Lithe: Lightweight Secure CoAP for the Internet of Things

S. Raza, H. Shafagh, etc. IEEE Sensors 2013, Volume 13

Mahmoud Kalash

28 March 2016

Summary:

- ► IEEE Sensors journal 2013.
- Security problem in IOT.
- Secure communication protocol in in resource-constrained IOT environments.
- Implementation and evaluation.

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Future work

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Future work

Introduction

- 6LOWPAN (IPv6 over Low power Wireless Personal Area Network) enables IPv6 in low-power and lossy wireless networks such as WSNs.
 - 6LoWPAN defines header compression mechanisms.
- HTTP is inefficient in lossy and constrained IOT environment(Low power radios).
- ► The Internet Engineering Task Force (IETF®).
- CoAP (Constrained Application Protocol)
 - Simplicity.
 - Low overhead.
 - Multicast support.

Introduction

- DTLS (Datagram Transport Layer Security) is used by CoAP as the security protocol
 - key management.
 - data encryption.
 - integrity protection.
- **CoAPs** is CoAP with DTLS support, similar to HTTPs.
 - **Problem**: DTLS is inefficient or constrained IOT devices.
 - Solution: Apply the 6LoWPAN header compression mechanisms to compress DTLS header.

Introduction: Lithe

Lithe is the proposed solution in this paper.

- Lithe: a lightweight CoAPs by compressing the DTLS protocol with 6LoWPAN header compression mechanisms.
 - To achieve energy efficiency by reducing the message size;
 - To avoid 6LoWPAN fragmentation as 6LoWPAN protocol is vulnerable to fragmentation attacks.

E2E Communication with CoAPs

6BR: 6LoWPAN Border Router is used between 6LoWPAN networks and the Internet to compress/decompress or/and fragment/reassemble messages before forwarding between the two realms.

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Future work

Background

■ Goal:

 To enable secure and efficient communication among IoT devices that utilize the CoAP protocol.

CoAP

- CoAP is a web protocol that runs over the UDP for IOT.
- Datagram Transport Layer Security (DTLS) is used to protect CoAP transmission.
- Similar to HTTPs (TLS-secured HTTP), CoAPs is DTLS-secured CoAP.
- Coaps://mylPv6Address:port/MyResource

Layout of a packet secured with **DTLS**

6LoWPAN

This paper is limited to the header compression process only.

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan

DTLS Compression

- DTLS-6LoWPAN Integration
- 6LoWPAN-NHC for the Record and Handshake Headers
- 6LoWPAN-NHC for ClientHello / ServerHello
- 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Future work

DTLS-6LoWPAN Integration

- Apply 6LoWPAN header compression mechanism to compress headers in the UDP payload.
- The ID bits in the NHC for UDP defined in 6LoWPAN:
 - 11110 means the UDP payload is not compressed;
 - 11011 means the UDP payload is compressed with 6LoWPAN-NHC.

6Lowpan-NHC-R & 6Lowpan-NHC-RHS

- First 4 bits represent the ID field:
 - 1000 6LoWPAN-NHC-RHS
 - 1001 6LoWPAN-NHC-R
- Version (v): DTLS version
 - 0 omit version field (16 bits)
- Epoch (EC):
 - 0, 8 bit epoch is used and the left most 8 bits are omitted.
 - 1, all16 bit epoch is used.
- Sequence Number (SN):
 - 0, 16 bit SN, omit 32 bits
 - 1, 48 bit SN
- Fragment (F):
 - 0, not fragment.
 - Omit 2 x (offset + length) 6 bytes.
 - 1, fragment applied.

6LoWPAN-NHC-CH

First 4 bits is ID, 1010

- When the parameter is set to 0, the corresponding field is omitted.
 - Session ID (SI): omit 8 bits
 - Cookie (C): omit 16 bits
 - Cipher Suites (CS): omit 16bits
 - Compression Method (CM): Omit 8 bits

BIT	0	1	2	3	4	5	6	7

1 0 1	0 SI	С	CS	СМ
-------	------	---	----	----

6LoWPAN-NHC-SH

- Similar to ClientHello except:
 - ► ID field is 1011
 - V (Server DTLS Version):
 0 DTLS 1.0, omit 16 bits

BIT	0	1	2	3	4	5	6	7
	1	0	1	1	v	SI	CS	CM

20

6LoWPAN-NHC for ClientHello

0	ctet 0	Octet 1	Octet 2	Octet 3	Oct	et 0	Octet 1	Octet 2	Octet 3
Versioir	n Traf	ffic Class	Flow Labe	l		LOWPA	N_IPHC	Hop Limit	Source Address
	Payload	l Length	Next Header	Hop Limit	Source A	Address	Destination	Address	LOWPAN_NHC_UDP
		Source A	ddress (128 bits)		S Port	D Port	Chec	ksum	LOWPAN_NHC_RHS
		Destination	Address (128 bits)		E	poch	Seque	nce Number	Message Type
	Sourc	e Port	Destina	tion Port		Message S	Sequence	LOWPAN_NHC_CH	
	Len	igth	Ch	ecksum		<u> </u>			<u></u>
Con	tent_type		Version	Epoch			Client Rand	lom (32 bytes)	
	Epoch	Shot.	ion Ao' Nitira Bou			<u></u>			<u>:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:</u>
		- Seq	lence ivinitier	Length_Record					
Lengtl	h_Record	Message Type	Leņ	gth_Handshake	- - -				
Length	Handshake	Mess	age Sequence	Fragment Offset	•				
	Fragmer	ਮ Offset	Fragme	nt Length	•				
Fragm	ent Length		Vėrsion		* * *				
		Client 1	andom (32 bytes)		•				
Session	_ID Length	Cookie Length	Cipher S	uites Length					
	Cipher	Suites	Comp_method Length	Comp_method					

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages

Implementation

- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Future work

Implementation

- Lithe was implemented in the Contiki OS.
- Hardware platform: WiSMote.
- Lithe implementation consists of four components:
 - DTLS: open source tinyDTLS.
 - CoAP: default CoAP in Contiki.
 - CoAP-DTLS integration module: Connects the CoAP and DTLS to enable CoAPs.
 - DTLS header compression.

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Future work

NUMBER OF BITS SENT AND SPACE SAVING

DTLS Header	Without	With	Space
	Comp. [Bit]	Comp. [Bit]	Saving
Record	104	40^{1}	62%
Handshake	96	24^{1}	75%
ClientHello	336 ²	264^2	23%
ServerHello	304	264^{3}	14%
CertificateRequest	40	0	100%

Evaluation – RAM/ROM Requirement

ROM AND STATIC RAM REQUIREMENTS FOR LITHE

Feature	ROM [Byte]	RAM [Byte]
DTLS Crypto (SHA-256, CCM, AES)	6590	2868
DTLS	10662	989
Contiki OS	32145	4979
CoAP	8632	582
DTLS Compression	2820	1
Total	60849	9419

Evaluation - Run-Time Performance

- CH ClientHello
- CH(C) ClientHello with Cookie
- CKE-ClientKeyExchange
- HV HelloVerify
- SH ServerHello
- SHD ServerHelloDone

27

■ 15% less energy is used transmit/receive compressed packets.

Compression	Client-side [uJ]	Server-side [uJ]	Total [uJ]	
Without	1756.66	1311.65	3068.31	
With	1467.54	1143.47	2611.01	

Evaluation – Energy Consumption

Evaluation – Round Time Trip (RTT)

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Future work

Future work:

 deploy Lithe in a real world IOT system with a real application scenario.

References

- http://www.ujjwal.com/technical-optimization/https-seo-662/
- <u>https://www.micrium.com/iot/internet-protocols/</u>
- <u>http://www.wismote.com/</u>
- <u>http://contiki-os.blogspot.ca/</u>
- <u>http://s3.amazonaws.com/ppt-download/lithe-150602124705-lva1-app6891.pdf</u>

