
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Some Heuristics for the Homological Simplification Problem

Erin W. Chambers ∗ Tao Ju † David Letscher ‡ Mao Li § Christopher Topp ¶ Yajie Yan ‖

Abstract

In this paper, we consider heuristic approaches for solv-
ing the homological simplification problem. While NP-
Hard in general, we propose an algorithm that in prac-
tice significantly reduces topological noise from large
datasets, such as those from medical or biological imag-
ing.

1 Introduction

In this paper, we will consider the homological simpli-
fication problem. Introduced in [5], this asks: given a
pair of simplicial complexes (C,N) where C ⊂ N , can
the persistent homology group of this pair be realized
as the homology of some intermediate complex? This
problem is one way to approach the problem of topolog-
ically accurate simplification, where the goal is to take
a “noisy” shape and simplify it to reach some desired
topological structure. Such algorithms are useful in a
wide range of applications, as any surface or region re-
construction algorithm on scanned input data is apt to
contain errors, and hence a post processing phase to
simplify it is necessary.

For filtrations of closed and orientable 2-manifolds,
the homological simplification problem is solvable [11];
this work actually solves the more general problem of
finding an ε-simplification in a filtration. However,
such existence results do not hold in 3-manifolds since
there are filtrations of manifolds that do not have ε-
simplifications [11]. For the homological simplification
problem, it is NP-Hard to determine if a simplification
exists for 3-manifolds, even if the complex is embedded
in R3 [5].

In this paper, we consider a 2-phase heuristic algo-
rithm to simplify voxelized shapes. We first use a per-
sistent homology-based algorithm to identify candidate

∗Department of Computer Science, Saint Louis University,
echambe5@slu.edu.
†Department of Computer Science and Engineering, Washing-

ton University, St. Louis taoju@cse.wustl.edu.
‡Department of Computer Science and Engineering, Saint

Louis University, letscher@slu.edu.
§Donald Danforth Plant Science Center,

mli@danforthcenter.org .
¶Donald Danforth Plant Science Center,

ctopp@danforthcenter.org .
‖Department of Computer Science and Engineering, Washing-

ton University, St. Louis yajieyan@wustl.edu.

simplifications. This approach is inspired by prior work
to find “nice” generators for homology groups on sur-
faces [8], but we expand to find not just the generators
of homology group, but also representatives in the larger
space that kills those generators. Phase 2 is then a val-
idation: given such a candidate simplification, we must
check that it does result in a global simplification, since
adding such things can introduce new topological fea-
tures. We apply this algorithm to a number of types of
input data, to assess how successful the heuristic is in
practice. We find that our simplifications are able to re-
move over 99% of topological errors in several real-world
data sets.

2 Related Work

2.1 Cubical complexes

A cubical complex is built from a collection of cells that
are points, intervals, squares, cubes and higher dimen-
sional analogs, where the intersection of any two cells is
also a cell of the cubical complex. Formally, the cells are
built from products of intervals, either the unit interval
[k, k + 1] or a degenerate interval [k, k], where k is an
integer (so that our complex is aligned with an integer
lattice); in d-dimensional space, a cube is a product of
d elementary intervals. Given 2 cubes x and y, x is a
face of y if x ⊆ y. A cubical complex of dimension d
is a collection of cubes that is closed under taking faces
such that the intersection of any two faces is a common
subface. In this paper, we will use cubical complexes to
represent the topology of our shapes.

2.2 Digital topology

In imaging and computer graphics, voxelizations are
among the most common shape representations. With
3-dimensional Euclidean space divided using a cubical
lattice, each individual cube is a single voxel and a vox-
elization of a shape is a set of these voxels. A common
connectivity model of voxels is called 6-connectivity,
which considers two voxels adjacent if they share a com-
mon 2-dimensional face [15]. This connectivity model
results in a different topology than just taking the ac-
tual union of the voxels, which would typically connect
anything that shares an edge or vertex as well. To be
topologically consistent with the union of voxels, we will
work in a dual complex where there is a vertex for each

30th Canadian Conference on Computational Geometry, 2018

voxel, and edge whenever two voxels share a common
face, a square or 2-cell for any 4 voxels around an edge,
and a 3-cell or voxel whenever there are 8 voxels sur-
rounding a common vertex. Note that this is still a
cubical complex, but it is not a pure cubical complex,
since not every cell of dimension 1 or 2 belongs to 3-cell.

2.3 Homology

Homology groups and persistent homology on filtrations
are commonly used tools to find topological features in
spaces; due to space constraints, we refer the reader to
recent books covering the topic for definitions of ho-
mology and persistent homology groups [9, 17]. For two
spaces C ⊆ N , these persistent homology groups simply
capture some of the topological features that are present
in C and still remain in N . Most relevant to our set-
ting, cubical persistent homology has been considered
in some prior work [21], including optimized data struc-
tures to compute persistent homology groups of such
complexes.

The pth Betti number of a space X, βp(X) is defined
to be the rank of the pth homology groups. Given an
inclusion map f : C → N , we can define a persis-
tent notion of Betti number, where the pth Betti num-
ber of f is the rank of the induced map on homology:
βp(C → N) = rk(f∗(Hp(C))). Extending this to filtra-
tions of more than 2 spaces precisely gives the notion of
persistent homology groups (or their ranks).

2.4 Homological simplification

Consider two spaces C ⊂ N ⊂ R3. The homological
simplification problem is generally phrased in terms of
Betti numbers: we wish to find a space X such that
the p-dimensional Betti number, βp(X) is equal to the
Betti number of the inclusions C → N , βp(C → N).
In three dimensions, this problem has been shown to be
NP-Hard [5].

2.5 Topological repair

Various methods have been developed in different re-
search communities for removing topological errors of
surfaces in R3. In computer graphics, algorithms exist
for modifying a given surface to either remove features
smaller than a given size or achieve a specific topology
(e.g., a single connected component with a prescribed
genus) [22, 24, 6]. These methods make decisions of
where and how to modify the surface solely based on
the shape of the given surface, whereas homological
simplification bases its decision on the persistence of
topological features between two spaces. In medical im-
age analysis, there has been active research on rectify-
ing the topology of reconstructions of biological struc-
tures, such as the cortical surface in the human brain

[19, 13, 18, 23]. Most of these methods are specialized
for removing redundant handles and cannot deal with
other types of topological noises such as disconnected
components or cavities. Finally, in scientific visualiza-
tion, a line of research aims at simplifying the topologi-
cal structure (e.g., the Morse-Smale complex) of a scalar
function [7, 11, 12, 20]. While these methods effectively
remove topological noise on all level sets of the function,
they are unnecessarily expensive if the goal is to fix the
topology of one level set. In addition, methods designed
to work on functions in R3 are limited to reducing the
set of maxima or minima, and hence are less useful for
removing topological handles on the level sets.

3 Heuristic Shape Simplification

Since we will use voxelized representatives of our input
shapes, we will focus on the restriction of the homology
simplification problem to voxelized shapes. We restate
the problem as follows where we refer to C as the core,
and N as the neighborhood, and we wish to find a space
X which is somehow “in between” them with homology
equal to the persistent homology of C → N .

3.1 Voxelized homological simplification

Suppose C ⊂ N ⊂ R3 are voxel regions. Determine if
there exists X such that C ⊂ X ⊂ N and βp(X) =
βp(C → N) for all p.

Proposition 1 The voxelized homological simplifica-
tion problem is NP-hard.

Proof. [Proof sketch] We omit details due to space con-
straints, but just briefly note that the proof for sim-
plicial complexes embedded in R3 is a reduction from
3SAT [5]. They construct gadgets that are easily mod-
ified to be built from voxels on an O(m) by O(n) grid,
where n is the number of booleans variables and m is
the number of clauses in the 3SAT instance. �

It is typically impractical to solve the homological
simplification problem; however, we are concerned with
simplifying a shape as much as possible. In particu-
lar, we will try to find a shape X where C ⊂ X ⊂ N
with each of the Betti numbers βp as close as possible
to the persistent Betti numbers βp(C → N). If they
are equal, we have a solution to the homological sim-
plification problem. Even if we do not achieve maximal
simplification, we will typically simplify our shape sig-
nificantly.

Our simplification procedure will be a two phase pro-
cess. It starts with the core C, which our algorithm will
always include in the result, and then tries to expand
to remove topological noise. First, a modified version of
the standard persistence algorithm [10] is used to find

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 1: The core and neighborhood for the root system of corn. Note that in the inclusion of core into the
neighborhood some loops are filled (blue inset), components connect (red inset) and new loops form (green inset).
A solution to the homological simplification problem will accept the first two types of modifications and reject the
creation of new loops and voids.

sets of voxels whose addition would remove topological
features that are not in the neighborhood. However,
these candidates might add new features that are not
desired. The second phase examines the modified shape
and checks if the persistence Betti numbers have been
reduced. If so, the changes are kept. This process of
candidate generation and validation is repeated until
no more valid additions can be found. There are no
guarantees that this will remove all of the undesired
topological features; however, our experiments in Sec-
tion 5 show that in real world examples the accuracy of
the simplification is very high.

3.2 Types of topological errors

We now examine the types of topological errors in
more detail, and our candidate simplifications. Con-
sider C ⊂ N ⊂ R3 and the maps induced by inclusion
f∗p : Hp(C)→ Hp(N) for p = 0, . . . , 3. If every f∗p is an
injection then C is already a solution to the homologi-
cal simplification problem. Assuming we do not have a
solution, we know that not all the f∗p are injective; in
addition, we know that any extraneous topological noise
must appear in the kernel of some f∗p . In order to get a
solution to the homological simplification problem, we
therefore need to remove all such cycles.

To this end, consider a cycle α 6= 0, where fp(α) = 0.
In this 3-dimensional setting, we have several possibili-
ties: α might connect two components, or it might fill
a void or loop in the large space. To demonstrate what

these look like, assume α is irreducible, that is it cannot
be written as a non-trivial sum of other elements of the
kernel. Depending on the dimension p, we can interpret
the different types of noise we observe, and our algo-
rithm will suggest different ways of removing that α in
order to construct a better candidate solution (or near-
solution, if we cannot generate an optimal one) to the
homological simplification problem. We note that each
of these cases can be observed in the root data in Fig-
ure 1, and hence we expect them all to exist in practice,
depending on the data set. The cases to consider:

• α ∈ ker f∗0 : Here α is represented by two points
lying in different components of C. These com-
ponents can be connected by a path γ in N that
connects the two points. In this case, γ is a one di-
mensional chain in N . By adding γ to C we obtain
a new space C∪γ where the kernel of H0(C∪γ)→
H0(N) has rank one less than H0(C)→ H0(N).

• α ∈ ker f∗1 : In this case α is a curve that follows a
non-trivial topological feature in C, such as going
around a handle, but which‘’ bounds some surface
in N that kills that homological feature. If this sur-
face is a disk D then H1(C∪D)→ H1(N) has rank
one less than H1(C)→ H1(N). In other words, we
can add the disk D to remove the handle that is
present in C. However, if the curve bounds a sur-
face with genus, then if we were to add the surface
in, a generator of the kernel is removed but two or
more generators are added (since this surface has

30th Canadian Conference on Computational Geometry, 2018

its own handles). Hence the resulting object is not
simpler in terms of homology, and we cannot use
this chain to simplify the space.

• α ∈ ker f∗2 : Here α is a surface bounding a hollow
region (a “void”) in C, but which is not hollow in
N . This void could be a simple ball, but could
also contain topology. In either case, we can fill
this in to simplify the topology. If the surface is
a sphere, Alexander’s theorem implies that it will
bound a ball B in N [14]. In this case, it is easy
to simplify since H2(C ∪ B) → H2(N) has rank
one less than H2(C)→ H2(N). If the surface does
not bound a ball, then the simplification may also
simplify ker f1, as some loops will disappear when
the void disappears.

The commonality of all of these cases is that our al-
gorithm must find a (k + 1)-dimensional structure in
N whose boundary is in the kernel of f∗k and whose
addition simplifies the topological structure. Our tech-
niques are based on this observation, repeatedly adding
simplifications until no more can be found; we describe
the generation of these candidates in the next subsec-
tion. Ideally, after adding these (k + 1)-dimensional
structures, we obtain a space X with C ⊂ X ⊂ N and
Hk(C) → Hk(X) is a surjection and Hk(X) → Hk(N)
is an injection for all k; in this case, we would actu-
ally have a solution to the homological simplification
problem. Our algorithm will only simplify the shape,
although we have no guarantees of optimality or ap-
proximation ratio. In Section 5, we will discuss our
implementation and show that it works well on several
data sets.

3.3 Candidate generation

We now describe our algorithm to find generators in
the kernel as well as to find candidate cycles that
they bound in order to simplify the shape. Consider
C ⊂ X ⊂ N where X is initially equal to C but will
be extended to remove topological features that are not
shared by C and N . We will build a boundary matrix,
∂p, for calculating the p-dimensional persistent homol-
ogy of the filtration C ⊂ X ⊂ N . There is a column
of ∂p for each (p+ 1)-cell of X and a non-zero entry in
that column for each p-cell that is a face of the (p+ 1)-
cell. The rows and columns are ordered so that cells
of C occur first, then cells of X and finally cells of N .
The standard persistence algorithm [10] adds columns
to ones to their right to obtain a canonical reduced form.

After these matrix reductions, the columns of ∂p rep-
resent cycles involving the cells with non-zero entries. If
that column corresponds to cells of N and the non-zero
entries involved include d-cells of C, then this cycle, z,
is a feature of C that does not persist in N and should

Figure 2: (top) Three intensity threshold input: t −
ε, t, t + ε. (bottom) Corresponding core and neighbor-
hood.

be removed. To remove this feature we need to find a
(d+ 1) chain, b, in X such that ∂pb = z. We note that
of course there are potentially many candidates for z;
we find one by creating a copy of the identity matrix M
with an entry for each column of ∂p and performing the
same column operations as we did in the reduction. An
invariant of these column operations is that if v is the
i-th column of M , then ∂pv is the i-th column of ∂p. So
we choose b to be the union of cells with non-zero entries
in the column of M corresponding to the cycle z; recall
that b is actually a chain in the dual cubical complex.
We build a candidate simplification S which is the set of
voxels that contain b. When S is added to X, the cycle
z will become trivial; however, additional features could
be added, so we cannot add S and guarantee reduction
of Betti numbers.

We note that many improvements to the standard
persistence algorithm have been made to make this cal-
culation more efficient [2, 1]. These algorithms focus
only on finding birth and death times, however, and
discard any non-essential information in order to make
calculations faster. In particular, they either discard or
never compute information about generators in order to
speed up the calculations; we need not only the genera-
tors, but also the cycles they bound, which we know of
no way to track directly in the faster algorithms.

In addition, it is worth re-iterating that there are
many possible cycles that could be added in order to
kill generators in the kernel; we have merely computed
the ones which can be calculated with a simple modifica-
tion of the standard persistence algorithm. Surprisingly,
in our experiments the algorithm nonetheless produces
geometrically pleasing results, particularly for smaller
topological errors which are common in real-world data.

3.4 Candidate validation

To determine if the addition of S will actually sim-
plify the shape, recall that our algorithm tries to min-
imize the sum of Betti numbers B(X) =

∑3
p=0 βp(X),

with the goal of reducing this complexity to be equal
to
∑3
p=0 βp(C → N). If S is set of voxels that form

a candidate simplification, we will calculate B(X ∪ S).
If B(X ∪ S) < B(X) and βp(X ∪ S) ≤ βp(X) for all

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p, then we will consider this a valid simplification. We
cannot be sure that the addition of S has not created
new topological feature, but our check does guarantee
that more features are removed than were introduced.

Our algorithm We will repeat the process of finding
candidate simplifications using the modified standard
persistence algorithm and adding them one at a time if
they are valid simplifications, until no more are possible.

4 Removing Topological Errors in 3D Imaging

In a 3D imaging technology such as CT or MRI, the
output is a grid of voxels each with an intensity value.
A typical representation would be a map f : {0, . . . , k−
1}3 → R. Shapes of interest, in theory, can be extracted
by selecting voxels in a given intensity range. A typical
segmentation might try to extract all voxels with inten-
sity over a specified threshold, e.g. X = f−1 ([t,∞)).
However, there can be a variety of errors in this segmen-
tation.

Define Nδ(X) as a neighborhood of the set X for pos-
itive δ, or as points with a |δ| neighborhood contained
in the set X for negative δ. Formally:

Nδ(X) =

{
∪x∈XBδ(x) δ ≥ 0

{x | B−δ(x) ⊂ X} δ < 0

Then there is a natural two dimensional filtration of the
region where Xt,δ = Nδ

(
f−1 ([t,∞))

)
. Here, t specifies

the intensity threshold, and Nδ is in fact a morpholog-
ical dilation when δ > 0 or erosion when δ < 0, using
the ball of radius |δ| as the structuring element[16].

If t is a threshold for an initial segmentation X =
f−1 ([t,∞)), we can give two parameters, ε and δ, repre-
senting noise levels on the threshold value and geometric
scale, respectively. We will define the core C = Xt+ε,−δ
and the neighborhood N = Xt−ε,δ. This collapses the
two dimensional filtration into a pair of spaces C ⊂ N .
In this case the core C represents voxels that we want to
include in the final shape, they all have neighborhoods
meeting a higher intensity threshold. And the neighbor-
hood N contains all the voxels near some voxel with a
lower intensity threshold. See Figure 2 for an example.

A good solution to the homological simplification with
this C and N would have features that do not appear or
disappear with a small change in threshold, expanding
or contraction of the shape, or a combination of these
changes. In practice, a partial solution to the homo-
logical simplification problem might only remove some
of the noise; in our experiments (described in the next
section), this still results in an improvement over simple
thresholding techniques. This improvement is quite ev-
ident in Figure 1, for example, where thresholding any
any level (in the top pictures) leaves errors such as dis-
connected fragments and cycles; since this is a root and

hence a simply connected space, these must be sam-
pling errors and not actual features of the data. In the
following section, we will discuss our observations of a
reduction in more than 99% of the noise in several real
world datasets.

5 Experimental Results

We experimented on three different collections of data:
CT scans of corn root systems, synthetic root systems
and brain volumes reconstructed from histological sec-
tions. The corn data was from a single variety of corn,
with three different scans each viewed at two different
resolutions. The synthetic root was designed to roughly
resemble a root system and was studied at nine differ-
ent resolutions. The brain scans were of the BigBrain
dataset [4] downsampled at ten different resolutions.
Figure 3 gives some information about the datasets,
and our code is available [3]. The largest regions had
close to 400 million voxels; this forced some additional
techniques described below to handle the scale of the
data sets. The largest core in these experiments has 2.5
million voxels and the largest neighborhood had over 4
million voxels. The most complicated example had ap-
proximately 8 thousand components, 17 thousand loops
and one thousand voids. All but approximately 100 of
those where noise features. In general, the complexity
of the initial shapes was very high and there were very
few features that were shared between the core and the
neighborhood.

5.1 Practical concerns

The shapes that we have considered have regions as
large as several hundred million voxels. As a result,
we utilize a sparse representation for our shapes, so
that the neighborhoods have about 6 million voxels at
most; instead of storing actual values of the intensity,
we have 3 hash sets that simply mark the core C, the
current shape, and the neighborhood N . Even with
this compression, there are speed issues. While there
are faster persistent homology implementations [1, 2]
that can handle inputs of this size, the standard persis-
tence algorithm [10] has trouble on this size of inputs.
However, we have no way to generate candidate sim-
plifications using these faster algorithms, as discussed
in Section 3.3. In order to deal with the size of the
data, we did this calculation on windows of data at most
2503 voxels in size, where the windows were chosen to
overlap and cover the shape. This of course makes it
likely we will miss some larger errors, but made the
algorithm computationally feasible. We performed the
calculations on the largest shapes in under five hours on
a Linux desktop with a 2.20 GHz processor I5 processor
and 64 GB RAM; see Figure 4.

30th Canadian Conference on Computational Geometry, 2018

Region size Core size Neighborhood size Complexity
Corn 2.3× 106 − 1.5× 108 1.6× 103 − 2.4× 105 2.4× 103 − 4.6× 106 109− 6, 713
Synthetic 3.9× 106 − 3.8× 108 1.8× 103 − 1.7× 105 2.3× 103 − 2.7× 106 208− 26, 605
Brain 3.9× 105 − 1.7× 107 5.1× 104 − 2.5× 106 6.1× 105 − 3.6× 106 388− 15, 393

Figure 3: Characteristics of the data analyzed, including the number of voxels in the region examined, core and
neighborhood and the initial complexity of the shapes.

103 104 105 106
100

101

102

103

104

Size of core (voxels)

S
im

p
li

fi
ca

ti
o
n

ti
m

e
(s

ec
on

d
s)

Simplification Time

Corn roots
Synthetic roots

Brain

103 104 105 106
0.0%

0.1%

0.2%

0.3%

Size of core (voxels)
P

er
ce

n
t

n
o
is

e
re

m
ai

n
in

g

Simplification Error

Corn roots
Synthetic roots

Brain

Figure 4: (a) Experimental runtime and (b) error rates on three datasets.

Figure 5: Synthetic root input shape with noise.

5.2 Accuracy

For all of the test shapes, over 99.7% of the topological
errors were removed by our method; it is worth noting
that much of this success is perhaps because many of the
errors were quite small, consisting of just a few missing
or extra voxels. In several cases, our algorithm was able
to find solutions to the homological simplification prob-
lem. See Figure 4 for the error rates in the experiments.
We note that it is computationally infeasible to deter-
mine in the other cases if solutions to the homological
simplification problem exist.

6 Future Work

There are several natural directions to pursue next.
First, we note that the algorithm described here picks

some candidate to remove a particular error, but does
not necessarily choose a geometrically nice generator.
In fact, we have found examples where our algorithm
adds a cycle that is obviously not ideal, or misses larger
topological features due to the windows used in our
algorithm. We plan to consider a more robust set of
candidate simplifications that might be able to reduce
the errors that are not repaired; at the same time, we
would like to restrict to simplifications that have nice
geometric properties as well as topological properties.
In general, calculating ”optimal” generators is impossi-
ble. However, for data sets such as the roots, we can
take advantage of prior knowledge about the physical
structure to prefer certain reconstructions, such as those
that would reconnect two nearly crossing roots so as
to maintain roughly the same local feature size along
each. Second, on the more practical end, we would
like to continue scaling the algorithms to larger datasets
through optimizations and potential parallelization. Fi-
nally, more on the theoretical side, it is interesting to
consider the notion of hardness of approximation or
any approximation guarantees of heuristics such as our
greedy approach.

Acknowledgements: This material is based upon
work supported by the National Science Foundation un-
der Award numbers: (PGRP) IOS-1638507, (EPSCoR)
IIA-1355406, (AF) 1614562, and the linked collabora-
tive awards (ABI) 1759807, 1759836 and 1759796.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] DIPHA. https://github.com/DIPHA/dipha.

[2] GUHDI c++ library. http://gudhi.gforge.inria.fr/.

[3] Voxelized homological simplification im-
plementation. http://git.cs.slu.edu/public-
repositories/shape-simplification-software.

[4] Katrin Amunts, Alan Evans, and Karl Zilles. Big-
brain dataset.

[5] Dominique Attali, Ulrich Bauer, Olivier Devillers,
Marc Glisse, and André Lieutier. Homological re-
construction and simplification in r3. In Proceed-
ings of the Twenty-ninth Annual Symposium on
Computational Geometry, SoCG ’13, pages 117–
126, New York, NY, USA, 2013. ACM.

[6] Marco Attene, Marcel Campen, and Leif Kobbelt.
Polygon mesh repairing: An application perspec-
tive. ACM Computing Surveys (CSUR), 45(2):15,
2013.

[7] P-T Bremer, Bernd Hamann, Herbert Edelsbrun-
ner, and Valerio Pascucci. A topological hierarchy
for functions on triangulated surfaces. IEEE Trans-
actions on Visualization and Computer Graphics,
10(4):385–396, 2004.

[8] T. K. Dey, K. Li, and J. Sun. On computing handle
and tunnel loops. In Cyberworlds, 2007. CW ’07.
International Conference on, pages 357–366, Oct
2007.

[9] Herbert Edelsbrunner and John Harer. Compu-
tational Topology: An Introduction. AMS Press,
2009.

[10] Herbert Edelsbrunner, David Letscher, and Afra
Zomorodian. Topological persistence and simplifi-
cation. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pages
454–463. IEEE, 2000.

[11] Herbert Edelsbrunner, Dmitriy Morozov, and Va-
lerio Pascucci. Persistence-sensitive simplifica-
tion functions on 2-manifolds. In Proceedings of
the twenty-second annual symposium on Computa-
tional geometry, pages 127–134. ACM, 2006.

[12] David Günther, Alec Jacobson, Jan Reininghaus,
Hans-Peter Seidel, Olga Sorkine-Hornung, and
Tino Weinkauf. Fast and memory-efficienty topo-
logical denoising of 2d and 3d scalar fields. IEEE
transactions on visualization and computer graph-
ics, 20(12):2585–2594, 2014.

[13] Xiao Han, Chenyang Xu, Ulisses Braga-Neto, and
Jerry L Prince. Topology correction in brain cor-
tex segmentation using a multiscale, graph-based
algorithm. IEEE Transactions on Medical Imag-
ing, 21(2):109–121, 2002.

[14] John Hempel. 3-manifolds, volume 349. American
Mathematical Soc., 2004.

[15] Reinhard Klette and Azriel Rosenfeld. Digital
geometry: Geometric methods for digital picture
analysis. Elsevier, 2004.

[16] Laurent Najman and Hugues Talbot. Mathemati-
cal morphology: from theory to applications. John
Wiley & Sons, 2013.

[17] Steve Y. Oudot. Persistence Theory: From Quiver
Representations to Data Analysis, volume 209 of
Mathematical Surveys and Monographs. American
Mathematical Society, 2015.

[18] Florent Ségonne, Jenni Pacheco, and Bruce Fis-
chl. Geometrically accurate topology-correction of
cortical surfaces using nonseparating loops. IEEE
transactions on medical imaging, 26(4):518–529,
2007.

[19] David W Shattuck and Richard M Leahy. Auto-
mated graph-based analysis and correction of corti-
cal volume topology. IEEE transactions on medical
imaging, 20(11):1167–1177, 2001.

[20] Maxime Soler, Melanie Plainchault, Bruno Conche,
and Julien Tierny. Topologically controlled lossy
compression. arXiv preprint arXiv:1802.02731,
2018.

[21] Hubert Wagner, Chao Chen, and Erald Vuçini.
Efficient Computation of Persistent Homology for
Cubical Data, pages 91–106. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012.

[22] Zoë Wood, Hugues Hoppe, Mathieu Desbrun,
and Peter Schröder. Removing excess topology
from isosurfaces. ACM Transactions on Graphics
(TOG), 23(2):190–208, 2004.

[23] Rachel Aine Yotter, Robert Dahnke, Paul M
Thompson, and Christian Gaser. Topological cor-
rection of brain surface meshes using spherical har-
monics. Human brain mapping, 32(7):1109–1124,
2011.

[24] Qian-Yi Zhou, Tao Ju, and Shi-Min Hu. Topology
repair of solid models using skeletons. IEEE Trans-
actions on Visualization and Computer Graphics,
13(4), 2007.

