
CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Interference Minimization in k-Connected Wireless Networks∗

Stephane Durocher† Sahar Mehrpour‡

Abstract

Given a set of positions for wireless nodes, the k-
connected interference minimization problem seeks to
assign a transmission radius to each node such that the
resulting network is k-connected and the maximum in-
terference is minimized. We show there exist sets of
n points on the line for which any k-connected net-
work has maximum interference Ω(

√
kn). We present

polynomial-time algorithms that assign transmission
radii to any given set of n nodes to produce a k-
connected network with maximum interference O(

√
kn)

in one dimension and O(min{k√n, k log λ}) in two di-
mensions, where λ denotes the ratio of the longest to
shortest distances between any pair of nodes.

1 Introduction

1.1 Interference Minimization and k-Connectivity

A network must be connected if a multi-hop communi-
cation channel is required between every pair of nodes.
Various secondary objectives can be considered in ad-
dition to the connectivity requirement, often resulting
in an optimization problem to construct a network that
meets both criteria. Common additional objectives in-
clude minimizing the maximum or average power con-
sumption, sender-receiver route length, node degree, ra-
tio of route length to Euclidean distance, and, of partic-
ular relevance to wireless networks, interference [11]. By
increasing or decreasing its transmission power, a wire-
less node increases or decreases its transmission range.
If wireless signal strength is assumed to fade uniformly
in all directions, then the range within which transmis-
sion exceeds a given minimum threshold corresponds to
a disk centred at the point of transmission; we refer to
the disk’s radius as the transmitting node’s transmis-
sion radius. Under the receiver-based interference model
[16], two nodes p1 and p2 can communicate if they lie
mutually in each other’s transmission ranges, and any
node q1 that lies in the transmission range of a node
q2 receives interference from q2, regardless of whether
q1 can communicate with q2. Given a set of node po-
sitions as input, the objective of the interference min-
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imization problem is to assign a transmission radius to
each node to produce a connected network that mini-
mizes the maximum interference among all nodes. The
interference minimization problem has been examined
extensively under the receiver-based interference model
over the past decade (e.g., [2, 3, 5, 7, 11, 13, 16–18]).

Maintaining network connectivity is critical to pre-
serving multi-hop communication channels between all
pairs of nodes. Connectivity alone is insufficient to pre-
serve communication in case of node failure: a con-
nected network can become disconnected when even a
single node fails. Guaranteeing network connectivity in
the presence of node failure requires multiple disjoint
routes joining every pair of nodes, i.e., redundancy in
the network’s connectivity. A network is k-connected
if it remains connected whenever fewer than k nodes
are removed. The factor k parameterizes the network’s
degree of connectivity. In this work, we examine inter-
ference minimization on k-connected networks. Given a
set of node positions, the k-connected interference min-
imization problem is to assign a transmission radius to
each node to produce a k-connected network while min-
imizing the maximum interference at any node. To the
authors’ knowledge, this is the first work to examine
interference minimization in k-connected networks.

1.2 Definitions

We represent the position of a wireless node by a point
pi ∈ Rd. The set P = {p1, . . . , pn} ⊆ Rd represents po-
sitions for a set of n nodes, along with a corresponding
function, r : P → R+, that associates a positive real
transmission radius with each node. Communication in
a wireless network is often modelled by a symmetric disk
graph (SDG); the symmetric disk graph of P with re-
spect to r is an undirected graph with vertex set P and
edge set {(p, q) | {p, q} ⊆ P ∧ r(p) ≥ dist(p, q) ∧ r(q) ≥
dist(p, q)}, where dist(u, v) denotes the Euclidean dis-
tance between the points u and v in Rd [1]. In this
paper we focus on point sets in one or two dimensions
(d ∈ {1, 2}).

von Rickenbach et al. [16] introduced the receiver-
centric interference model. In this model, the interfer-
ence at the node p ∈ P , denoted I(p), is the number
of nodes in P whose transmission range covers p. That
is, I(p) = |{q | q ∈ P ∧ dist(p, q) ≤ r(q)}|. The max-
imum interference for the set of points P with trans-
mission radii given by r is the maximum I(p) over all
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p ∈ P . For a given graph G on the point set P , let
I(G) = maxp∈P I(p). The interference minimization
problem is to assign transmission radii (i.e., to define
the function r) for a given set of points P ⊆ Rd such
that the corresponding symmetric disk graph G is con-
nected and I(G) is minimized.

A graph G is connected if there is a path (a sequence
of adjacent vertices) joining every pair of vertices in G.
A graph G is k-connected if there are k disjoint paths
between every pair of vertices in G or, equivalently, if
the removal of any j vertices does not disconnect G, for
all j < k. The k-connected interference minimization
problem is to assign transmission radii (i.e., define the
function r) for a given set of points P ⊆ Rd such that the
corresponding symmetric disk graph G is k-connected
and I(G) is minimized. Let OPTk(P ) denote the mini-
mum maximum interference among all k-connected net-
works on P .

Given a set P ⊆ Rd, let MST(P ) denote its Eu-
clidean minimum spanning tree, DT(P ) its generalized
Delaunay triangulation, and λ = dmax/dmin the ratio
of the maximum and minimum distances between any
two points in P , i.e., dmax = max{p,q}⊆P dist(p, q) and
dmin = min{p,q}⊆P dist(p, q). A set P = {p1, . . . , pn} of
n points in R ordered such that pi < pj for all i < j
contains an exponential chain of size m if there exist m
integers 1 ≤ a1 < a2 < · · · < am ≤ n (or n ≥ a1 > a2 >
· · · > am ≥ 1) such that dist(pai , pai+1) ≥ dist(pa1 , pai)
for all i ∈ {1, . . . ,m}. That is, the transmission range
of pai in MST(P ) covers {pai+1

, . . . , pam}. For exam-
ple, the set {2i | i ∈ {0, . . . ,m}} forms an exponential
chain of size m. See Figure 1. Given a set P ⊆ R
of n node positions and an assignment of transmission
radii corresponding to the symmetric disk graph G on
P , von Rickenbach et al. [16] define a hub node as any
vertex of G that has at least one neighbour to its right;
a non-hub node in P has all of its neighbours to its left.
For networks in R2, a subset H ⊆ P may be identi-
fied as a set of hubs, where these hub nodes provide a
connected or k-connected backbone to which non-hub
nodes connect.

Recall the definition of an ε-net [8]. Given a set P
of points in R2 and a family R of regions (ranges) in
R2, the pair (P,R) is a range space. For any given
ε ∈ (0, 1), an ε-net of the range space (P,R) is a subset
S ⊆ P such that for any region R ∈ R, if |R ∩ P | ≥ εn,
then R ∩ S 6= ∅. As do Halldórsson and Tokuyama [7],
our algorithm uses the set R of ranges consisting of all
equilateral triangles with one edge parallel to the x-axis.

1.3 Overview of Results

We begin with a discussion of related work in Section 2.
In Section 3 we establish a lower bound of Ω(

√
kn)

on the worst-case maximum interference among all k-
connected networks on a given set of n points in R.

This bound applies to point sets in Rd for any d ≥ 1
and any 1 ≤ k < n, and improves on the lower bounds
of Ω(k) due to k-connectivity and Ω(

√
n) for maximum

interference in a connected network [16]. In Section 4
we generalize a technique introduced by von Rickenbach
et al. [16] and apply it to give an O(n log(n/k))-time al-
gorithm that assigns transmission radii to any set of n
nodes in R to give a k-connected network with maxi-
mum interference O(

√
kn) for any 1 ≤ k < n, asymp-

totically matching our lower bound; interestingly, the
dependence on k is O(

√
k), as opposed to being linear

in k. In Section 5 we generalize techniques introduced
by Halldórsson and Tokuyama [7] and apply them to de-
velop two algorithms that assign transmission radii to
any set P of n nodes in R2 to give k-connected networks
with maximum interference O(k log λ) and O(k

√
n), re-

spectively, in O(n log λ) and O(nk+n log n+k3
√
n log n)

time, respectively. We conclude with a discussion and
directions for future research in Section 6.

2 Related Work

Buchin [3] showed that finding an optimal solution to
the interference minimization problem is NP-complete
in two dimensions. At present, the problem’s complex-
ity remains open in one dimension.

Several studies examine the interference minimization
problem in one dimension, also known as the highway
model. von Rickenbach et al. [16] gave an O(n2)-time
O(n1/4)-approximation algorithm and showed a tight
asymptotic bound of Θ(

√
n) on the worst-case mini-

mum maximum interference of any set P of n points
in R. Their approximation algorithm applies one of
two strategies, MST(P ) or a hub backbone, whichever
has lower interference. MST(P ) provides low interfer-
ence when P is near to being uniformly distributed.
If P contains an exponential chain of size m, then
I(MST(P )) ∈ Ω(m) [16]. The hub strategy of von Rick-
enbach et al. [16] selects every

√
nth node as a hub ac-

cording to their ordering on the line, forms a connected
backbone network on the hubs (e.g., their MST), and
connects each non-hub node to its nearest hub, giving a
network with maximum interference O(

√
n) for any set

of n points in R. Tan et al. [18] gave an algorithm that
finds an optimal solution for any set P of n points in R
in O(n3+OPT1(P )) time.

The interference problem has also been examined
extensively in two dimensions. Halldórsson and
Tokuyama [7] used ε-nets to define a backbone of O(

√
n)

hub nodes, resulting in a network with maximum in-
terference O(

√
n) for any set of n points in R2. See

Section 2.1 for a detailed description. Halldórsson
and Tokuyama [7] present a second algorithm using a
quadtree decomposition that guarantees maximum in-
terference O(log λ) for any set of points P in R2. As
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the quadtree is constructed, each non-empty square Bi
of width wi contains some set Pi ⊆ P . A representative
point p ∈ Pi is selected arbitrarily and its transmission
radius is set to max{

√
2wi,dist(p, q)}, where q is the

representative of the parent square to Bi. The square Bi
is divided into four squares of width wi/2 and Pi \{p} is
partitioned accordingly. The recursion terminates when
Pi = ∅. Still in R2, Holec [9] used linear program-
ming to give an algorithm with maximum interference
O(OPT1(P )2 log n). Aslanyan and Rolim [2] also pro-
posed an algorithm that finds a connected network by
applying an approximation algorithm for a variant of
the minimum membership set cover problem.

In addition to the worst-case results described above,
the interference minimization problem has been ex-
amined in the randomized setting. Kranakis et
al. [13] proved that MST(P ) has maximum interference
Θ((log n)1/2) with high probability for any set P of n
points selected uniformly at random in [0, 1]. Khab-
bazian et al. [11] showed that MST(P ) has maximum
interference O(log n) with high probability for any set P
of n points selected uniformly at random in [0, 1]d; De-
vroye and Morin [5] improved these results to show that
MST(P ) has maximum interference Θ((log n)1/2) with
high probability and, furthermore, that OPT1(P ) ∈
O((log n)1/3) and OPT1(P ) ∈ Ω((log n)1/4) with high
probability, showing that for nearly all point sets P ,
MST(P ) does not minimize interference.

2.1 O(
√
n) Interference in R2

We include a detailed overview of the algorithm of
Halldórsson and Tokuyama [7] using ε-nets, which will
be important to describe our algorithm presented in Sec-
tion 5.2. Given a set P of n points in R2, the algorithm
selects an ε-net H ⊆ P of size O(ε−1) to serve as a
set of hubs. Hubs are connected by MST(H), and each
non-hub node (the set P \ H) connects to its nearest
hub in H. Each node receives interference from at most
|H| ∈ O(ε−1) hubs and O(nε) non-hub nodes. Conse-
quently, the resulting network has maximum interfer-
ence O(εn + ε−1), which corresponds to maximum in-
terference O(

√
n) when ε = n−1/2.

Halldórsson and Tokuyama [7] describe the follow-
ing algorithm to find an ε-net H ⊆ P of size O(ε−1).
The algorithm begins by greedily constructing a maxi-
mal family of disjoint subsets {P1, . . . , Pl} such that for
each i, Pi ⊆ P , |Pi| = εn/5, and there exists a range
R ∈ R such that R ∩ P = Pi. Select any range R0 ∈ R
such that P ⊆ R0, and let V (R0) denote the set of three

vertices on its boundary. Let P̃ = V (R0)∪⋃li=1 Pi. Two

nodes {p, q} ⊆ P̃ form a generalized Delaunay pair with
respect to R if there exists a range R ∈ R such that p
and q are on the boundary of R and R ∩ P̃ = {p, q}.
Construct DT(P̃ ) by adding an edge between all gen-

eralized Delaunay pairs in P̃ . Consider a set of colours
{c1, . . . , cl+3}. For each i, assign each p ∈ Pi the colour
ci, and colour the points in V (R0) distinctly using the
three remaining colours. A corridor refers to a maxi-
mal chain of 2-coloured triangles in DT(P̃ ). Each cor-
ridor is greedily partitioned into subcorridors such that
the union of the Delaunay triangles in each subcorri-
dor contains εn/5 nodes of P . The set of endpoints of
subcorridors corresponds to the set H of hubs. Since
each corridor contains O(εn) points of P , the number
of subcorridors and, therefore, |H| are O(ε−1).

3 Lower Bounds

We show the following lower bound:

Theorem 1 For every n and every k, 1 ≤ k ≤ n,
there exists a set of n points P ⊆ R such that every
k-connected network on P has maximum interference
Ω(
√
kn).

Proof. Consider the set P = {p | p = 2i, i ∈
{0, . . . , n − 1}} that forms an exponential chain of size
n on the line. Consider any k-connected network on P .
Let H denote the set of hub vertices and let S denote
the set of non-hub vertices, where |H|+ |S| = n. Since
the network is k-connected, all vertices have between k
and ∆ neighbours, where ∆ denotes the maximum ver-
tex degree. Consequently, the first k vertices on the left
of the chain are hubs and, furthermore, these k vertices
form a clique. Every hub interferes with the leftmost
node in the exponential chain. Therefore, the inter-
ference at the first node (and, therefore, the maximum
interference) is at least |H|−1. Similarly, the maximum
interference is at least ∆. That is,

I(G) ≥ max{|H| − 1,∆}. (1)

Let ES→H denote the set of edges that join a non-hub
vertex to a hub vertex. Similarly, let EH→H denote the
set of edges joining pairs of hubs. This gives,

k|S| ≤ |ES→H |. (2)

Since the first k hubs form a clique, there are
(
k
2

)
edges

among these. So we have,(
k

2

)
≤ |EH→H |. (3)

The number of edge endpoints at a hub is bounded by

|ES→H |+ 2|EH→H | ≤ |H|∆

⇒ k|S|+ 2

(
k

2

)
≤ |H| · I(G) (by (1), (2) and (3))

⇒k(n− |H|) + k(k − 1) ≤ |H| · I(G)

⇒ k(n+ k − 1) ≤ |H|(I(G) + k)
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≤ (I(G) + 1)(I(G) + k) (by (1))

⇒ I(G) ≥
√

(4n− 6)k + 5k2 + 1− (k + 1)

2
. (4)

Next we show that I(G) ∈ Ω(
√
nk) for all n ≥ 5. The

result holds trivially for n ∈ O(1) and, specifically, for
n < 5. Assume

n ≥ 5 (5)

⇒ 3n+ k ≥ 14 (since k ≥ 1)

⇒ 3nk + k2 ≥ 14k

⇒ 4nk + k2 ≥ 14k + 3 (by (5) since k ≥ 1)

⇒ 4nk − 6k + 5k2 + 1 ≥ 4k2 + 8k + 4

⇒
√

(4n− 6)k + 5k2 + 1 ≥ 2(k + 1)

⇒ −(k + 1) ≥ −
√

(4n− 6)k + 5k2 + 1

2

⇒ I(G) ≥
√

(4n− 6)k + 5k2 + 1

4
(by (4))

≥
√

2nk + 5k2

4
(by (5))

∈ Ω(
√
nk). �

As we show in Theorem 2, the lower bound of Theo-
rem 1 is asymptotically tight.

4 k-Connected Networks in One Dimension

In this section, we present an algorithm that constructs
a k-connected network on any set P of n points in R.
Our algorithm generalizes the hub technique applied in
the algorithm of von Rickenbach et al. [16] to construct a
connected network with maximum interference O(

√
n),

as discussed in Section 2.

Instead of every
√
nth node as in [16], we se-

lect every
√
n/(2k + 1)th node as a hub, resulting in

d
√
n(2k + 1)e hubs. Specifically, select the ith node as a

hub if i = bj
√
n/(2k + 1)c for some j ∈ Z (where nodes

are numbered i = 0, . . . , n − 1). Set each hub node’s
transmission radius to its furthest point in P (forming
a clique on the hubs). Finally, set each non-hub node’s
transmission radius to the further of the kth hub to its
left and the kth hub to its right.

Theorem 2 Given any set P of n points in R and
any k < n, transmission radii corresponding to a k-
connected network on P with maximum interference
O(
√
kn) can be found in O(n log(n/k)) time.

Proof. First we show that the network produced is k-

connected.

n > k

⇒ n >
k

2 + 1/k

⇒
√
n(2k + 1) > k.

⇒
⌈√

n(2k + 1)
⌉
> k.

Therefore, there are at least k hubs. Since the hubs
form a clique and each non-hub node is connected to k
hubs, the network is k-connected.

Next we bound the maximum interference. Choose
any point p ∈ P . The interference at p, denoted I(p),
is the sum of the interference it receives from hub and
non-hub nodes. Hub nodes define a partition of non-hub
nodes into d

√
n(2k + 1)e intervals. Suppose the hub at

the left end of each interval belongs to that interval.
Let Ii denote the interval that contains p, where inter-
vals are numbered in order from the left. Let hl and hr
denote the respective hubs at the left and right extrem-
ities of Ii. Three types of non-hub nodes interfere with
p: nodes in Ii, nodes in Ij for j < i that are connected
to hr, and nodes in Ij for j > i that are connected to
hl. Since each non-hub node connects to its k nearest
hubs, p may receive interference from non-hub nodes
in k intervals on each side, or 2k total intervals, corre-
sponding to at most d2k

√
n/(2k + 1)e non-hub nodes in

other intervals. In addition, p may receive interference
from non-hub nodes within its own interval. Finally, p
receives interference from at most d

√
n(2k + 1)e hubs.

Summing these gives

I(p) ≤
⌈√

n(2k + 1)
⌉

+

⌈
2k

√
n

2k + 1

⌉
+

⌈√
n

2k + 1

⌉
<
√
n(2k + 1) + (2k + 1)

√
n

2k + 1
+ 3

= 2
√
n(2k + 1) + 3

∈ O(
√
kn).

The hubs can be identified in O(n log(n/k)) time by
near-sorting P , e.g., by a partial execution of deter-
ministic quicksort to partition P into blocks of size√
n/(2k + 1) that returns the partition pivots in sorted

order. The list of hubs is traversed in O(
√
n/k) time to

assign a transmission radius to each hub, correspond-
ing to the further of the leftmost or rightmost points in
P . Non-hub nodes are examined in block sequence, in
arbitrary order within a given block. Each non-hub’s
transmission radius is set to the maximum distance of
its kth hub to the left and its kth hub to the right in
O(n) total time, achieved by simultaneously traversing
the list of hubs and referring to the (i−k)th and (i+k)th
hubs, where i denotes the block index. The total time
is dominated by near-sorting, resulting in O(n log(n/k))
time in the worst case. �
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This guaranteed O(
√
kn) maximum interference

matches the lower bound of Ω(
√
kn) established in The-

orem 1, showing that our algorithm is asymptotically
optimal in the worst case. Previously, we knew I(G) ∈
Ω(
√
n) in the worst case, implied by k = 1 [16], and

I(G) ∈ Ω(k), since every node in a k-connected graph
has at least k neighbours. Furthermore, I(G) → n − 1
as k → n−1. The interesting implication of Theorem 2,
however, is for values of k between these two extrema:
that the worst-case maximum interference’s dependence
on k is sublinear for all values of k.

5 k-Connected Networks in Two Dimensions

In this section we present two algorithms that general-
ize techniques applied in algorithms of Halldórsson and
Tokuyama [7] described in Section 2. Given a set P
of n points in R2, our algorithms construct respective
k-connected networks on P with maximum interference
O(k log λ) and O(k

√
n), for any k.

5.1 Quadtree Decomposition

Theorem 3 Given any set P of n points in R2 and
any k < n, transmission radii corresponding to a k-
connected network on P with maximum interference
O(k log λ) can be found in O(n log λ) time, where λ =
dmax/dmin is the ratio of the maximum and minimum
distances between any two points in P .

Proof. Let B0 be an axis-parallel square of minimum
width w0 ≤ dmax that contains P . Select any set of k
points R0 ⊆ P as representatives for B0 and set their
transmission radii to

√
2w0. Divide B0 into four sub-

squares of width w0/2 and partition P \ R0 accord-
ingly. This procedure is applied recursively as follows.
Each non-empty square Bi of width wi contains some
set Pi ⊆ P . Select a representative set Ri ⊆ Pi arbi-
trarily, where |Ri| = min{k, |Pi|}. Set the transmission
radius of each p ∈ Ri to maxq∈Bj dist(p, q), where Bj
is the parent square to Bi (i.e., q is one of the corners
of Bj). The square Bi is divided into four squares of
width wi/2 and Pi \Ri is partitioned accordingly. The
recursion terminates when |Pi| ≤ k.

The first k representatives form a k-clique. Each
remaining node is connected to the k representatives
of its parent square. Consequently, any node forms a
k-connected graph with its ancestors in the quadtree.
Therefore, the entire network is k-connected.

The width of the root square is at most dmax. The
width of the lowest leaf square in the quadtree is at
least dmin/(2

√
2). Therefore, the height of the quadtree

is at most dlog(2
√

2λ)e = d3/2 + log λe. Each repre-
sentative interferes with at most 32 cells at its level
in the quadtree; see Figure 2. Therefore, each node
p ∈ P receives interference from at most 32k nodes at

each level of the tree, for a total interference of at most
32kd3/2 + log λe ∈ O(k log λ).

At each node of the quadtree, k representatives are
selected and have their transmission radii assigned, and
the set Pi is partitioned into four subsets inO(|Pi|) time.
Since the quadtree’s height is O(log λ), the total time is
O(n log λ). �

5.2 O(k
√
n) Interference

In this section we describe an algorithm that con-
structs a k-connected network with maximum interfer-
ence O(k

√
n) for any given set P of n points in R2. We

assume a non-degeneracy condition on points, specifi-
cally, that no two points lie on the same line forming an
angle of 0, π/3, or 2π/3 with the x-axis.

This algorithm first selects a setH of O(k
√
n) hubs by

finding an ((k
√
n)−1)-net of size O(k

√
n) on P as in the

algorithm of Halldórsson and Tokuyama [7] described
in Section 2.1. Consequently, any range containing at
least O(

√
n/k) points of P must contain a hub. Next,

a k-connected backbone is built on the hubs. Finally,
each non-hub node is connected to its k nearest hubs.

It suffices to k-connect the hubs by forming a clique
on the hubs. Although the hubs could be k-connected
by applying the algorithm recursively, this does not lead
to any asymptotic reduction in the maximum interfer-
ence. Connecting hubs by a tree, such as the MST or
the local neighbourhood graph, does not guarantee k-
connectivity after non-hubs connect to their k nearest
hubs. For small k (e.g., k ≤ 3) the Delaunay triangu-
lation provides a good strategy for k-connecting hubs,
but a more general strategy is required for larger k.

We analyze the maximum interference of the result-
ing network. Consider an arbitrary point p ∈ P . Divide
the plane around p into six cones R1(P ), . . . , R6(p) such
that for each i, Ri(p) is the cone consisting of all rays
with apex p and angle in [(i − 1)π/3, iπ/3]. Without
loss of generality, we consider the cone R1(p); analogous
results apply to the remaining cones. Let h1, . . . , hk de-
note the k hubs nearest to p in R1(p) ordered by increas-
ing distance to p. Let lα(p) denote the line through p
with angle α.

Lemma 4 No point in R1(p)∩ (P \H) lies on the right
of l2π/3(hk) and interferes with p.

Proof. For the sake of contradiction, assume such a
point q exists. Consequently, the transmission radius
of q is at least dist(p, q), and so, q is connected to
some hub h ∈ H where dist(p, q) < dist(q, h). However,
dist(q, hi) < dist(p, q) < dist(q, h) for all i ∈ {1, . . . , k},
contradicting the fact that q is connected to its k nearest
hubs. �

Lemma 5 There are O(k
√
n) nodes in the area en-

closed by l0(p), lπ/3(p), and l2π/3(hk).
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Proof. We decompose the range enclosed by l0(p),
lπ/3(p), and l2π/3(hk) into smaller regions and count
the vertices in each region. The first region is the range
enclosed by l0(p), lπ/3(p), and l2π/3(h1). As this range
contains no hub, it contains at most c

√
n/k nodes of P ,

for some fixed c ∈ R+.
For each i ∈ {1, . . . , k−1}, let Qi denote the isosceles

trapezoidal region enclosed by l0(p), lπ/3(p), l2π/3(hi),
and l2π/3(hi+1). We identify ranges in R that contain
no hub whose union covers Qi. Let H ′1 be a list of the
i nearest hubs to p in descending order according to
their distance to lπ/3(p). For each j, let h′j denote the
first hub in the list H ′j . Let A1 be the range enclosed
by l0(p), lπ/3(h′1), and l2π/3(hk). For j ≥ 2, let H ′j =
H ′j−1 \ {h′j−1 and all hubs below l0(h′j−1)}. If H ′j 6= ∅,
let Aj be the range enclosed by l0(h′j−1), lπ/3(h′j), and
l2π/3(hi). Otherwise, Aj−1 is the final range necessary
to cover Qi, and we let Aj−1 be the range enclosed by
l0(h′j−1), lπ/3(p), and l2π/3(hk). This procedure selects
at most i + 1 ranges whose union covers Qi, each of
which contains no hub in its interior. See Figure 3.

Along with the first range, the region
⋃k−1
i=1 Qi is ex-

actly the entire region enclosed by l0(p), lπ/3(p), and
l2π/3(hk). Since each Qi can be covered by i+ 1 ranges,
each of which contains no hub in its interior, the entire
region can be covered by 3k/2+k2/2 ranges. Since each
empty range contains at most c

√
n/k nodes of P , the

region enclosed by l0(p), lπ/3(p), and l2π/3(hk) contains
at most ck

√
n ∈ O(k

√
n) nodes of P . �

Theorem 6 Given any set P of n points in R2 and
any k < n, transmission radii corresponding to a k-
connected network on P with maximum interference
O(k
√
n) can be found in O(nk + n log n + k3

√
n log n)

time.

Proof. We first argue that the resulting network is k-
connected. The clique of hubs is k-connected. Each
non-hub node is connected to k hubs. Therefore, the
entire network is k-connected.

Next we bound the maximum interference. By Lem-
mas 4 and 5, for any node p ∈ P , O(k

√
n) non-hub

nodes interfere with p in each of the six cones around
p. There are O(k

√
n) hubs, each of which may interfere

with p. Therefore, I(p) ∈ O(k
√
n).

Finally we analyze the algorithm’s running time.
Since this algorithm require running part of the algo-
rithm of Halldórsson and Tokuyama [7] described in
Section 2.1, we begin by analyzing the time it takes
to build the ε-net.

Greedily constructing the maximal family of disjoint
subsets can be achieved in O(n log n) time. Similarly,
the generalized Delaunay triangulation can be con-
structed in O(n log n) time [6] after constructing the
Θ-graph (e.g., see [4, 10, 15]). Finding corridors, sub-
corridors, and their endpoints can done greedily in O(n)
time.

In our algorithm we form a clique on the set H of
hubs, which can be done in O(|H| log |H|) time by find-
ing the convex hull of the hubs and setting the trans-
mission radius of each hub to the distance to its furthest
hub in O(log |H|) time per hub using binary search on
the boundary of the convex hull, or O(|H| log |H|) total
time. In the final step, we set the transmission radius
of each non-hub node to the distance to its kth nearest
hub. To do so we can compute a k-nearest neighbour
Voronoi diagram of the setH of hubs inO(k2|H| log |H|)
time [14], upon which a point location data structure
(e.g., [12]) is constructed inO(k|H|(log k+log |H|)) time
and applied in O(k + log |H|) time per non-hub node,
or O(nk+n log |H|) total time. Thus, the running time
is dominated by the larger of O(nk), O(n log n), and
O(k2|H| log |H|). Since |H| ∈ O(k

√
n), this gives a to-

tal running time of O(nk + n log n+ k3
√
n log n). �

6 Discussion and Directions for Future Research

We showed asymptotically tight upper and lower
bounds of Θ(

√
kn) on the worst-case maximum inter-

ference for k-connected networks in one dimension. The
lower bound Ω(

√
kn) applies in two dimensions, where

we showed an upper bound of O(k
√
n), leaving open the

question of whether a k-connected network with lower
maximum interference can be found. In particular, is
maximum interference O(

√
kn) always achievable in two

dimensions?

von Rickenbach et al. [16] gave a polynomial-time al-
gorithm that builds a connected network with interfer-
ence at most O(n1/4 · OPT1(P )) for any set P of n
points on the line. Their algorithm constructs a net-
work either by applying the hub strategy or return-
ing MST(P ), whichever has lower maximum interfer-
ence. To bound the approximation factor they rely
on a pair of lemmas showing that OPT1(P ) ∈ O(

√
n)

and OPT1(P ) ∈ Ω(
√
I(MST(P ))). A natural direc-

tion for future research is to determine whether this
approximation algorithm can be generalized to build a
k-connected network in one dimension. Instead of con-
necting to the nearest neighbours to the left and right
as in a one-dimensional MST, we can consider the graph
MSTk(P ), in which each point connects to its k nearest
neighbours to the left and k nearest neighbours to the
right. In Theorem 2 we showed the generalization of
the first lemma, i.e., that OPTk(P ) ∈ O(

√
nk). It re-

mains open whether the second lemma generalizes. I.e.,
is OPTk(P ) ∈ Ω(

√
I(MSTk(P ))) for any set P ⊆ R?

Finally, Buchin [3] showed that the problem of finding
a connected network that minimizes maximum interfer-
ence for a given set of n points in two dimensions is
NP-complete. The complexity of the interference min-
imization problem in one dimension remains an impor-
tant open question.
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A Appendix: Figures

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p1 p2 p3 p4 p5 p6

1 2 4 8 16

1 15 2 1 6 1 2 1 1

P1

P2

Figure 1: The first five points of P1 form an exponen-
tial chain of size 5, where a1 = 5, a2 = 4, . . . , a5 =
1. An exponential chain need not be a perfect geo-
metric sequence, nor need its points be consecutive.
For example, a1 = 3, a2 = 6, a3 = 8, a4 = 9,
a5 = 10 (red points) is an exponential chain of size
5 in P2. The exponential chain property holds for
i = 1 in P2 since dist(pa1 , pa1−1) = dist(p3, p2) = 15 ≥
max5

j=2 dist(pa1 , paj ) = dist(p3, p10) = 14; it also holds
for all i ∈ {2, 3, 4}.

p

q

Figure 2: A point p is selected as a representative for a
quadtree cell, denoted by the smaller bold green square
of width wi. In the worst case, the furthest representa-
tive, q, of the parent square of p, denoted by the larger
bold green square, is a distance 2

√
2wi from p. Conse-

quently, p’s transmission range interferes with at most
32 cells of the quadtree at its level.
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Figure 3: (a) The shaded region is the trapezoid Q6.
(b) Four hubs that determine the ranges used to cover
Q6. (c) The five empty ranges whose union covers Q6.


