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Emanation Graph: A New t-Spanner∗

Bardia Hamedmohseni† Zahed Rahmati‡ Debajyoti Mondal§

Abstract

We introduce a new t-spanner, called emanation graph
Mk, based on the idea of shooting rays out of each ver-
tex at specific angles, determined by k, the grade of the
emanation graph. Emanation graphs of grade one coin-
cide with the competition mesh, which was studied by
Mondal and Nachmanson [18] in the context of network
visualization. They proved that the spanning ratio of
such a graph is bounded by (2 +

√
2) ≈ 3.41.

In this paper, we prove an improved
√

10 ≈ 3.162
upper bound on the spanning ratio of emanation graphs
of grade one, which in fact improves the previous result.
We also prove that the spanning ratio of the emanation

graphs of grade k is at least
2+sin( π

2k
)

1+cos( π
2k

) , for sufficiently

large n.

1 Introduction

Let G be a geometric graph embedded in the Euclidean
plane, and let u and v be a pair of vertices in G. Let
dG(u, v) and dE(u, v) be the minimum graph distance
(i.e., shortest path distance) and Euclidean distance be-
tween u and v, respectively. The spanning ratio of

G is max
{u,v}∈G

dG(u,v)
dE(u,v) , i.e., the maximum ratio between

dG(u, v) and dE(u, v) over all pairs of vertices {u, v} in
G. Graph G is called a t-spanner of the complete geo-
metric graph, if for every pair of vertices {u, v} in G, the
distance dG(u, v) is at most t times of their Euclidean
distance dE(u, v).

The t-spanners are commonly used in computational
geometry. They also find applications in wireless net-
work routing [9] and in network visualizations [18, 19].
A rich body of research is devoted towards the construc-
tion of t-spanners, and there has also been significant
efforts to find tight spanning ratios for different classes
of geometric graphs.

In this paper, we examine plane geometric spanners,
i.e., no two edges in the spanner cross except at their
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Figure 1: The emanation graph of grade two, for four
points in the Euclidean plane.

common endpoints. A natural question in this context
is as follows: Given a set of points P of n points in the
plane, can we compute a planar spanner G = (V,E)
of P with small size, degree and spanning ratio? We
allow the spanner to have Steiner points, i.e., P ⊆ V ,
thus V may contain vertices that do not correspond to
any point of P . Note that keeping the degree, size and
spanning ratio of the spanners small are often motivated
by application areas, and appeared in the literature [9,
8]. Note that we do not require the paths between a
pair of Steiner points to be bounded.

In this paper, we introduce a new type of t-spanners,
called the emanation graph. Given a set P of n points in
a bounding box R(P ), and an integer k > 0, the emana-
tion graph Mk of grade k is constructed by emanating,
from each point pi ∈ P , 2k+1 rays with equal angular
distances of π

2k
, and equal constant speed. Each ray

stops as soon as it hits another ray of larger length, or
R(P ). If two parallel rays collide, then they both stop
and if two or more non-parallel rays of equal length col-
lide, then arbitrarily one of them continues, and the
other rays stop. The vertices formed by the collision of
rays are considered as Steiner points. Figure 1 depicts
M2 for four points in the plane.

In the following we briefly review the literature re-
lated to the planar spanners (both with and without
Steiner points).

1.1 Background

Delaunay graphs are one of the most studied plane geo-
metric spanners. Chew [10] showed that the L1-metric
Delaunay graph is a

√
10-spanner. There have been sev-
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eral attempts to find tight spanning ratio for Delaunay
triangulations (L2-metric Delaunay graphs) [16, 12, 6].
The currently best known upper and lower bound on
the spanning ratio of the Delaunay triangulation is
1.998 [20] and 1.5932 [21], respectively.

Another popular class of plane geometric spanner
is half-Θ6 graphs, which is formed by partitioning the
space around each vertex into six cones of equal angle,
and then connecting the vertex to the bisector nearest
neighbor in the first, third and fifth cones (for some fixed
clockwise ordering of the cones); the bisector nearest
neighbor in a cone means the neighbor with the small-
est projection on the bisector of the cone. The half-Θ6

graphs are 2-spanners [10].

While both the Delaunay triangulations and half-Θ6

graphs have linear number of edges and small spanning
ratio, they may have vertices with unbounded degree.
Bose et al. [7] showed that plane t-spanners of bounded
degree exist (for some constant t). A significant amount
of research followed this result, which examines the con-
struction of bounded degree plane spanners with low
spanning ratio. Some of the best known spanning ra-
tios for spanners with maximum degree 4, 6 and 8 are
20 [15], 6 [4] and 4.414 [8], respectively.

Although there exist point sets that do not admit a
planar spanner of spanning ratio less than 1.43 [13], by
allowing O(n) Steiner points, one can obtain a spanning
ratio of (1 + ε)-spanners, for any ε > 0. Arikati et al. [1]
showed that one can construct a plane geometric (1+ε)-
spanner with O(n/ε4) Steiner points. Bose and Smid [9]
asked whether the dependence on ε can be improved.

Recently, Dehkordi et al. [11] proved that any set of n
points admits a ‘planar angle-monotone graph of width
90◦’ with O(n) Steiner points. Since an angle mono-
tone graphs of width α is a 1

cos(α/2) -spanner [3], this

implies the existence of a
√

2-spanner with O(n) Steiner
points, which may contain vertices of unbounded degree.
See [17] for more details on the construction of angle-
monotone graphs with Steiner points.

Mondal and Nachmanson introduced a class of ge-
ometric graphs (with Steiner points), called competi-
tion mesh, and used those graphs to implement a large
network visualization system (GraphMaps [18]). They
proved the competition mesh is a (2 +

√
2)-spanner. A

competition mesh is exactly the emanation graph of
grade one, and hence their result implies an uppper
bound of (2+

√
2) on the spanning ratio of M1. Mondal

and Nachmanson [18] noticed that the competition mesh
can be viewed as a variation of a motorcycle graphs [14].
This also holds for the emanation graphs.

Instead of choosing three cones in the half-Θ6 graphs,
one can connect a vertex to the bisector nearest neigh-
bors in all the six cones, which gives rise to the full-
Θ6 graphs. The concept has also been extended to
full-Θr graphs [5], where the space around the vertices
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Figure 2: Illustration for lower bound proof.

are partitioned into r cones of equal angle θ = 2π/r.
Similarly, there exist Yao-graphs Yr, where the nearest
neighbor in a cone is chosen based on the Euclidean
distance [2]. However, all these generalizations yield
non-planar spanners.

1.2 Contributions

We introduce a class of plane geometric spanners, called
emanation graphs, which generalizes the competition
mesh [18]. We prove a

√
10 upper bound on the span-

ning ratio of emanation graphs of grade one, which im-
proves the previously known upper bound of (2 +

√
2).

We also prove that the spanning ratio of every emana-
tion graph with r rays, where r = 4q+2 and q ≥ 1, is at
most 1

sin(π/r) sin(π/2r) . In contrast, we prove the span-

ning ratio of the emanation graphs of grade k to be at

least
2+sin( π

2k
)

1+cos( π
2k

) (for sufficiently large n). Note that Mon-

dal and Nachmanson [18] proposed several heuristics to
simplify the emanation graphs (e.g., deleting the seg-
ments that do not lie on the shortest paths), which can
also be applied to emanation graphs of higher grade.
However, we do not consider any such simplification
methods in this paper.

2 Lower Bounds

In this section, we prove the lower bounds on the span-
ning ratio of the emanation graphs.

Theorem 1 There exists an emanation graph Mk of n

vertices with spanning ratio
2+sin( π

2k
)

1+cos( π
2k

) , for sufficiently

large n.

Proof. We refer the reader to Figures 2(a) and (b),
which depict the case when k = 1 and k = 2, respec-
tively. We construct a set of n points inside a bound-
ing box R as follows. Imagine two parallel guidelines
with an angle of α = π

2k+1 , as shown in green dashed
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Figure 3: Illustration for the case when k = 3.

lines. Specifically, the two points s and t, which will
achieve the lower bound, are lying along the horizon-
tal axis. One of the two guidelines starts at s and the
other guideline starts at t. As shown in the figure, the
top-left corner of the bounding box R is determined by
the intersection of the vertical line through s and the
guideline that starts at t. The bottom-right corner of
R is determined by the intersection of the vertical line
through t and the guideline that starts at s.

We may assume that the number of vertices is even
(if the number of vertices is odd, then we place one ver-
tex on the bottom-left corner of R). We distribute n/2
points p1, p2, . . . , pn/2(= pm) on the guideline incident
to s. We place the points ensuring that the segments
pipi+1 all have the same length. We place the rest of
the points symmetrically on the other guideline.

We now define a canonical path L that starts at s and
ends at t, as follows. The path L visits all the points
s(= p1), . . . , pm−1, by following the rays closest to the
guidelines but staying above the guideline. The path
continues from pm−1 by following the ray that reach
closest to t. Assume that the ray intersects R at point
r. Then the path continues the vertical segment rt to
reach t. Figures 2(a) and (b) depict the path L in blue.
Figures 3 illustrates the scenario when k = 3. We will
later prove in Lemma 2 that the canonical path L is a
shortest path between s and t.

For any two points a and b, we denote the horizontal
and vertical distances between them by |ab|x and |ab|y,
respectively. By ab, we denote the straight line segment
connecting a and b. Note that s and t are horizontally
aligned, and pm is vertically aligned with t. Assume that
dE(pi, pi+1) = 2, and dE(p1, pm) = 2(m−1), where m =
n/2. Therefore, |pmt|y = 2(m − 1) sinα, and |spm|x =
2(m− 1) cosα which is equal to dE(s, t).

Since the triangle 4pm−1pmr is isosceles, the length
of pm−1r is equal to that of pmr. The length of the
subpath p1, . . . , pm−1 of L is 2(m − 2)/ cosα, so the

graph distance dG(s, t) between s and t is

2(m− 2)

cosα
+ |pmt|y =

2(m− 2)

cosα
+ 2(m− 1) sinα.

Lemma 2 proves that the shortest path between s and
t is L. Thus the spanning ratio would be

dG(s, t)

dE(s, t)
=

2(m−2)
cosα + 2(m− 1) sinα

2(m− 1) cosα

=
2(m− 2) + 2(m− 1) cosα sinα

2(m− 1) cos2 α

For a sufficiently large m, the proof obtains:

lim
m→∞

dG(s, t)

dE(s, t)
=

2 + 2 cosα sinα

2 cos2 α

=
2 + sin(2α)

1 + cos(2α)

=
2 + sin( π

2k
)

1 + cos( π
2k

)
.

�

Theorem 1 concludes that the lower bound of span-
ning ratio for the emanation graph of grade k = 1 is 3,
and for a graph of grade k = 2 is approximately 1.58.

Lemma 2 The selected path in Theorem 1 is a shortest
path between s and t.

Proof. (Sketch) We use the construction described in
Theorem 1 (e.g., see Figure 4) to show that any path
from s to t is at least as large as the canonical path
L (marked in blue). First observe that it suffices to re-
strict our attention to x-monotone paths. One can cate-
gorize the candidate monotone paths in two groups: (I)
Paths that have the same length as L, such paths can be
formed by replacing segments of L by their symmetric
counterparts, two of these counterparts are highlighted
in yellow. (II) Paths with segments that do not belong
to (I), two of such segments are highlighted in red. We
only need to show that the paths in (II) can not be
shorter than that of L.

By the symmetric structure of the graph, it is
straightforward to observe that the paths in (II) can
gradually be transformed into the canonical path L
without changing the length. For example, the yellow
path from pj to t can be replaced by the blue path from
pj to t. Appendix includes the formal details. �

3 Upper Bounds

In this section we give the upper bounds on the spanning
ratio of the emanation graphs.
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Figure 4: Illustration for proof of Lemma 2.
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Figure 5: Illustration for proof of Theorem 3.

3.1 Emanation Graphs of Grade One

Theorem 3 The spanning ratio of every emanation
graph of grade one is at most

√
10 ≈ 3.162.

Proof. Let s and t be a pair of vertices in the emana-
tion graph. Consider four cones around s, where the
cones are determined by two lines passing through s
with slopes +1 and −1, respectively, as illustrated in
Figure 5. Without loss of generality assume that t lies
in the rightward cone C of s.

We now construct an x-monotone path Px, which lies
entirely in cone C, as follows: The path starts at s and
for each original vertex, the path follows its rightward
segment `. If a rightward segment is stopped by an-
ther segment `′, then the path follows `′ to the original
vertex that created `′. Figure 5 illustrates a subpath
s(= a1), . . . , q of Px in blue. For any subpath ai, . . . , aj
on Px, we will use the notation Yaiaj (resp., Xaiaj ) to
refer to the sum of the lengths of all the vertical (resp.,
horizontal) segments in ai, . . . , aj .

By construction of Px and the definition of the emana-
tion graph, the length of any horizontal segment on Px
is at least as large as the subsequent vertical segment.
Hence for every subpath ai, . . . , aj in Px, which starts
with a horizontal segment, we will have Xaiaj ≥ Yaiaj .

Without loss of generality assume that t lies on or
above Px. We now construct another path Py follow-
ing the same construction as that of Px, but following
the upward segments. Note that t is now in the region
bounded by the paths Px and Py. We now construct an
(−x − y)-monotone path Pt starting at t. Pt starts at
t and follows the leftward segment. If the last segment
` of Pt is stopped by a horizontal (resp., vertical) seg-
ment `′, then we follow `′ towards the leftward (resp.,
downward) direction.

Note that Pt now either intersects Px or Py. Assume
first that Pt intersects Px at point q (see Figure 5). Let
`h be the horizontal line through s. Assume that t lies
above and q lies below `h (Note that the other cases
would give rise to a smaller spanning ratio). Let r be
the intersection point of Pt with `h. Thus the sum of
the length of subpath of Ps from s to q and the subpath
of Pt from q to t is as follows:

|sq|x + Ysq + |qt|x + |qt|y =(|sq|x + |qt|x) + Ysq + |qt|y
=|st|x + Ysq + |qt|y
=|st|x + Ysq + |qr|y + |rt|y
≤2|st|x + Ysq + |rt|y
≤2|st|x + |st|x + |rt|y
=3|st|x + |rt|y
=3|st|x + |st|y

Therefore, the spanning ratio is: f =
(3|st|x+|st|y)√
(|st|x)2+(|st|y)2

.

To find and upper bound we need to maximize f , there-
fore we expect |st|x = 3|st|y, thus f ≤

√
10 ≈ 3.162.

Assume now that Pt intersects Py at point q. But this
case would be the same as when Pt intersects Px with
t lying on the upward cone of s. However, applying the
same analysis, we again get an upper bound of (3|st|x+
|st|y) on the length of the path s, . . . , q, . . . , t, and hence
an upper bound of 3.162. �

3.2 Generalization

Note that instead of grades, emanation graphs can also
be defined with any set of r rays emanating from each
vertex, where the rays create r cones of equal angle θ =
2π/r. In this section, we prove a general upper bound
on the spanning ratio of emanation graphs with r rays,
where r = 4q + 2, where q ≥ 1. We first describe the
concept of angle-monotone paths.

A polygonal path is an angle-monotone path of width
γ if the angles of any two edges in the path differ by
at most γ (Figure 7(a)). Every angle-monotone path
of width γ is a ( 1

cos(γ/2) )-spanner [3]. A geometric

graph in the plane is angle-monotone of width γ if ev-
ery pair of vertices is connected by an angle-monotone
path of width γ. Hence these graphs are also ( 1

cos(γ/2) )-
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Figure 6: Illustration for the upper bound on the spanning ratio.
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Figure 7: (a) An angle-monotone path of width γ. (b)
Illustration for P (W ), where r = 10.

spanners. In the following we will prove that every em-
anation graph with r rays is an angle-monotone graph
of width 1

sin(π/r) sin(π/2r) .

Let M be an emanation graph with r rays, and let s
and t to be a pair of vertices in G. Since we assumed
that r = 4q+2, we may assume that there two horizontal
rays around s, but no vertical rays. Let C be the cone
incident to the rightward ray of s (lying above the ray),
and without loss of generality assume that t lies in C
(Figure 6(a)).

Let W be a wedge with angle (π − θ) such that the
rightward ray of s is the bisector b of W (Figure 7(b)).
By P (W ) we denote a path that starts following the ray
parallel to b and continues as follows: If a segment stops
the last segment of the current path, then we follow
the ray towards the direction which is monotone with
respect to b. If we reach an original vertex, then we
continue to follow the ray parallel to the bisector. Note
that P (W ) is an angle monotone path of width (π − θ)
and lies entirely inside W .

We now define wedges W1,W2, . . . around s, where
W1 coincides with W and the subsequent cones are ob-
tained by rotating W counter clockwise by an angle of
θ (Figure 6(a)). Let Wu and Wd be two wedges, each
of angle (π − θ) and contains t. Furthermore, P (Wu)
contains t or lies above t, and similarly, P (Wd) contains
t or lies below t. Let u1 and u2 be sides of Wu that lie
above and below t, respectively. Similarly, d1 and d2 be
the sides of Wd that lie above and below t, respectively.

Case 1: We first consider the case when Wu and Wd

exist and choose Wu and Wd such that they minimize
the angle β between u1 and d2 (Figure 6(b)). Note that
β ≤ π. Otherwise, by construction, β has to be at least
(π+ θ), and hence the wedge W ′ determined by d1 and
u2 will be at least (π− θ). In this case, we can improve
the choice of Wu and Wd further by replacing one of
them using W ′.

Let Wt be a wedge of angle (π − θ) with apex at t
forming a quadrangle ss′tt′, as illustrated in Figure 6(c).
In fact, we will choose Wt such that min{∠ss′t,∠st′t}
is maximized. Note that P (Wt) must intersect either
P (Wu) or P (Wd) at some point q. We now use the
path P ′ = (s, . . . , q, . . . , t) to compute an upper bound
on the spanning ratio. Since P (Wu) and P (Wd) are
angle monotone paths of width (π − θ), the length of

P ′ is at most dE(s,q)+dE(q,t)
cos(π/2−θ/2) . This term is maximized

when ∠ss′t is the smallest, i.e., when ∠ss′t = (θ/2),
and dE(s, q) = dE(q, t) (see Figure 6(d)). In this case,

dE(s, q)+dE(q, t) = 2·dE(s, q) = dE(s,t)
sin(θ/4) . Consequently,

the length of P ′ is at most

dE(s, q) + dE(q, t)

cos(π/2− θ/2)
=

dE(s, t)

sin(θ/2) · sin(θ/4)

C

s

t

q

W ′

P (W ′)

P (W ′′)

θ/2

Figure 8: Illustration for Case 2.

Case 2: The remaining case is when Wu and Wd do
not exist. Without loss of generality assume that for ev-
ery wedge W (with apex at s) of angle (π−θ) containing
t, the path P (W ) lying below t. In this scenario, let W ′

be the wedge that contains C with one side determined
by the rightward ray of s. We then consider a downward
wedge W ′′ (with apex at t) of angle (π−θ), as illustrated
in Figure 8. Let q be the intersection point of the paths
P (W ) and P (W ′′). Since P (W ) and P (W ′′) are angle
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monotone paths of width (π − θ), the spanning ratio
in this case can be bounded to ( 1

sin(θ/2) sin(θ/4) ) using

the same analysis as in Case 1. The following theorem
summarizes the result of this section.

Theorem 4 The spanning ratio of every emanation
graph with r rays, where r = 4q + 2 and q ≥ 1, is at
most 1

sin(π/r) sin(π/2r) .

4 Open Questions

For emanation graphs with 6 rays, Theorem 4 gives us
an upper bound of 7.72, which is larger than the up-
per bound we obtained for the emanation graphs with
four rays (i.e., M1 has an upper bound of 3.16). This
raises an interesting question of whether we can prove
the lower bound on the spanning ratio of emanation
graphs of grade 2 to be larger than 3.16. Note that
such a scenario where increasing the number of cones
increases the spanning ratio can be found in the con-
text of Θr-graphs [5].

It would be interesting to find max-degree-4 planar
geometric spanners with at most 4n Steiner points and
a spanning ratio better than

√
10. Note that these

bounds (4n Steiner points, and spanning ratio
√

10) are
currently achieved by emanation graphs of grade one
(equivalently, by the competition mesh [18]).
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Appendix

Proof of Lemma 2

Proof. We use the construction described in Theorem 1
(e.g., see Figure 4) to show that any path from s to t is at
least as large as the canonical path L (marked in blue).
First observe that it suffices to restrict our attention to
x-monotone paths. One can categorize the candidate
monotone paths in two groups: (I) Paths that have the
same length as L, such paths can be formed by replacing
segments of L by their symmetric counterparts, two of
these counterparts are highlighted in yellow. (II) Paths
with segments that do not belong to (I), two of such
segments are highlighted in red. We only need to show
that the paths in (II) can not be shorter than that of L.

By the symmetric structure of the graph, it is
straightforward to observe that the paths in (II) can
gradually be transformed into the canonical path L
without changing the length. For example, the yellow
path from pj to t can be replaced by the blue path from
pj to t. Here, we describe a proof by induction. In
fact, we prove a stronger claim, i.e., L is a shortest path
and for any original vertex q on the bottom guideline,

a shortest path between s and q can be computed by
following the rays closest to the guideline.

A formal way to see this is to apply an induction on
the number of vertices. The claim is straightforward to
verify when the emanation graph has only four vertices
(e.g., consider the emanation graph determined by the
rightmost four vertices in Figure 4). Assume now that
the claim holds for the emanation graph of 2q vertices,
where 4 ≤ 2q < n(= 2q + 2), and consider the case
when the graph has n vertices. Any x-monotone short-
est path P of type (II) from s to t must pass through an
original vertex other than s and t. If it passes through
a vertex pj on the bottom guideline, then the claim fol-
lows by induction. Specifically, we can choose pj to be
the source, and then the subpath pj to t of P can be
replaced by a subpath of L by induction. Note that the
path from s to pj can also be replaced by a subpath of L
by induction. Thus L must be a shortest path between
s to t.

On the other hand, if P passes through some vertex
pk on the top guideline, then we can swap the role of s
and t to prove the existence of a path symmetric to L
using the analysis used in the previous case. �
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