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Uniform 2D-Monotone Minimum Spanning Graphs∗
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Abstract

A geometric graph G is xy−monotone if each pair of
vertices of G is connected by a xy−monotone path.
We study the problem of producing the xy−monotone
spanning geometric graph of a point set P that (i) has
the minimum cost, where the cost of a geometric graph
is the sum of the Euclidean lengths of its edges, and
(ii) has the least number of edges, in the cases that
the Cartesian System xy is specified or freely selected.
Building upon previous results, we easily obtain that
the two solutions coincide when the Cartesian System
is specified and are both equal to the rectangle of influ-
ence graph of P . The rectangle of influence graph of P
is the geometric graph with vertex set P such that two
points p, q ∈ P are adjacent if and only if the rectangle
with corners p and q does not include any other point
of P . When the Cartesian System can be freely chosen,
we note that the two solutions do not necessarily coin-
cide, however we show that they can both be obtained in
O(|P |3) time. We also give a simple 2−approximation
algorithm for the problem of computing the spanning
geometric graph of a k−rooted point set P , in which
each root is connected to all the other points (including
the other roots) of P by y−monotone paths, that has
the minimum cost.

1 Introduction

A sequence of points in the Euclidean plane q0, q1, . . . ,
qt is called y−monotone if the sequence of their y coor-
dinates, i.e. y(q0), y(q1), . . . , y(qt), is either decreasing
or increasing, with y(p) denoting the y coordinate of
the point p. A geometric path Q = (q0, q1, . . . , qt) is
called y−monotone if the sequence of its vertices, i.e.
the sequence q0, q1, . . . , qt, is y−monotone. If Q is
y′−monotone for some axis y′ then Q is called mono-
tone. Let G = (P,E) be a geometric graph. If each
p, q ∈ P are connected by a y−monotone path then G is
called y−monotone. If G is y′−monotone for some axis
y′ then G is called uniform monotone (following the ter-
minology of [22]). Uniform monotone graphs were called

∗This research was financially supported by the Special Ac-
count for Research Grants of the National Technical University of
Athens.
†School of Applied Mathematical and Physical Sciences,

National Technical University of Athens, Athens, Greece,
kmast@math.ntua.gr

1−monotone graphs by Angelini [3]. If each p, q ∈ P are
connected by a monotone path, where the direction of
monotonicity might differ for different pairs of vertices,
then G is called monotone. Monotone graphs were in-
troduced by Angelini et al. [4]. Drawing an (abstract)
graph as a monotone (geometric) graph has been a topic
of research [3, 4, 5, 13, 24].

The Monotone Minimum Spanning Graph problem,
i.e. the problem of constructing the monotone spanning
geometric graph of a given point set that has the min-
imum cost, where the cost of a geometric graph is the
sum of the Euclidean lengths of its edges, was recently
introduced (but not solved) in [22] and it remains an
open problem whether it is NP-hard. Since the more
general (without the requirement of monotonicity) Eu-
clidean Minimum Spanning Tree problem can be solved
in Θ(|P | log |P |) time [27], this constitutes a great differ-
entiation that is induced by the addition of the property
of monotonicity.

A point set P is k−rooted if there exist k points r1,
r2, . . . , rk ∈ P distinguished from the other points of
P which are called the roots of P . A geometric graph
G = (P,E) is called k−rooted if P is k−rooted and its
roots are the roots of P . A k−rooted geometric graph
G is k−rooted y−monotone if each root r ∈ P and each
point p ∈ P \ {r} are connected by y−monotone paths.
Similarly, G is k−rooted uniform monotone (following
the terminology of [22]) if it is k−rooted y′−monotone
for some axis y′. For simplicity, we may also denote
point sets or geometric graphs that are 1−rooted simply
as rooted. A polygon that is 2−rooted y−monotone, in
which its roots are its lowest and highest vertices, can be
triangulated in linear time [11]. Lee and Preparata [16]
preprocessed a subdivision S of the plane such that the
region in which a query point belongs can be found
quickly, by (i) extending the geometric graph bound-
ing S to a 2−rooted y−monotone planar geometric
graph in which the roots are the highest and lowest
vertices of S, and (ii) constructing a set of appropri-
ate y−monotone paths from the lowest to the high-
est vertex of S. Additionally, Lee and Preparata [16]
noted that a 2−rooted planar geometric graph, where
all vertices have different y coordinates, in which the
roots are the highest and lowest vertices of the graph is
2−rooted y−monotone if and only if each non-root ver-
tex has both a neighbor above it and a neighbor below
it. Furthermore, a rooted geometric graph G = (P,E),
where all vertices have different y coordinates, with a
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(single) root r that is not the highest or lowest point
of P is rooted y−monotone if and only if each non-root
vertex p has a neighbor q such that y(q) is between y(r)
(inclusive) and y(p) [22]. Additionally, rooted uniform
monotone graphs can be efficiently recognized [22]. The
k−rooted y−monotone (uniform monotone) minimum
spanning graph (following the terminology of [22]) of
a k−rooted point set P is the k−rooted y−monotone
(uniform monotone) spanning graph of P that has
the minimum cost. The rooted y−monotone (uni-
form monotone) minimum spanning graph1 of a rooted
point set P can be produced in O(|P | · log2 |P |) (resp.,
O(|P |2 · log |P |)) time [22]. The problem of drawing a
rooted tree as a rooted y−monotone minimum spanning
graph is studied in [20]. The (|P |−rooted) y−monotone
minimum spanning graph of a point set P is the geo-
metric path that traverses all the points of P by mov-
ing north, from the lowest point to the highest point
of P [22]. Regarding the problem of producing the
k−rooted y−monotone minimum spanning graph of a
k−rooted point set P , with 1 < k < |P |, it is an open
problem, posed in [22], whether it is NP-hard.

The restricted fathers tree problem was introduced
in [12] and is related to the rooted y-monotone min-
imum spanning graph problem constrained to rooted
point sets P in which the y coordinate of the root is
zero and the y coordinates of the other points of P are
all negative (or all positive). The input of the restricted
fathers tree problem is a complete graph with root where
each edge has a cost and each vertex has a value and the
goal is to output the spanning tree in which the path
from the root to each vertex decreases in value that has
the minimum cost. The restricted fathers tree problem
is greedily solvable [12, Corollary 2.6].

A geometric path Q = (q0, q1, . . . , qt) is
xy−monotone if the sequence of its vertices is both
x−monotone, i.e. the sequence x(q0), x(q1), . . . , x(qt),
is monotone, and y−monotone. Q is 2D-monotone (fol-
lowing the terminology of [22]) if it is x′y′−monotone
for some orthogonal axes x′, y′. A geometric graph
G = (P,E) is 2D-monotone (following the terminol-
ogy of [22]) if each pair of points of P is connected
by a 2D-monotone path. 2D-monotone paths/graphs
were called angle-monotone paths/graphs by Bonichon
et al. [8]. Bonichon et al. [8] showed that deciding if
a geometric graph G = (P,E) is 2D-monotone can be
done in O(|P | · |E|2) time. Triangulations with no ob-
tuse internal angles are 2D-monotone graphs [10, 19].
There exist point sets for which any 2D-monotone span-
ning graph is not planar [8]. The problem of construct-
ing 2D-monotone graphs with asymptotically less than
quadratic edges was studied by Lubiw and Mondal [18].
It is an open problem, posed in [22], whether the 2D-
monotone spanning graph of a point set P that has the

1In [22] it is shown that it is actually a tree.

minimum cost can be efficiently computed.
The (rooted) xy−monotone and (rooted) uniform 2D-

monotone (using the terminology of [22]) graphs are de-
fined similar to the (rooted) y−monotone and (rooted)
uniform monotone graphs. Deciding if a rooted ge-
ometric graph G = (P,E) is rooted xy−monotone
(uniform 2D-monotone) can be done in O(|E|) (resp.,
O(|E| · log |P |)) time [22]. Additionally, the rooted
xy−monotone (uniform 2D-monotone) spanning graph
of a rooted point set P that has the minimum cost2 can
be computed in O(|P | · log3 |P |) (resp., O(|P |2 log |P |))
time [22]. We focus on the production of the xy-
monotone minimum spanning graph (xy−MMSG) of a
point set P , i.e. the xy-monotone spanning graph of
P that has the minimum cost, and the production of
the uniform 2D−monotone minimum spanning graph
(2D−UMMSG) of a point set P , i.e. the uniform
2D−monotone spanning graph of P that has the min-
imum cost. We also study the corresponding problems
regarding the production of the spanning graphs with
the least number of edges, i.e. the production of the
xy-monotone spanning graph with the least number of
edges and the production of the uniform 2D−monotone
spanning graph with the least number of edges.

A curve C is increasing-chord [15, 26] if for each
p1, p2, p3, p4 traversed in this order along it, the length
of the line segment p1p4 is greater than or equal to the
length of p2p3. Alamdari et al. [1] introduced increasing-
chord graphs which are the geometric graphs for which
each two vertices are connected by an increasing-chord
path. Increasing-chord graphs are widely studied [1, 6,
10, 21, 23]. The problem of producing increasing-chord
spanning graphs (where Steiner points may be added) of
a point set P was studied in [1, 10, 21]. The approach
employed in [1, 10, 21], was to connect the points of
P by 2D-monotone paths since as noted by Alamdari
et al. [1] 2D-monotone paths are also increasing-chord
paths.

Let P be a point set and let p, q ∈ P then p and q are
rectangularly visible if the rectangle with corners p and q
does not include any other point of P . Furthermore, the
rectangle of influence graph of P is the geometric graph
spanning P such that pq is an edge of the graph if and
only if p and q are rectangularly visible. Alon et al. [2]
denoted rectangularly visible points as separated points
and the rectangle of influence graph as the separation
graph. Computing the rectangle of influence graph G =
(P,E) of P can be done in O(|P |·log |P |+|E|) time [25].
There exist point sets P for which the number of edges
of their rectangle of influence graph is Ω(|P |2) [2]. The
rectangle of influence graph does not remain the same
if the Cartesian System is rotated [14, Proposition 3].

2In [22] it is shown that it is actually a tree, denoted as the
rooted xy−monotone (uniform 2D-monotone) minimum span-
ning tree in [22] and abbreviated as the rooted xy−MMST (resp.,
rooted 2D−UMMST ) in [22].
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Drawing an abstract graph as a rectangle of influence
graph has been studied [17].
Our Contribution. Building upon previous results,
we easily obtain that given a point set P the xy−MMSG
of P is equal to the xy−monotone spanning graph of P
that has the least number of edges and are both equal
to the rectangle of influence graph of P . We note that
given a point set P the 2D−UMMSG of P does not nec-
essarily coincide with the uniform 2D-monotone span-
ning graph of P that has the least number of edges.
We also show that both the 2D−UMMSG of P and
the uniform 2D-monotone spanning graph of P that has
the least number of edges can be produced in O(|P |3)
time. Additionally, we give a simple 2−approximation
algorithm for the problem of producing the k−rooted
y−monotone minimum spanning graph of a k−rooted
point set.

2 Preliminaries

2.1 xy−Monotone Minimum Spanning Graphs

Angelini [3] noted the following Fact regarding
y−monotone graphs.

Fact 1 (Angelini [3]) Let G = (P,E) be a
y−monotone graph where no two points of P have
the same y coordinate and let p, q ∈ P such that
for each r ∈ P \ {p, q} the sequence p, r, q is not
y−monotone. Then, p and q are adjacent in G.

Fact 1 is easily extended in the context of
xy−monotone graphs. More specifically, let G = (P,E)
be a xy-monotone graph and p, q ∈ P such that for
each r ∈ P \ {p, q} the sequence of points p, r, q is not
xy−monotone, then p and q are adjacent in G. Alon et
al. [2] noted that the points p, q of a point set P are rect-
angularly visible if and only if for each r ∈ P \{p, q} the
sequence of points p, r, q is not xy−monotone. Hence,
the rectangle of influence graph of P is a subgraph of
G.

Liotta et al. [17, Lemma 2.1] showed that the rectan-
gle of influence graph of a point set is a xy−monotone
graph3.

From the previous two sentences, regarding the rect-
angle of influence graph, we obtain the following Corol-
lary.

Corollary 1 Let P be a point set. The xy−MMSG of
P and the xy−monotone spanning graph of P that has
the least number of edges coincide and they are both
equal to the rectangle of influence graph of P .

3Technically speaking, Liotta et al. [17] showed that the rect-
angle of influence graph of a point set is a graph such that each
two vertices are connected by a path lying inside the rectangle
defined by these vertices but upon careful reading the path that
is obtained in their proof is xy−monotone.

We recall that the rectangle of influence graph G =
(P,E) of P can be produced in O(|P | · log |P | + |E|)
time [25] which is optimal [25] and that there exist point
sets P for which the rectangle of influence graph has size
Ω(|P |2) [2] as well as point sets for which it has linear
size [2].

2.2 Rooted Uniform 2D-Monotone Graphs

Mastakas and Symvonis [22] studied the problem of rec-
ognizing rooted uniform 2D-monotone graphs. They
initially noted the following Fact.

Fact 2 (Observation 8 in [22]) Let G be a geomet-
ric graph G = (P,E) with root r. If one rotates
a Cartesian System x′y′, then G may become rooted
x′y′−monotone while previously it was not, or vice
versa, only when the y′ axis becomes (or leaves the po-
sition where it previously was) parallel or orthogonal to

1. a line passing through r and a point p ∈ P \ {r}.
2. an edge pq ∈ E, where p, q 6= r.

Based on Fact 2, Mastakas and Symvonis [22] gave a
rotational sweep algorithm denoted as the rooted uni-
form 2D-monotone recognition algorithm in [22].

Fact 3 ([22]) The rooted uniform 2D-monotone recog-
nition algorithm

i) computes, in O(|E|·log |P |) time, a set of sufficient
Cartesian Systems, of size O(|E|) , which are asso-
ciated with (1) lines passing through r and a point
p ∈ P \ {r} and (2) edges pq ∈ E, where p, q 6= r.

ii) tests, in O(|E|) total time4, if G is rooted
x′y′−monotone for some Cartesian System x′y′ in
the previously computed set of sufficient Cartesian
Systems.

Fact 4 (Theorem 1 in [22]) Let P be a rooted point
set then the rooted y−monotone minimum spanning
graph of P can be obtained in O(|P | · log2 |P |) time.

3 The 2D-UMMSG Problem

We now deal with the construction of the 2D−UMMSG
and the uniform 2D−monotone spanning graph with

4Technically speaking in [22] it is shown that the remaining
steps, i.e. the steps after the computation of the sufficient Carte-
sian Systems, of the rooted uniform 2D-monotone recognition al-
gorithm take O(|E| · log |P |) total time. Internally in the rooted
uniform 2D-monotone recognition algorithm given in [22], for each
p ∈ P \ {r} it is stored the set of adjacent points to p that are
in the rectangle w.r.t. the Cartesian System x′y′ with corners p
and r, which is denoted as A(p, x′, y′) in [22]. Furthermore, it is
stored the set of points p ∈ P \ {r} for which |A(p, x′, y′)| > 0
which is denoted as B(x′, y′) in [22]. However, only the cardinal-
ities of these sets are necessary [22, Lemma 9], hence if instead
of the sets A(p, x′, y′), p ∈ P and B(x′, y′) their cardinalities are
stored, the remaining steps of the rooted uniform 2D-monotone
recognition algorithm take O(|E|) total time.
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the least number of edges. We initially show that
the 2D−UMMSG of a point set P can be obtained in
O(|P |3) time. For this, we employ a rotational sweep
technique. Our approach regarding the construction of
the 2D−UMMSG is similar to the approach employed
for the calculation of the rooted uniform 2D−monotone
spanning graph that has the minimum cost in [22]. We
assume that no three points of P are collinear and no
two line segments pq and p′q′, p, p′, q, q′ ∈ P, are parallel
or orthogonal.

Let P be a point set and p be a point of P . Let
RV (p, x′, y′) denote the subset of points of P that are
rectangularly visible from p w.r.t. the Cartesian System
x′y′. See for example, Figure 1(a).

Proposition 2 If we rotate a Cartesian System x′y′

counterclockwise, then the x′y′−MMSG of P changes
only when y′ reaches or moves away from a line perpen-
dicular or parallel to a line passing through two points
of P .

Proof. If we rotate the Cartesian System x′y′ coun-
terclockwise then the RV (p, x′, y′) for a point p ∈ P
changes only when y′ reaches or moves away from a line
perpendicular or parallel to a line passing through two
points of P ; e.g. see Figure 1. From the previous and
since the RV (p, x′, y′), p ∈ P , equals to the set of adja-
cent vertices of p in the x′y′−MMSG of P (Corollary 1),
we obtain the Proposition. �
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Figure 1: In (a) RV (p, x′, y′) = {a, b, d, e, g, h, i}. In
(b) the y′ becomes parallel to the ab and now b is not
rectangularly visible from p. Finally, in (c) the y′ has
left the position where it previously was orthogonal to
the ef and now f becomes rectangularly visible from p.

Let S = {s ∈ [0, π2 ) : a line of slope s is perpendicular
or parallel to a line passing through two points of P}.

Let S = {s1, s2, . . . , sl} with l =
(|P |

2

)
such that 0 ≤ s1

< s2 < . . .< sl <
π
2 . We now define the set Ssufficient

to be equal to {s1, s1+s2
2 , s2, s2+s3

2 , . . . , sl,
sl+

π
2

2 }.
Let x1y1, x2y2, . . . , x2ly2l be the Cartesian Systems in
which the vertical axis has slope in Ssufficient, ordered
w.r.t. the slope of their vertical axis.

Theorem 3 The uniform 2D−monotone minimum
spanning graph of a point set P can be computed in
O(|P |3) time.

Proof. From Proposition 2 and the previous definitions
we obtain the following Proposition.

Proposition 4 The uniform 2D−monotone minimum
spanning graph of P is one of the x′y′−MMSG of P over
all Cartesian Systems x′y′ with y′ of slope in Ssufficient.

We now give a O(|P |3) time rotational sweep
algorithm. The algorithm initially computes the
x1y1−MMSG of P and then it obtains each
xi+1yi+1−MMSG of P from the xiyi−MMSG of
P . Throughout the procedure the Cartesian System
xoptyopt in which the algorithm encountered the min-
imum cost solution so far is stored. In its last step,
the algorithm recomputes the xoptyopt−MMSG of P ,
which since it is equal to the rectangle of influence
graph G = (P,E) w.r.t. the Cartesian System xoptyopt

(Corollary 1) it can be computed in O(|P | · log |P |+ |E|)
time [25]. The crucial proposition (which we show later)
that makes the time complexity of the algorithm equal
to O(|P |3) is that each transition from the xiyi−MMSG
of P to the xi+1yi+1−MMSG of P takes O(|P |) time.

For each two points p, q of P let I(p, q, xi, yi) be the
number of points of P \ {p, q} that are included in the
rectangle w.r.t. the Cartesian System xiyi with opposite
vertices p and q. Then, RV (q, xi, yi) can be equivalently
defined using the quantities I(p, q, xi, yi), p ∈ P \ {q},
as follows: p ∈ RV (q, xi, yi) if I(p, q, xi, yi) = 0.

We store the RV (q, xi, yi), q ∈ P , i = 1,2, . . . , 2l
in the data structure rv(q) which is implemented as an
array of |P | booleans. We also store the I(p, q, xi, yi),
p, q ∈ P , i = 1,2, . . . , 2l in the variable i(p, q).

Computing the Cartesian Systems xiyi, i = 1, 2, . . . ,
2l can be done in O(|P |2 log |P |) time. Accompanied
with each Cartesian System xiyi is the pair of points
(pi, qi) such that piqi is either parallel or perpendicular
to the yi axis or the yi−1 axis.

Ichino and Sklansky [14] noted that employing a range
tree [7, 9] that contains the points of P one can calcu-
late i) the rectangle of influence graph of P , and ii) the
I(p, q, x, y), p, q,∈ P , for a Cartesian System xy. Apply-
ing the previously mentioned approach, noted by Ichino
and Sklansky [14], are obtained i) the rectangle of in-
fluence graph of P w.r.t. the Cartesian System x1y1

(which by Corollary 1 equals to the x1y1−MMSG of
P ), and ii) the I(p, q, x1, y1), p, q,∈ P .
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We now show that we can update all the rv(p), p ∈ P ,
such that from equal to RV (p, xi−1, yi−1), p ∈ P , they
become equal to RV (p, xi, yi), p ∈ P , in O(|P |) total
time. For each p ∈ P \{pi, qi} the update of rv(p) takes
O(1) time. This is true, since only the points pi and
qi have to be tested for inclusion to or removal from
rv(p). More specifically, we have to test if for one of
them, say pi, the rectangle with corners p and pi con-
tains (or it does not contain) qi w.r.t. the Cartesian
System xiyi while it did not contain (or it contained) it
w.r.t. xi−1yi−1. If this is true, then the i(pi, p) changes
and pi has to be tested for membership in rv(p) and
included to or removed from rv(p). Regarding rv(pi),
the update takes O(|P |) time, since for each other point
q ∈ P \{pi, qi} we have to test if the rectangle with cor-
ners q and pi contains (or it does not contain) qi w.r.t.
the Cartesian System xiyi while it did not contain it (or
it contained it) w.r.t. the xi−1yi−1 and if so update both
the i(q, pi) and the existence of q in rv(pi) if necessary.
Similarly, rv(qi) can be updated in O(|P |) time. �

We note that the procedure of obtaining the
2D−UMMSG can be trivially modified such that the
uniform 2D-monotone spanning graph of a point set
P with the least number of edges can be obtained
in O(|P |3) time. Since for an arbitrary Cartesian
System x′y′ the x′y′−MMSG of P is equal to the
x′y′−monotone spanning graph of P with the least num-
ber of edges (Corollary 1), the only modification which
is necessary is that in the transition from the Carte-
sian System xiyi to the Cartesian System xi+1yi+1 we
check if the xi+1yi+1−monotone spanning graph of P
with the least number of edges has the least number of
edges among all the produced solutions so far.

In Figure 2 is given a point set P for which
the 2D−UMMSG of P is different from the uniform
2D−monotone spanning graph of P with the least num-
ber of edges.

In Figure 3 we give a point set P for which the (non-
uniform) 2D−monotone spanning graph of P with the
least number of edges does not coincide to the (non-
uniform) 2D−monotone spanning graph of P that has
the minimum cost.

Regarding recognizing uniform 2D-monotone graphs,
we note that the O(|E| · log |P |) time rotational sweep
algorithm given in [22], which decides if a geometric
graph G = (P,E) with a specified vertex r as root is
rooted uniform 2D−monotone, can be easily extended
into a O(|P |2 · log |P |+ |P | · |E|) time rotational sweep
algorithm that decides if G is uniform 2D−monotone.
More specifically, in order to decide if G is uniform
2D−monotone, the |P | rooted geometric graphs (p1, G),
(p2, G), . . . , (p|P |, G) where (pi, G) is the geometric
graph G with root pi and {p1, p2, . . . , p|P |} is the
vertex set of G, are considered. A Cartesian System
x′y′ is rotated counterclockwise. From Fact 2, it fol-
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Figure 2: The points a,b and c form a right angle. Ad-
ditionally, the points d, e and f form a right angle. The
slope of de is smaller than the slope of bc. The uniform
2D−monotone spanning graph with the least number of
edges is obtained when the y′ axis becomes perpendic-
ular to the de and is shown in (a). On the other hand
the 2D−UMMSG is obtained when the y′ axis becomes
perpendicular to the bc and is shown in (b).
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Figure 3: The slope of ac is π
4 while the slope of fd

is 3π
4 . In (a) is depicted the 2D−monotone spanning

graph of P with the least number of edges. In (b) is
illustrated the 2D−monotone spanning graph of P that
has the minimum cost.

lows that one of these |P | rooted geometric graphs be-
comes rooted x′y′−monotone while previously it was
not, or vice versa, only when the y′ axis becomes (or
leaves the position where it was previously) parallel or
orthogonal to a line passing through two points of P .
Hence, O(|P |2) Cartesian Systems need to be consid-
ered, which can be computed in O(|P |2 log |P |) time.
When the y′ becomes (or leaves the position that it pre-
viously was) parallel or perpendicular to a line passing
through the points p, q ∈ P then by Fact 2 the status,
i.e. being rooted x′y′−monotone, of the rooted geo-
metric graphs (p,G) and (q,G) may change. Hence, the
steps of the rooted uniform 2D-monotone recognition al-
gorithm given in [22] for handling the event associated
with the current Cartesian System x′y′ regarding the
rooted geometric graphs (p,G) and (q,G), are applied.
Furthermore, if pq ∈ E then by Fact 2 it follows that
the status, i.e. being rooted x′y′−monotone, of each
(r,G), r ∈ P \ {p, q}, may also change. Hence, for each
(r,G), r ∈ P \ {p, q}, the steps of the rooted uniform
2D-monotone recognition algorithm given in [22] for
handling the event associated with the current Carte-
sian System x′y′ are applied. Since, the remaining
steps, i.e. after the calculation of the sufficient axes,
of the rooted uniform 2D-monotone recognition algo-
rithm, given in [22], regarding any of these |P | rooted
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geometric graphs take O(|E|) time (Fact 3), applying
the remaining steps regarding all these |P | rooted geo-
metric graphs, takes O(|P | · |E|) total time.

4 A 2−Approximation Algorithm for the k−Rooted
y−Monotone Minimum Spanning Graph Problem

We now study the problem of producing the k−rooted
y−monotone minimum spanning graph of a k−rooted
point set P , where 1 < k < |P |. We assume that no two
points have the same y coordinate.

Let P be a point set and a, b ∈ R then Py>a is the
subset of points of P whose y coordinate is greater than
a. Similarly are defined Py≥a, Py<a and Py≤a. Pa<y<b
is the subset of points of P whose y coordinate is be-
tween a and b. Similarly are defined Pa<y≤b, Pa≤y<b
and Pa≤y≤b.

In [22, Lemma 1] it is noted that the rooted
y−monotone minimum spanning graph of a rooted
point set P with root r is the union of the rooted
y−monotone minimum spanning graphs of (i) Py≤y(r)

and (ii) Py≥y(r). The previous Fact is extended to the
following Lemma.

Lemma 5 Let P be a k−rooted point set, with 1 < k <
|P |, where r1, r2, . . . , rk are the roots of P such that
y(r1) < y(r2) < . . .< y(rk). The k−rooted y−monotone
minimum spanning graph of P is the union of

1. the rooted y−monotone minimum spanning graph
of Py≤y(r1).

2. the rooted y−monotone minimum spanning graph
of Py≥y(rk).

3. the 2−rooted y−monotone minimum spanning
graph of Py(ri)≤y≤y(ri+1), 1 ≤ i ≤ k − 1.

Theorem 6 Given a k−rooted point set P , with 1 <
k < |P |, we can obtain in O(|P | · log2 |P |) time a
k−rooted y−monotone spanning graph of P with cost at
most twice the cost of the k−rooted y−monotone mini-
mum spanning graph of P .

Proof. For a 2−rooted point set P with roots r1 and
r2 that are the lowest and highest points of the point
set, respectively, we prove the following Lemma.

Lemma 7 Given a 2−rooted point set P with roots r1

and r2 that are the lowest and highest points of the point
set, respectively, we can obtain in O(|P |·log2 |P |) time a
2−rooted y−monotone spanning graph of P with cost at
most twice the cost of the 2−rooted y−monotone mini-
mum spanning graph of P .

Proof. Initially, we employ Fact 4 to P considering it
to have only the root r1 and obtain the geometric graph
G1. Then, we employ Fact 4 to P considering it to have
only the root r2, obtaining G2. In the final step we
return the union of G1 and G2. G1 ∪ G2 is 2−rooted

y−monotone since G1 (G2) is rooted y−monotone with
root r1 (resp., r2). We now show that G1 ∪G2 has cost
at most twice the cost of the 2−rooted y−monotone
minimum spanning graph Gopt of P . Since, in Gopt all
the points p are connected with r1 (r2) by y−monotone
paths it follows that its cost is greater than or equal to
the cost of G1 (resp., G2). Hence, the cost of G1 ∪ G2

which is less than or equal to the sum of the costs of G1

and G2 is at most twice the cost of Gopt. �

From Lemma 5, Fact 4 and Lemma 7 we obtain the
Theorem. �

A 2−rooted planar geometric graph G = (P,E) with
roots r1, r2 s.t. y(r1) < y(p) < y(r2), p ∈ P \ {r1, r2},
is 2−rooted y−monotone if and only if for each p ∈ P \
{r1, r2} there exist q1, q2 ∈ Adj(p) with y(q1) < y(p) <
y(q2) [16]. Furthermore, a rooted geometric graph G =
(P,E) with a (single) root r that is not the highest or
lowest point of P is rooted y−monotone if and only if for
each p ∈ P \ {r} there exists q ∈ Adj(p) such that y(q)
is between y(r) (inclusive) and y(p) [22]. We extend the
previous two Propositions to the following equivalent
characterization of k−rooted y−monotone graphs where
the latter implies an efficient recognition algorithm for
k−rooted y−monotone graphs.

Proposition 8 Let G = (P,E) be a k−rooted geomet-
ric graph, where 1 < k < |P |, with roots r1, r2, . . . , rk
such that y(r1) < y(r2) < . . .< y(rk). G is k−rooted
y−monotone if and only if

1. for each p ∈ Py<y(r1) there exists q ∈ Adj(p) s.t.
y(q) ∈ (y(p), y(r1)].

2. for each p ∈ Py>y(rk) there exists q ∈ Adj(p) s.t.
y(q) ∈ [y(rk), y(p)).

3. for each p ∈ Py(ri)<y<y(ri+1) there exist q1, q2 ∈
Adj(p) s.t. y(q1) ∈ [y(ri), y(p)) and y(q2) ∈
(y(p), y(ri+1)], i = 1, 2, . . . , k − 1.

4. there exists q ∈ Adj(r1) s.t. y(q) ∈ (y(r1), y(r2)].
5. there exists q ∈ Adj(rk) s.t. y(q) ∈ [y(rk−1), y(rk)).
6. there exist q1, q2 ∈ Adj(ri) s.t. y(q1) ∈

[y(ri−1), y(ri)) and y(q2) ∈ (y(ri), y(ri+1)], 2 ≤ i ≤
k − 1.

5 Further Research Directions

Given a point set P can the 2D−monotone spanning
graph of P that has the least number of edges be pro-
duced in polynomial time?

Does there exist a t−approximation algorithm, t <
2, for the k−rooted y−monotone minimum spanning
graph problem?
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