the set
of k medians weighted by the number of points assigned
to each median.

A pseudo-approximation for k-median finds k+O(1)
median and has approximation factor 1 +

√
3 + ε [22].

Using a pseudo-approximation algorithm in place of k-

median algorithms in the first step of [15], it is pos-
sible to achieve a better approximation factor for k-
median using the same proof as [15]. Since any pseudo-
approximation has a cost less than or equal to the opti-
mal solution; replacing them will not increase the cost
of clustering.

The approximation factor using [8] as weighted k-
median coresets is 91.66, while the best k-median al-
gorithm would give a 99.33 factor using the same algo-
rithm (b = 1 +

√
3). The lower bound on the approxi-

mation factor of this algorithm using the same weighted
k-median algorithm but without pseudo-approximation
is 63.09 (b = 1 + 2

e ).

Contributions

We give a (1+ε)-approximation coreset of size ( 4
ε )1+2bk

for k-center in metric spaces with doubling dimension
b. Using composable coresets, our algorithm general-
izes to MapReduce setting, where it becomes a (1 + ε)-
approximation coreset of size (4

ε )1+2b n
mk, given memory

m, which is sublinear in the input size n.

Conditions Approx. Reference
Metric k-center:
O(1)-rounds 4 [24]

O(log∆
1+ε) rounds 2 + ε [19]

Lower bound 2 offline [28]
Doubling metrics:
O(1)-rounds 2 + ε Theorem 7
Lower bound 1.822 [12]

Dual clustering:
General metrics O(log n) min dominating set

[28], composable
coreset [20]

Doubling metrics O(1) Theorem 3

Table 1: Summary of results for k-center and dual clus-
tering in MapReduce. ∆ is the diameter of the point-set.

Using the composable coreset for dual clustering, we
find a (2 + ε)-approximation composable coreset for k-
center, which has a sublinear size in metric spaces with
constant doubling dimension. More specifically, if an
α-approximation exists for doubling metrics, our algo-
rithm provides (α + ε)-approximation factor. It im-
proves the previous 4-approximation algorithm [24, 25]
in MapReduce. A summary of results on k-center is
shown in Table 1. Note that for MapReduce model,
each round can take a polynomial amount of time, how-
ever, the space available to each machine is sublinear.

Our algorithm achieves a trade-off between the ap-
proximation factor and the size of coreset (see fig. 1).
The approximation factor of our algorithm and the size
of the resulting composable coreset for L input sets are
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α = 2 + ε and kLβ, respectively. This trade-off is the
main idea of our algorithm.
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Figure 1: Space-approximation factor trade-off of our
α-approx. coreset of size βkL for k-center in Euclidean
plane.

Our composable coresets give single pass streaming
algorithms and 1-round approximation algorithms in
MapReduce with sublinear communication, since each
coreset is communicated once, and the size of the coreset
is constant.

2 Preliminaries

First we review some basic definitions, models and al-
gorithms in computational geometry and MapReduce.

2.1 Definitions

Some geometric definitions and notations are reviewed
here, which have been used in the rest of the paper.

Definition 2 (Metric Space) A (possibly infinite)
set of points P and a distance function d(., .) create a
metric space if the following three conditions hold:

• ∀p, q ∈ P d(p, q) = 0⇔ p = q

• ∀p, q ∈ P d(p, q) = d(q, p)

• ∀p, q, t ∈ P d(p, q) + d(q, t) ≥ d(p, t), known as
triangle inequality

Metrics with bounded doubling dimension are called
doubling metrics. Constant dimension Euclidean spaces
under `p norms and Manhattan distance are examples
of doubling metrics.

Doubling constant [16] of a metric space is the num-
ber of balls of radius r that lie inside a ball of radius 2r.
The logarithm of doubling constant in base 2 is called
doubling dimension. Many algorithms have better ap-
proximation factors in doubling metrics compared to
general metric spaces. The doubling dimension of Eu-
clidean plane is log2 7.

Definition 3 (Doubling Dimension [16]) For any
point x in a metric space and any r ≥ 0, if the ball
of radius 2r centered at x can be covered with at most
2b balls of radius r, we say the doubling dimension of
the metric space is b.

k-Center is a NP-hard clustering problem with clus-
ters in shapes of d-dimensional balls.

Definition 4 (Metric k-Center [28]) Given a set P
of points in a metric space, find a subset of k points as
cluster centers C such that

∀p ∈ P,min
c∈C

d(p, c) ≤ r

and r is minimized.

The best possible approximation factor of metric k-
center is 2 [28].

Geometric intersection graphs represent intersections
between a set of shapes. For a set of disks, their inter-
section graph is called a disk graph.

Definition 5 (Disk Graph) For a set of points P in
a metric space with distance function d(., .) and a radius
r, the disk graph of P is a graph whose vertices are P ,
and whose edges connect points with distance at most
2r.

Definition 6 (Dominating Set) Given a graph G =
(V,E), the smallest subset Q ⊂ V is a minimum domi-
nating set, if ∀v ∈ V, v ∈ Q ∨ ∃u ∈ Q : (v, u) ∈ E.

We define the following problem as a generalization
of the dual clustering of [7] by removing the following
two conditions: the radius of balls is 1, and the set of
points are in Rd.

Definition 7 (Dual Clustering) Given a set of
points P and a radius r, the dual clustering problem
finds the smallest subset of points as centers (C), C ⊂ P
such that the distance from each point to its closest
center is at most r.

2.2 An Approximation Algorithm for Metric k-
Center

Here, we review the parametric pruning algorithm
of [28] for metric k-center.

Algorithm 1 Parametric Pruning for k-Center [28]

Input: A metric graph G = (V,E), an integer k
Output: A subset C ⊂ V, |C| ≤ k

Sort E such that e1 ≤ e2 ≤ · · · ≤ e|E|.
G′ = (V,E′)← (V, ∅)
for i = 1, . . . , |E| do

E′ ← E′ ∪ {ei}
Run algorithm 2 on G′.
if |IS| ≤ k then return IS
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Using this algorithm on a metric graph G, a 2-
approximation for the optimal radius r can be deter-
mined. In algorithm 1, edges are added by increasing
order of their length until reaching r. Given this radius,
another graph (G′) is built, where edges exist between
points within distance at most r of each other.

Algorithm 2 Approximate dominating set of G [28]

Input: A metric graph G′ = (V,E)
Output: A subset C ⊂ V
G′2 ← G′

for ∀(u, t), (t, v) ∈ E do
Add (u, v) to G′2.

Find a maximal independent set IS of G′2

return IS

Hence, by definition, a minimum dominating set of G′

is an optimal k-center of G. Every cluster is a star in G′

which turns into a clique in G′2. Therefore, a maximal
independent set of G′2 chooses at most one point from
each cluster. Algorithm 2 computes G′2 and returns a
maximal independent set of G′2.

Computing a maximal independent set takes O(|E|)
time. The graph G′2 in Algorithm 2 only changes in
each iteration of Algorithm 1 around the newly added
edge, so, updating the previous graph and IS takesO(n)
time. Therefore, the time complexity of Algorithm 1 is
O(|E| · n) = O(n3).

3 A Coreset for Dual Clustering in Doubling Metrics

In this section, we prove a better approximation offline
coreset for the dual clustering problem. Our method is
based on Algorithm 1 which first builds the disk graph
with radius r, then covers this graph using a set of stars.
We prove the maximum degree of those stars is D2,
where D is the doubling constant. The result is an ap-
proximation algorithm for dual clustering in doubling
metrics.

3.1 Algorithm

We add a preprocessing step to Algorithm 1 to find a
better approximation factor for k-center and dual clus-
tering problems.

Algorithm 3 A Coreset for k-Center

Input: A set of points P , an integer k or a radius r
Output: A subset C ⊂ P, |C| ≤ k

if k is given in the input then
Compute a 2-approximation solution for k-center

(radius r).

E ← all pairs of points with distance at most r/2.
Run algorithm 2 on G = (P,E) to compute IS.
return IS

3.2 Analysis

Unlike in general metric spaces, k-center in doubling
metrics admits a space-approximation factor trade-off.
More specifically, doubling or halving the radius of k-
center changes the number of points in the coreset by
a constant factor, since the degrees of vertices in the
minimum dominating set are bounded in those metric
spaces.

Lemma 1 For each cluster Ci of Algorithm 3 with ra-
dius r′, the maximum number of points (∆ + 1) from
Ci that are required to cover all points inside Ci with
radius r′/2 is at most D2, i.e.

(∆ + 1) ≤ D2,

where D is the doubling constant of the metric space.

Proof. Assume a point p ∈ IS returned by Algo-
rithm 3. By the definition of doubling metrics, there
are D balls of radius r′/2 centered at b1, . . . , bD called
B1, . . . , BD that cover the ball of radius r′ centered at
p, called B.

∀q ∈ B, ∃Bi, i = 1, . . . , D : d(p, bi) ≤ r′/2

Repeating this process for each ball Bi results in a set of
at most D balls (B′i,1, . . . , B

′
i,D) of radius r′/4 centered

at b′i,1, . . . , b
′
i,D.

∀q ∈ B′i,j , d(b′i,j , q) ≤ r′/4

Choose a point pi,j ∈ P∩B′i,j . Using triangle inequality,

∀q ∈ B′i,j , d(pi,j , q) ≤ d(pi,j , b
′
i,j) + d(b′i,j , q)

≤ r′/4 + r′/4 = r′/2.

We claim any minimal solution needs at most one
point from each ball B′i,j . By contradiction, assume
there are two point pi,j , q

′ in the minimal solution that
lie inside a ball B′i,j . After removing q′, the ball with
radius r′/2 centered at pi,j still covers B′i,j , since:

∀q ∈ P,∃Bi, B′i,j 3 q, pi,j
d(q, pi,j) ≤ d(q, b′i,j) + d(b′i,j , pi,j)

≤ r′/4 + r′/4 = r/2′.

Then we have found a point (q′) whose removal de-
creases the size of the solution, which means the so-
lution was not minimal. So the size of any minimal set
of points covering B is at most D2. �

Lemma 2 In a metric space with doubling constant D,
if a dual clustering with radius r has k points, then a
dual clustering with radius r/2 exists which has D2k
points.
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Figure 2: Applying the doubling dimension bound twice
(Lemma 1).

Proof. Let p be a center in the k-center problem.
Based on the proof of Lemma 1, there are ∆ vertices
adjacent to p that cover the points inside the ball of ra-
dius r centered at p, using balls of radius r/2 and a ball
of radius r/2 centered at p. By choosing all these ver-
tices as centers, it is possible to cover all input points
P with radius r/2. Using the same reasoning for all
clusters, it is possible to cover all points using (∆ + 1)k
centers. Using the bound in Lemma 1, these are D2k
centers. �

Theorem 3 The approximation factor of Algorithm 3
is D2 for the dual clustering.

Proof. Since the radius of balls in Lemma 2 is at most
the optimal radius for k-center, the approximation fac-
tor of dual clustering is the number of points chosen as
centers divided by k, which is D2. �

Theorem 4 The approximation factor of the coreset
for k-center in Algorithm 3 is 2−R and its size is
D2(R+1)k.

Proof. Applying Lemma 2 halves the radius and mul-
tiplies the number of points by D2. So, applying this
lemma R times gives (D2)R+1k points, since it might
be the case that in the first step of the algorithm the
optimal radius was found, and we divided it by 2. The
radius remains r

2R
because of the case where we had

found a 2-approximation. �

Theorem 5 Algorithm 3 given ( 4
ε )2 log2Dk as input, is

a (1 + ε)-approximation coreset of size ( 4
ε )2 log2Dk for

the k-center problem.

Proof. For R = dlog2
2
ε e, the proof of Theorem 4 gives

( 4
ε )2 log2D points and radius rε. Assume O is the set of k

centers returned by the optimal algorithm for point-set
P , and C is the set of centers returned by running the
optimal algorithm on the coreset of P . For any point
p ∈ P , let o be the center that covers p and c be the

point that represents o in the coreset. Using triangle
inequality:

d(p, c) ≤ d(p, o) + d(o, c) ≤ r + rε = (1 + ε)r

So, computing a k-center on this coreset gives a (1 + ε)-
approximation. �

4 A Composable Core-Set for k-Center in Doubling
Metrics

Our general algorithm for constructing coresets based
on dual clustering has the following steps:

• Compute the cost of an approximate solution (X).

• Find a composable coreset for dual clustering with
cost X.

• Compute a clustering on the coreset.

In this section, we use this general algorithm for solving
k-center.

4.1 Algorithm

Knowing the exact or approximate value of r, we can
find a single-round (2 + ε)-approximation for metric k-
center in MapReduce. Although the algorithm achieves
the aforementioned approximation factor, the size of the
coreset and the communication complexity of the algo-
rithm depend highly on the doubling dimension.

Algorithm 4 k-Center

Input: A set of sets of points ∪Li=1Si, a k-center algo-
rithm

Output: A set of k centers
1: Run a k-center algorithm on each Si to find the

radius ri.
2: Run Algorithm 2 on the disk graph of each set Si

with radius εri
2 locally to find C(Si).

3: Send C(Si) to set 1 to find the union ∪iC(Si).
4: Run a 2-approximation k-center algorithm on
∪Li=1C(Si) to find the set of centers C.

5: return C.

Based on the running time of Algorithm 2 and Gon-
zalez’s algorithm, the running time of Algorithm 4 is∑
i[O(k · |Si|) + O(|Si|2)] + O(k

∑
i |C(Si)|) = O(kn).

Since the sum of running times of machines is of the
same order as the best sequential algorithm, Algo-
rithm 4 is a work-efficient parallel algorithm.

We review the following well-known lemma:

Lemma 6 For a subset S ⊂ P , the optimal radius of
the k-center of S is at most twice the radius of the k-
center of P .
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Figure 3: The dominating set on ∪iC(Si) covers ∪iSi
with radius (2 + ε)(Theorem 7).

Proof. Consider the set of clusters Oi in the optimal
k-center of P centered at ci, i = 1, . . . , k with radius r.
If ci ∈ S, then the points of Oi ∩ S are covered by ci
with radius r, as before. Otherwise, select an arbitrary
point in Oi ∩ S as the new center c′i. Using the triangle
inequality on ci, c

′
i and any point p ∈ Oi ∩ S:

d(p, c′i) ≤ d(p, ci) + d(ci, c
′
i) ≤ r + r = 2r

Since c′i was covered using ci with radius r. So the set
S ∩ Oi can be covered with radius 2r. Note that since
we choose at most one point from each set, the number
of new centers is at most k. �

Theorem 7 The approximation factor of Algorithm 4
is 2 + ε for metric k-center.

Proof. Let r be the optimal radius of k-center for ∪iSi.
Since ∪iC(Si) ⊂ ∪iSi, using Lemma 6, the radius of
k-center for ∪iC(Si) is at most 2r. The radius of k-
center inside each set Si is at most 2r for the same
reason. The algorithm computes a covering Si with
balls of radius riε/2. Based on the fact that offline
k-center has 2-approximation algorithms and the tri-
angle inequality, the approximation factor of the algo-
rithm proves to be (2+ε)-approximation (Figure 3). Let
p = arg minp∈∪iC(Si) dist(s, p), then

∀s ∈ Si∃c ∈ C, d(s, c) ≤ d(s, p) + d(p, c) ≤ r′ + riε/2

≤ 2r + 2rε/2 = (2 + ε)r

where r′ is the radius of the offline k-center algorithm
on C. �

4.2 Analysis

Lemma 8 In a metric space with doubling constant D,
the union of dual clusterings of radius r computed on
sets S1, . . . , SL is a (L×D2 log2

8
ε )-approximation for the

dual clustering of radius r(1+ε) of their union (∪Li=1Si).

Proof. Each center in the dual clustering with radius r
of P = (∪Li=1Si) has at most ∆ adjacent vertices covered
by this center. Consider a point p ∈ P covered by center
c in a solution for P . If p and c belong to the same set
Si, assign p to c. Otherwise, pick any point that was
previously covered by c as the center that covers p.

While this might increase the radius by a factor 2,
it does not increase the number of centers in each set.
Since the algorithm uses radius ε.r/2, it increases the

number of centers to D2 log2
8
ε k (based on Theorem 4

for R = 4r
εr/2 ) but keeps the approximation factor of the

radius to 1 + ε. There are L such sets, so the size of the
coreset is L×D2 log2

8
ε k. �

Theorem 9 Algorithm 4 returns a coreset of size
O(kL) for k-center in metric spaces with fixed doubling
dimension.

Proof. The coreset of each set Si has a radius ri vary-
ing from the optimal radius (r = ri) to 2β.r, where β
is the approximation factor of the offline algorithm for
k-center. Clearly, the lower bound holds because any
radius is at least as much as the optimal (minimum) ra-
dius, which means r ≤ ri; and Lemma 6 when applied
to Si ⊂ ∪iSi, yields the upper bound.

r ≤ ri ≤ 2β.r ⇒ rε

4β
≤ riε

4β
≤ εr

2

Reaching value rε requires applying Theorem 7 at most
log2

4β
ε times.

The size of the resulting coreset is therefore at most

(4log2D)log2
4β
ε kL = (

4β

ε
)2(log2D)kL.

Here, we use the best approximation factor for met-
ric k-center (β = 2), which gives a coreset of size
( 8
ε )2(log2D)kL = O(kL) for fixed ε. �

5 Conclusions

We proved a trade-off between the approximation factor
and the number of centers for the k-center problem in
doubling metrics. To improve the trade-off in MapRe-
duce, local partitioning methods such as grid-based or
locality sensitive hashing, or degree based partitioning
of disk graph with lower radius might be effective.

Gonzalez’s algorithm [14] is a version of parametric
pruning algorithm [28] in which the greedy maximal in-
dependent set computation prioritizes the points with
maximum distance from the currently chosen points.
Our algorithm and trade-off partially answers the open
question of [25] about comparing and improving these
two algorithms in MapReduce.

Our composable coreset for dual clustering gives con-
stant factor approximation for minimizing the size of
DBSCAN cluster representatives if half the input radius
is used, and the dominating set subroutine is replaced
with the connected dominating set.
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[4] M. Bādoiu, S. Har-Peled, and P. Indyk. Approximate
clustering via core-sets. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of comput-
ing, pages 250–257. ACM, 2002.

[5] M. Bateni, A. Bhaskara, S. Lattanzi, and V. Mirrokni.
Distributed balanced clustering via mapping coresets.
In Advances in Neural Information Processing Systems
(NIPS), pages 2591–2599, 2014.

[6] M. Ceccarello, A. Pietracaprina, G. Pucci, and E. Up-
fal. Mapreduce and streaming algorithms for diver-
sity maximization in metric spaces of bounded dou-
bling dimension. Proceedings of the VLDB Endowment,
10(5):469–480, 2017.

[7] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. In-
cremental clustering and dynamic information retrieval.
SIAM Journal on Computing, 33(6):1417–1440, 2004.

[8] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for the k-
median problem (extended abstract). In Proceedings
of the Thirty-first Annual ACM Symposium on Theory
of Computing, STOC ’99, pages 1–10, New York, NY,
USA, 1999. ACM.

[9] B.-R. Dai and I.-C. Lin. Efficient map/reduce-based db-
scan algorithm with optimized data partition. In 2012
IEEE 5th International Conference on Cloud Comput-
ing (CLOUD), pages 59–66. IEEE, 2012.

[10] A. Ene, S. Im, and B. Moseley. Fast clustering using
mapreduce. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and
data mining (KDD), pages 681–689. ACM, 2011.

[11] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the Sec-
ond International Conference on Knowledge Discovery
and Data Mining (KDD), volume 96, pages 226–231,
1996.

[12] T. Feder and D. Greene. Optimal algorithms for ap-
proximate clustering. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages
434–444. ACM, 1988.

[13] Y. X. Fu, W. Z. Zhao, and H. F. Ma. Research on par-
allel dbscan algorithm design based on mapreduce. In
Advanced Materials Research, volume 301, pages 1133–
1138. Trans Tech Publ, 2011.

[14] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science
(TCS), 38:293–306, 1985.

[15] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 15(3):515–528, 2003.

[16] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded
geometries, fractals, and low-distortion embeddings.
In Foundations of Computer Science, 2003. Proceed-
ings. 44th Annual IEEE Symposium on, pages 534–543.
IEEE, 2003.

[17] S. Har-Peled and M. Mendel. Fast construction of
nets in low-dimensional metrics and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[18] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan. Mr-
dbscan: a scalable mapreduce-based dbscan algorithm
for heavily skewed data. Frontiers of Computer Science,
8(1):83–99, 2014.

[19] S. Im and B. Moseley. Brief announcement: Fast and
better distributed mapreduce algorithms for k-center
clustering. In Proceedings of the 27th ACM symposium
on Parallelism in Algorithms and Architectures, pages
65–67. ACM, 2015.

[20] P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mir-
rokni. Composable core-sets for diversity and cover-
age maximization. In Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pages 100–108. ACM,
2014.

[21] Y. Kim, K. Shim, M.-S. Kim, and J. S. Lee. Dbcure-mr:
an efficient density-based clustering algorithm for large
data using mapreduce. Information Systems, 42:15–35,
2014.

[22] S. Li and O. Svensson. Approximating k-median via
pseudo-approximation. SIAM Journal on Computing,
45(2):530–547, 2016.

[23] C. Liao and S. Hu. Polynomial time approximation
schemes for minimum disk cover problems. Journal of
combinatorial optimization, 20(4):399–412, 2010.

[24] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Wein-
berger, and B. Moseley. Fast distributed k-center clus-
tering with outliers on massive data. In Advances in
Neural Information Processing Systems (NIPS), pages
1063–1071, 2015.

[25] J. McClintock and A. Wirth. Efficient parallel algo-
rithms for k-center clustering. In Parallel Processing
(ICPP), 2016 45th International Conference on, pages
133–138. IEEE, 2016.

[26] V. Mirrokni and M. Zadimoghaddam. Randomized
composable core-sets for distributed submodular max-
imization. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing (STOC),
pages 153–162. ACM, 2015.

[27] M. Noticewala and D. Vaghela. Mr-idbscan: Efficient
parallel incremental dbscan algorithm using mapre-
duce. International Journal of Computer Applications
(IJCA), 93(4), 2014.

[28] V. V. Vazirani. Approximation algorithms. Springer
Science & Business Media, 2013.


