
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Looking for Bird Nests: Identifying Stay Points with Bounded Gaps

Ali Gholami Rudi∗

Abstract

A stay point of a moving entity is a region in which it
spends a significant amount of time. In this paper, we
identify all stay points of an entity in a certain time
interval, where the entity is allowed to leave the region
but it should return within a given time limit. This
definition of stay points seems more natural in many
applications of trajectory analysis than those that do
not limit the time of entity’s absence from the region.
We present an O(n log n) algorithm for trajectories in
R1 with n vertices and a (1+ǫ)-approximation algorithm
for trajectories in R2 for identifying all such stay points.
Our algorithm runs in O(kn2), where k depends on ǫ
and the ratio of the duration of the trajectory to the
allowed gap time.

1 Introduction

The question, asking where a moving entity, like an ani-
mal or a vehicle, spends a significant amount of its time
is very common in trajectory analysis [1]. These regions
are usually called popular places, hotspots, interesting
places, stops, or stay points in the literature. There
are several definitions of stay points and different tech-
niques have been presented to find them [2, 3, 4, 5, 6].
However, from a geometric perspective, which is the fo-
cus of the present paper, few papers are dedicated to
this problem.
Benkert et al. [2] defined a popular place to be an axis-

aligned square of fixed side length in the plane which
is visited by the most number of distinct trajectories.
They modelled a visit either as the inclusion of a trajec-
tory vertex or the inclusion of any portion of a trajectory
edge, and presented optimal algorithms for both cases.
Gudmundsson et al. [3] introduced several different def-
initions of trajectory hotspots. In some of these defini-
tions, a hotspot is an axis-aligned square that contains a
contiguous sub-trajectory with the maximum duration
and in others it is an axis-aligned square in which the
entity spends the maximum possible duration but its
presence may not be contiguous. For hotspots of fixed
side length, for the former they presented an O(n logn)
algorithm and for the latter they presented an algorithm
with the time complexity O(n2), where n is the num-
ber of trajectory vertices. Damiani et al. [7], like some

∗Department of Electrical and Computer Engineering, Bobol

Noshirvani University of Technology, gholamirudi@nit.ac.ir

of the cases considered by Gudmundsson et al. [3], al-
lowed gaps between stay point and presented heuristic
algorithms for finding them.
There are applications in which we need to identify

regions that are regularly visited. Djordjevic et al. [8]
concentrated on a limited form of this problem and pre-
sented an algorithm to decide if a region is visited almost
regularly (in fixed periods of time) by an entity. How-
ever, in many applications that require spatio-temporal
analysis, these definitions are inadequate. For instance,
a bird needs to return to its nest regularly to feed its
chicks. In other words, the bird may leave its nest but
it cannot be away for a long time. We would like to find
all possible locations for its nest.
Arboleda et al. [6] studied a problem very similar to

the focus of the present paper, except that they assumed
the algorithm takes as input, in addition to the trajec-
tories, a set of polygons as potential stay points or inter-
esting sites. They presented a simple algorithm to iden-
tify stay points among the given interesting sites; their
algorithm computes the longest sub-trajectory visiting
each interesting site for each trajectory, while allowing
the entity to leave the site for some predefined amount
of time. They also mentioned motivating real world ex-
amples to show that in some applications, it makes sense
to allow the entity to leave the site for short periods of
time, like leaving a cinema for the bathroom.
Our goal is identifying all trajectory stay points,

i.e. axis-aligned squares in which the entity is always
present, except for short periods of time, where both
the side length of the squares and the allowed gap time
are specified as inputs of the algorithm and assumed to
be fixed. Note that we ignore the duration in which
the entity stays in a region. If, for instance, a region
with the maximum duration among our stay points is
desired, our algorithm can be combined with those that
find a stay point with the maximum duration, but al-
low unbounded entity absence, like the ones presented
by Gudmundsson et al. [3].
This paper is organized as follows. In Section 2, we

introduce the notation and define some of the main
concepts of this paper. In Section 3, we handle tra-
jectories in R1 and present an algorithm to find all
stay points of such trajectories with the time com-
plexity O(n log n). We focus on trajectories in R2 in
Section 4 and present an approximation algorithm for
finding their stay points. We conclude this paper by
showing that the complexity of the stay map of two-



30th Canadian Conference on Computational Geometry, 2018

0

10 15

20

25 35

s

Figure 1: An example two-dimensional trajectory. The
number near each vertex shows its timestamp. The
green region is the stay map and the green square is
a stay point (g = 15).

dimensional trajectories can be Θ(n2).

2 Preliminaries

A trajectory T describes the movement of an entity in
a certain time interval. Trajectories can be modelled
as a set of vertices and edges in the plane. Each ver-
tex of T represents a location at which the entity was
observed. The time of this observation is indicated as
the timestamp of the vertex. We assume that the en-
tity moves in a straight line and with constant speed
from a vertex to the next; the edges of the trajectory
connect its contiguous vertices. A sub-trajectory of T
for a time interval (a, b) is denoted as T (a, b), and de-
scribes the movement of the entity from time a to time
b. Except possibly the first and the last vertices of a
sub-trajectory, which may fall on an edge of T , its set
of vertices is a subset of those of T . The stay points
considered in this paper are formally described in Def-
inition 1. We use the symbols defined here, such as g
and s, throughout the paper without repeating their de-
scription. Also, any square that appears in the rest of
this paper is axis-aligned and has side length s.

Definition 1 A stay point of a trajectory T in R2 is
a square of fixed side length s in the plane such that
the entity never spends more than a given time limit g
outside it continuously.

The goal of this paper is identifying all stay points of
a trajectory, or its stay map (Definition 2). Note that
the parameters s and g are assumed to be fixed and
specified as inputs of the algorithm.

Definition 2 The stay map M of a trajectory T in R2

is a subset of the plane such that every square of side
length s whose lower left corner is in M is a stay point
of T , and the lower left corners of all stay points of T
are in M .

s

Time

Location

Figure 2: Mapping a one-dimensional trajectory to the
time-location plane. The green rectangle of height s
shows a possible stay point.

Figure 1 shows an example trajectory, its stay map,
and one of its stay points. Note that every square, whose
lowest left corner is in the stay map, is a stay point.
Although these definitions are presented for trajectories
in R2, they can be trivially adapted for one-dimensional
trajectories, as we do in Section 3.

3 Stay Maps of One-Dimensional Trajectories

Let T be a trajectory in R1. A stay point of T is an
interval of length s such that the entity never leaves it
for a period of time longer than g. The stay map M of
T is the region containing the left end points of all stay
points of T . In this section, we present an algorithm for
finding M .

Lemma 3 The stay map M of a trajectory T in R1 is
continuous.

Proof. To obtain a contradiction, let points p and q
be inside M and v be outside it such that p < v < q
(our assumption that M is non-continuous implies the
existence of this triple). Let rp, rq, and rv be three
segments of length s, whose left corners are at p, q,
and v, respectively. Clearly, rp and rq are stay points
while rv is not. Whenever the entity moves to the left
of v, it must return to q before the time limit g to visit
rq. Also, whenever the entity moves beyond the right
end point of rv (which is outside rp), it must return
to rp before the time limit. Therefore, it can never be
outside rv for more than time g and this implies that
v is also a stay point and inside M , which yields the
desired contradiction. �

Lemma 4 Given a trajectory T with n vertices in R1,
we can answer in O(n) time whether a point p is in the
stay map or not, and if not, whether the stay map is on
its left side or on its right side.



CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Proof. Define r as segment pq, in which q is p+s. Test-
ing each trajectory edge in order, we can compute the
duration of each maximal sub-trajectory outside r and
check if it is at most g. Therefore, we can decide if p is
the left end point of a stay point in O(n) time. If it is not
a stay point, there is at least one time interval, in which
the entity spends more than time g on the left or on the
right side of r. Without loss of generality, suppose it
does so on the left side. Then, no point on the right of
r can be a stay point and therefore the whole stay map
of T must appear on the left of p. This again can be
tested in O(n) time by processing trajectory edges. �

An event point of a trajectory T in R1 is a point on the
line in which one of the following occurs: i) a trajectory
vertex lies on that point, ii) the time gap between two
contiguous visits to that point is exactly g.

Lemma 5 The stay map M of a trajectory T starts and
ends at an event point or at distance s from one.

Proof. By Lemma 3, M is continuous. Let p be the
left end point of the stay map M . Let r = pq be a
segment such that q = p+s. Whenever the entity leaves
r through p, it returns by passing it again within the
time limit g. Similarly, if the entity leaves r through q,
it visits q again within time g. Suppose, for the sake of
contradiction, that p is not an event point. Then, we can
move r slightly to the left to obtain r′. r′ must also be
a stay point because every time the entity leaves it from
either of its end points, it returns within time g, because
neither p nor q is an event point (the time between the
contiguous visits of the entity is not exactly g and they
are not on a trajectory vertex). This contradicts the
choice of p. A similar argument shows that the right
endpoint ofM must also be an event point or at distance
s from one. �

Lemma 6 The set of event points of a trajectory with
n vertices can be computed in O(n log n) time.

Proof. We map the trajectory to a plane such that
a trajectory vertex at position p with timestamp t is
mapped to point (t, p) (see Figure 2). Obviously, the
polygonal path representing the trajectory in this plane
is y-monotone. We perform a plane sweep by sweeping
a line parallel to the x-axis in the positive direction of
the y-axis in this plane.
The edges in this plane chop the sweep line into sev-

eral segments. We maintain the length of every such seg-
ment during the sweep line algorithm. When the sweep
line intersects a trajectory vertex v, an event point is
recorded and, based on the other end point of the edges
that meet at that vertex, one of the following cases oc-
curs:

1. If v is the lowest end point of both edges, two new
segments are introduced. Based on the slope of the

edges bounding each segment, we record an event
at which the distance between the edges is exactly
g, if they are long enough.

2. If v is the highest end point of both edges that meet
at v, three segments on the sweep line are merged
(when the sweep line is before v, three segments
are created by the edges incident to v, at v, there
are two such segments, and after v, they merge into
one). We also record an event for the location at
which the length of the remaining segment becomes
g in the plane.

3. If v is the highest end point of one edge and the
lowest end point of another, the event scheduled
for the location at which the length of each of the
two incident segments on the sweep line are g may
need to be updated.

Note that since the sweep line stops at n vertices and at
each vertex only a constant number of event points are
added, the total number of event points is O(n). �

Theorem 7 The stay map M of a trajectory T with n
vertices in R1 can be computed in O(n logn) time.

Proof. Lemma 6 implies that the set of event points of
T can be computed with the time complexity O(n log n).
From this set, we can obtain an ordered sequence of
event points and points at distance exactly s from them
in O(n logn) time (note that the length of this sequence
is still O(n)). Based on Lemma 5, M starts and ends at
a point of this sequence. Also, Lemma 4 implies that we
can decide if any of the end points of M appears before
or after any point in O(n) time. Therefore, we can per-
form a binary search on the sequence obtained from the
event points of T to find the left and the right end points
of M . Since the length of the sequence is O(n), the time
complexity of the binary search is O(n logn). �

Unfortunately, this algorithm cannot be adapted for
two-dimensional trajectories, because their stay maps
may no longer be continuous.

4 Stay Maps of Two-Dimensional Trajectories

We use the notation P (a, b) to denote the region that
contains the lower left corners of all squares of side
length s that contain at least one point of the sub-
trajectory T (a, b). We also use M(a, b) to indicate the
stay map of the sub-trajectory T (a, b). We assume that
trajectory T starts at time 0 and has total duration D.
It is clear that every point in the stay map of T must ap-
pear in P (t, t+g) for any value of t, where 0 ≤ t ≤ D−g
(because the entity cannot be outside a stay point of T
for more than time g). Therefore, the stay map of T
is the intersection of P (t, t+ g) for every possible value



30th Canadian Conference on Computational Geometry, 2018

P(b − g, a)

V

a − g b − g a b

P(a − g, b − g) P(a, b)

Figure 3: The difference V in Algorithm 1, when P (a−
g, b− g) and P (a, b) do not overlap.

of t, 0 ≤ t ≤ D − g. This suggests the general scheme
demonstrated in Algorithm 1 for finding the stay map
of a two-dimensional trajectory, assuming D > g.

Algorithm 1 Let T be two-dimensional trajectory with
n edges and total duration D. Compute the stay map of
T (M(0, D)) as follows.

1. Compute P (0, g), as the union of polygons P (u, v),
for all edges uv in T (0, g).

2. Let M(0, g) be P (0, g). This is not strictly correct
as M(0, t) must include the complete plane when
t ≤ g and its value changes to a subset of T (0, g)
for any value of t > g. This simplifying assump-
tion, however, does not affect the correctness of the
algorithm, since D > g.

3. Incrementally compute M(0, D) as follows. Com-
pute M(0, b) from M(0, a), in which M(0, a) is the
last computed stay map and b is the smallest value
after a, such that b − g or b is the timestamp of a
trajectory vertex. Let V be the difference between
M(0, a) and M(0, b) (note again that M(0, b) is a
subset of M(0, a)). After computing V , we obtain
M(0, b) by excluding V from M(0, a).

The core of Algorithm 1 is the computation of the
difference V . By the choice of b, T (a − g, b − g) and
T (a, b) are both line segments. The value of V depends
on these segments and T (b− g, a).

Let r be a square, whose lower left corner is in V and
let a − g + δ be the time of entity’s departure from r
before time b − g. Since the lower left corner of r is in
V , r is not visited by the entity in the sub-trajectory
T (a − g + δ, a + δ). In other words, any point not in
P (a− g + δ, b− g), P (b− g, a), and P (a, a+ δ) for any
value of δ in 0 ≤ δ ≤ g cannot be a stay point.
To make the computation of V easier, we define V ′ as

follows (V ′ is very similar to V , except that it ignores
P (b− g, a)):

V
′
=

⋃

0≤δ≤g

P (a − g, a − g + δ) \ (P (a − g + δ, b − g) ∪ P (a, a + δ))

V ′ contains the lower left corners of all squares that
have been visited during the interval (a− g, a− g + δ),
but have not been visited in (a−g+δ, b−g) or (a, a+δ)
for some δ in 0 ≤ δ ≤ g. Then, V = V ′ \ P (b− g, a).

If no square intersects both T (a−g, b−g) and T (a, b),
V ′ is P (a − g, b − g). This case is shown in Figure 3,
in which V ′ is the rectangle on the left. Otherwise, V ′

depends on the relative speed of the entity in these sub-
trajectories. In both cases, V ′ is a polygon of constant
complexity and can be computed in constant time. We
do not discuss the details of the computation of V ′ in
this paper, however. Since T (b − g, a) consists of O(n)
edges, P (b− g, a) is the union of O(n) simple polygons.
Therefore, V ′ \ P (b − g, a) is also the union of a set
of polygons with the total complexity O(n). Let Vt be
the union of the differences V for all iterations of the
third step of Algorithm 1 (note that the complexity of
Vt is O(n2)). When the algorithm finishes, M(0, D) is
P (0, g)\Vt. Since the computation of Vt requires finding
the union of polygons with the total complexity O(n2),
an O(n2) implementation of this exact algorithm seems
unlikely.

4.1 Approximate Stay Maps of Two-Dimensional

Trajectories

In Algorithm 2, we consider P (t, t + g) for limited dis-
crete values of t to compute approximate stay maps of
a trajectory (Definitions 8 and 9), to improve the time
complexity of Algorithm 1.

Definition 8 A (1+ǫ)-approximate stay point of a tra-
jectory T in R2 is a square of fixed side length s, such
that the entity is never outside it for more than g + ǫg
time.

Definition 9 A (1+ ǫ)-approximate stay map of a tra-
jectory T in R2 is the region containing the lower left
corners of all exact stay points of T and possibly the
lower left corners of some of its (1 + ǫ)-approximate
stay points.

Algorithm 2 Let T be a trajectory in R2 with n edges
and total duration D and let ǫ be any real positive
constant no greater than D/g. Compute a (1 + ǫ)-
approximate stay map of T as follows.

1. Compute P (t, t+g) for t = iλ for integral values of
i from 0 to D/λ, where λ is ǫg. We call P (t, t+ g)
for any value of t a snapshot of T .

2. Compute the intersection of these snapshots. For
this, we can use the topological sweep of Chazelle
and Edelsbrunner [9] on the subdivision of the plane
induced by the edges of the snapshots and include
in the output the faces present in all snapshots.



CCCG 2018, Winnipeg, Canada, August 8–10, 2018

t1 tb te

t1 + εg t1 + εg + g

Time

Figure 4: The entity leaves a square at tb and returns
at te. If te − tb is larger than g+ gǫ, there is a snapshot
in which the entity is outside the square.

Theorem 10 For trajectory T in R2 with n edges and
total duration D and any real positive constant ǫ no
greater than D/g, Algorithm 2 computes a (1 + ǫ)-
approximate stay map of T .

Proof. Since the output of Algorithm 2 is the intersec-
tion of different snapshots of T , the lower left corner of
every stay point must be inside it. Therefore, it suffices
to show that every point in the output of the algorithm
is the lower left corner of a (1 + ǫ)-approximate stay
point.
Let r be a square whose lower left corner is in the

region reported by this algorithm. Suppose that the
entity leaves r at tb and reenters r at te. We can set
tb = 0 for handling the initial part of the trajectory,
and, if the entity never returns to r, we can set te = D.
To prove the approximation factor, we show that te ≤
tb + g + ǫg. Let i be the largest index such that λi ≤ tb
and let t1 = λi. We show that the entity must return
before time t1+λ+λ/ǫ. Otherwise, P (t1+λ, t1+λ+λ/ǫ),
which is a snapshot since λ/ǫ is equal to g, does not
contain the lower left corner of r (this is demonstrated
in Figure 4) and this contradicts the assumption that
it is included in the region returned by the algorithm.
Therefore, the entity cannot be outside r for longer than
λ/ǫ+ λ, and te ≤ tb + g + ǫg. �

Theorem 11 The time complexity of Algorithm 2 is
O(n2/ǫ2 + σ2/ǫ2), in which σ is D/g.

Proof. A subdivision of the plane by m line segments
has O(m2) faces and can be swept with the same time
complexity [9]. Moreover, the number of the segments of
each snapshot depends on the number of vertices of the
sub-trajectory inside that snapshot (the region contain-
ing the lower left corners of the squares that intersect an
edge of the sub-trajectory is a polygon with a constant
number of sides). We, therefore, count the total num-
ber of vertices of the sub-trajectories in all snapshots.
There are two types of trajectory vertices in each snap-
shot: those present in the original trajectory T and the
end points of the snapshot, which may not coincide with
a trajectory vertex. Since the duration of each snapshot
is g and the difference between the start time of contigu-
ous snapshots is ǫg, each trajectory vertex appears in at
most 1/ǫ snapshots. Therefore, the total number of ver-
tices is at most n/ǫ+ 2D/(ǫg) and the time complexity
of Algorithm 2 is O(n2/ǫ2 + σ2/ǫ2). �

It is not difficult to see that the stay map of a two-
dimensional trajectory may contain Θ(n2) faces and
therefore we cannot expect an algorithm with the worst-
case time complexity o(n2). In what follows, we demon-
strate a trajectory with O(n) edges and a stay map of
Θ(n2) faces. Trajectory edges are added incrementally,
as demonstrated in Figure 5, in which filled regions rep-
resent the stay map (except for t ≤ g, in which they
represent P (0, t)) and arrows show trajectory edges. We
assume that the entity starts at time 0 and position
(0, 0).

Generate m vertical strips as follows. Add the second
vertex at (2s, 0) with timestamp g/2 (Figure 5.a). Move
the entity to its initial position using three vertices as
shown in Figure 5.b; the position of the last vertex is
(0, 0) and its timestamp is g−g/2n. Create the vertical
strips as follows: after every g/n time, quickly move
the entity by s/n to the right (Figures 5.c–5.e). After
n such steps and waiting for at least g, the current stay
map consists of n vertical strips (Figure 5.f).

The same trajectory we used for creating vertical strip
can be used for creating horizontal strips after rotating
the trajectory 90 degrees. If this is performed after the
previous step, however, this would result in a stay map
(Figure 5.g), which consists of Θ(n2) small squares.

5 Concluding Remarks

The definition of stay points with bounded gaps can
be easily extended to multiple trajectories. A multi-
trajectory stay point is a square that is visited by at
least one of the entities in any interval of duration g. It
seems possible to compute such stay maps, by modify-
ing Algorithm 2 to compute the intersection of the union
of the snapshots of different entities. However, the time
complexity of this algorithm may no longer be O(n2),
where n is the total number of trajectory vertices. Find-
ing an efficient exact algorithm for the multi-trajectory
version of the problem seems interesting.

As shown in Section 4, the complexity of a stay map
can be Θ(n2), rendering an algorithm with the time
complexity o(n2) impossible. This bound however is not
tight and a natural question is whether it is possible to
find the exact stay map of two-dimensional trajectories
in O(n2) time. Also, by limiting the size of the output,
for instance by finding only one of the stay points, a
more efficient algorithm is not unlikely. Furthermore,
it seems interesting to study the problem in higher di-
mensions.

Acknowledgement

We thank Neda Ahmadzadeh Tori for the inspiring dis-
cussions that led to the study of this problem.



30th Canadian Conference on Computational Geometry, 2018

a b c

d e f g

Figure 5: A trajectory with a stay map of O(n2) faces. The arrows indicate trajectory edges and filled regions
indicate the stay map at each step.

References

[1] Y. Zheng. Trajectory data mining - an overview. ACM
Transactions on Intelligent Systems and Technology,
6(3):29:1–29:41, 2015.

[2] M. Benkert, B. Djordjevic, J. Gudmundsson, and
T. Wolle. Finding popular places. International
Journal of Computational Geometry and Applications,
20(1):19–42, 2010.

[3] J. Gudmundsson, M. J. van Kreveld, and F. Staals.
Algorithms for hotspot computation on trajectory data.
In SIGSPATIAL/GIS, pages 134–143, 2013.

[4] M. Fort, J. A. Sellarès, and N. Valladares. Computing
and visualizing popular places. Knowledge and Infor-
mation Systems, 40(2):411–437, 2014.

[5] R. Prez-Torres, C. Torres-Huitzil, and H. Galeana-
Zapin. Full on-device stay points detection in smart-
phones for location-based mobile applications. Sensors,
16(10):1693, 2016.

[6] F. J. M. Arboleda, V. Bogorny, and H. Patio. Smot+ncs
- algorithm for detecting non-continuous stops. Com-
puting and Informatics, 3(2):283–306, 2017.

[7] M. L. Damiani, H. Issa, and F. Cagnacci. Extracting
stay regions with uncertain boundaries from gps tra-
jectories - a case study in animal ecology. In SIGSPA-
TIAL/GIS, pages 253–262, 2014.

[8] B. Djordjevic, J. Gudmundsson, A. Pham, and
T. Wolle. Detecting regular visit patterns. Algorith-
mica, 60(4):829–852, 2011.

[9] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. Journal of
the ACM, 39(1):1–54, 1992.


