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Exploring Increasing-Chord Paths and Trees
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Abstract

A straight-line drawing Γ of a graph G = (V,E) is a
drawing of G in the Euclidean plane, where every ver-
tex in G is mapped to a distinct point, and every edge
in G is mapped to a straight line segment between their
endpoints. A path P in Γ is called increasing-chord if for
every four points (not necessarily vertices) a, b, c, d on P
in this order, the Euclidean distance between b, c is at
most the Euclidean distance between a, d. A spanning
tree T rooted at some vertex r in Γ is called increasing-
chord if T contains an increasing-chord path from r to
every vertex in T . We prove that given a vertex r in
a straight-line drawing Γ, it is NP-complete to decide
whether Γ contains an increasing-chord spanning tree
rooted at r, which answers a question posed by Mas-
takas and Symvonis [9]. We also shed light on the prob-
lem of finding an increasing-chord path between a pair
of vertices in Γ, but the computational complexity ques-
tion remains open.

1 Introduction

In 1995, Icking et al. [6] introduced the concept of a self-
approaching curve. A curve is called self-approaching if
for any three points a, b and c on the curve in this order,
|bc| ≤ |ac|, where |xy| denotes the Euclidean distance
between x and y. A path P in a straight-line draw-
ing Γ is called increasing-chord if for every four points
(not necessarily vertices) a, b, c, d on P in this order, the
inequality |bc| ≤ |ad| holds. Γ is called an increasing-
chord drawing if there exists an increasing-chord path
between every pair of vertices in Γ.

Alamdari et al. [1] examined the problem of recogniz-
ing increasing-chord drawings, and the problem of con-
structing such a drawing on a given set of points. They
showed that it is NP-hard to recognize increasing-chord
drawings in R3, and asked whether it is also NP-hard
in R2. They also proved that for every set of n points
P in R2, one can construct an increasing-chord drawing
Γ with O(n) vertices and edges, where P is a subset
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of the vertices of Γ. In this case, Γ is called a Steiner
network of P , and the vertices of Γ that do not be-
long to P are called Steiner points. Dehkordi et al. [4]
proved that if P is a convex point set, then one can
construct an increasing-chord network with O(n log n)
edges, and without introducing any Steiner point. Mas-
takas and Symvonis [8] improved the O(n log n) upper
bound on edges to O(n) with at most one Steiner point.
Nöllenburg et al. [11] examined the problem of com-
puting increasing-chord drawings of given graphs. Re-
cently, Bonichon et al. [3] showed that the existence of
an angle-monotone path of width 0 ≤ γ < 180◦ be-
tween a pair of vertices (in a straight-line drawing) can
be decided in polynomial time, which is very interest-
ing since angle-monotone paths of width γ ≤ 90◦ satisfy
increasing chord property.

Nöllenburg et al. [10] showed that partitioning a plane
graph drawing into a minimum number of increasing-
chord components is NP-hard, which extends a re-
sult of Tan and Kermarrec [12]. They also proved
that the problem remains NP-hard for trees, and gave
polynomial-time algorithms in some restricted settings.
Recently, Mastakas and Symvonis [9] showed that given
a point set S and a point v ∈ S, one can compute a
rooted minimum-cost spanning tree in polynomial time,
where each point in S \ {v} is connected to v by a path
that satisfies some monotonicity property. They also
proved that the existence of a monotone rooted span-
ning tree in a given geometric graph can be decided in
polynomial time, and asked whether the decision prob-
lem remains NP-hard also for increasing-chord or self-
approaching properties.

2 Technical Background

Given a straight line segment l, the slab of l is an infinite
region lying between a pair of parallel straight lines that
are perpendicular to l, and pass through the endpoints
of l. Let Γ be a straight-line drawing, and let P be a
path in Γ. Then the slabs of P are the slabs of the line
segments of P . We denote by Ψ(P ) the arrangement of
the slabs of P . Figure 1(a) illustrates a path P , where
the slabs of P are shown in shaded regions. Let A be
an arrangement of a set of straight lines such that no
line in A is vertical. Then the upper envelope of A is
a polygonal chain U(A) such that each point of U(A)
belongs to some straight line of A, and they are visible
from the point (0,+∞). The upper envelope of a set
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Figure 1: (a) Illustration for Ψ(P ), where the upper
envelope is shown in dashed line. (b) An increasing-
chord extension of a, b, . . . , p is shown in bold.

of slabs is the upper envelope of the arrangement of
lines corresponding to the slab boundaries, as shown in
dashed line in Figure 1(a). Let t be a vertex in Γ and
let Q = (a, b, . . . , p) be an increasing-chord path in Γ. A
path Q′ = (a, b, . . . , p, . . . , t) in Γ is called an increasing-
chord extension of Q if Q′ is also an increasing-chord
path, e.g., see Figure 1(b).

Observation 1 (Icking et al. [7]) A polygonal path
P is increasing-chord if and only if for each point v
on the path, the line perpendicular to P at v does not
properly intersect P except possibly at v.

A straightforward consequence of Observation 1 is
that every polygonal chain which is both x- and y-
monotone, is an increasing-chord path. We will use Ob-
servation 1 throughout the paper to verify whether a
path is increasing-chord. Let v be a point in R2. By the
quadrants of v we refer to the four regions determined
by the vertical and horizontal lines through v.

3 Increasing-Chord Rooted Spanning Trees

In this section we prove the problem (IC-Tree) of
computing a rooted increasing-chord spanning tree of
a given straight-line drawing to be NP-hard.

Theorem 1 Given a vertex r in a straight-line draw-
ing Γ, it is NP-complete to decide whether Γ admits an
increasing-chord spanning tree rooted at r.

We reduce the NP-complete problem 3-SAT [5] to
IC-Tree. Let I = (X,C) be an instance of 3-SAT,
where X and C are the set of variables and clauses. We
construct a straight-line drawing Γ and choose a vertex
r in Γ such that Γ contains an increasing-chord spanning
tree rooted at r if and only if I admits a satisfying truth
assignment. Here we give an outline of the hardness
proof and describe the construction of Γ. A detailed
reduction is given in the full version [2].

Assume that α = |X|, and β = |C|. Let lh be the line
determined by the X-axis. Γ will contain O(β) points
above lh, one point t on lh, and O(α) points below lh,
as shown in Figures 2(a)–(b). Each clause c ∈ C with
j literals, will correspond to a set of j + 1 points above
lh, and we will refer to the point with the highest y-
coordinate among these j + 1 points as the peak tc of
c. Among the points below lh, there are 4α points that
correspond to the variables and their negations, and two
other points, i.e., s and r. In the reduction, the point t
and the points below lh altogether help to set the truth
assignments of the variables.

We will first create a straight-line drawing H such
that every increasing-chord path between r and tc,
where c ∈ C, passes through s and t. Consequently,
any increasing-chord tree T rooted at r (not necessarily
spanning), which spans the points tc, must contain an
increasing-chord path P = (r, s, . . . , t). We will use this
path to set the truth values of the variables.

The edges of H below lh will create a set of thin slabs,
and the upper envelope of these slabs will determine a
convex chain W above lh. Each line segment on W
will correspond to a distinct variable, as shown in Fig-
ure 2(b). The points that correspond to the clauses will
be positioned below these segments, and hence some
of these points will be ‘inaccessible’ depending on the
choice of the path P . These literal-points will ensure
that for any clause c ∈ C, there exists an increasing-
chord extension of P from t to tc if and only if c is
satisfied by the truth assignment determined by P .

By the above discussion, I admits a satisfying truth
assignment if and only if there exists an increasing-chord
tree T in H that connects the peaks to r. But H may
still contain some vertices that do not belong to this
tree. Therefore, we construct the final drawing Γ by
adding some new paths to H, which will allow us to
reach these remaining vertices from r. We now describe
the construction in details.

Construction of H: We first construct an arrange-
ment A of 2α straight line segments. The endpoints of
the ith line segment Li, where 1 ≤ i ≤ 2α, are (0, i) and
(2α − i + 1, 0). We now extend each Li downward by
scaling its length by a factor of (2α+1), as shown in Fig-
ure 3(a). Later, the variable xj , where 1 ≤ j ≤ α, and
its negation will be represented using the lines L2j−1
and L2j . Let lv be a vertical line segment with end-
points (2α+ 1, 2α) and (2α+ 1,−5α2). Since the slope
of a line in A is in the interval [−2α,−1/(2α)], each
Li intersects lv. Since the coordinates of the endpoints
of Li and lv are of size O(α2), and all the intersection
points can be represented using polynomial space.

By construction, the line segments of A appear on
U(A) in the order of the variables, i.e., the first two
segments (from right) of U(A) correspond to x1 and x1,
the next two segments correspond to x2 and x2, etc.
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Figure 2: A schematic representation of Γ: (a) Points below lh, (b) Points above lh. The points that correspond to
c1 and c2 are connected in paths of black, and gray, respectively. The slabs of the edges of H that determine the
upper envelope are shown in gray straight lines. Each variable and its negation correspond to a pair of adjacent line
segments on the upper envelope of the slabs. See the full version [2] for a better illustration.
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Figure 3: (a) Construction of A. (b)–(c) Construction of the vertices and edges of Hb. (d) Illustration for the straight
line segments of Hb, and the slabs corresponding to the needles.

Variable Gadgets: We denote the intersection
point of lh and lv by t, and the endpoint (2α+ 1,−5α2)
of lv by s. We now create the points that correspond to
the variables and their negations. Recall that L2j−1 and
L2j correspond to the variable xj and its negation xj ,
respectively. Denote the intersection point of L2j−1 and
lv by pxj , and the intersection point of L2j and lv by
pxj , e.g., see Figure 3(b). For each pxj (pxj ), we create
a new point p′xj (p′xj ) such that the straight line seg-

ment pxjp
′
xj (pxjp

′
xj

) is perpendicular to L2j−1 (L2j),

as shown using the dotted (dashed) line in Figure 3(b).
We may assume that all the points p′xj and p′xj lie on

a vertical line l′v, where l′v lies ε distance away to the
left of lv. The value of ε would be determined later. In
the following we use the points pxj , pxj , p

′
xj and p′xj to

create some polygonal paths from s to t.

For each j from 1 to α, we draw the straight line
segments pxjp

′
xj and pxjp

′
xj

. Then for each k, where

1 < k ≤ α, we make pxk and pxk adjacent to both p′xk−1

and p′xk−1
, e.g., see Figure 3(c). We then add the edges

from s to p′xα and p′xα , and finally, from t to px1
and

px1
. For each xj (xj), we refer to the segment pxjp

′
xj

(pxjp
′
xj

) as the needle of xj (xj). Figure 3(c) illustrates
the needles in bold. Let the resulting drawing be Hb.

Recall that l′v is ε distance away to the left of lv.
We choose ε sufficiently small such that for each needle,
its slab does not intersect any other needle in Hb, e.g.,
see Figure 3(d). The upper envelope of the slabs of all
the straight line segments of Hb coincides with U(A).
Since the distance between any pair of points that we
created on lv is at least 1/α units, it suffices to choose
ε = 1/α3. Note that the points p′xj and p′xj can be
represented in polynomial space using the endpoints of
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l′v and the endpoints of the segments L2j−1 and L2j .
The proof of the following lemma is omitted (see [2]).

Lemma 2 Every increasing-chord path P that starts at
s and ends at t must pass through exactly one point
among pxj and pxj , where 1 ≤ j ≤ α, and vice versa.

We now place a point r on the y-axis sufficiently below
Hb, e.g., at position (0,−α5), such that the slab of the
straight line segment rs does not intersect Hb (except
at s), and similarly, the slabs of the line segments of
Hb do not intersect rs. Furthermore, the slab of rs
does not intersect any segment Lj , and vice versa. We
then add the point r and the segment rs to Hb. Let
P be an increasing-chord path from r to t. The upper
envelope of Ψ(P ) is determined by the needles in P ,
which selects some segments from the convex chain W ,
e.g., see Figure 2(b). For each xj , P passes through
exactly one point among pxj and pxj . Therefore, for
each variable xj , either the slab of xj , or the slab of
xj appears on U(P ). Later, if P passes through point
pxj (pxj ), then we will set xj to false (true). Since P
is an increasing-chord path, by Lemma 2 it cannot pass
through both pxj and pxj simultaneously. Therefore, all
the truth values will be set consistently.
Clause Gadgets: We now complete the construc-

tion of H by adding clause gadgets to Hb. For each
clause ci, where 1 ≤ i ≤ β, we first create the peak point
tci at position (0, 2α + i). For each variable xj , let λxj
be the interval of L2j−1 that appears on the upper enve-
lope of A. Similarly, let λxj be the interval of L2j on the
upper envelope of A. For each ci, we construct a point
qxj ,ci (qxj ,ci) inside the cell of A immediately below λxj
(λxj ). We will refer to these points as the literal-points
of ci. The full version [2] depicts these points in black
squares. We assume that for each variable, the corre-
sponding literal-points lie on the same location. One
may perturb them to remove vertex overlaps. For each
variable x ∈ ci, we create a path (t, x, tc). In the reduc-
tion, if at least one of the literals of ci is true, then we
can take the corresponding path to connect tc to t. Let
the resulting drawing be H.
Construction of Γ: Let q be a literal-point in H.

We now add an increasing-chord path P ′ = (r, a, q) to H
in such a way that P ′ cannot be extended to any larger
increasing-chord path in H. We place the point a at the
intersection point of the horizontal line through q and
the vertical line through r, the full version [2] contains
the details. We refer to the point a as the anchor of
q. By the construction of H, all the neighbors of q
that have a higher y-coordinate than q lie in the top-left
quadrant of q. Let q′ be the first neighbor in the top-left
quadrant of q in counter clockwise order. Since ∠aqq′ <
90◦, P ′ cannot be extended to any larger increasing-
chord path (r, a, q, w) in H, where the y-coordinate of w
is higher than q. On the other hand, every literal-point

w in H with y-coordinate smaller than q intersects the
slab of ra. Therefore, P ′ cannot be extended to any
larger increasing-chord path.

For every literal-point q in H, we add such an
increasing-chord path from t to q. To avoid edge over-
laps, one can perturb the anchors such that the new
paths remain increasing-chord and non-extensible to
any larger increasing-chord paths. This completes the
construction of Γ. We refer the reader to the full ver-
sion [2] for the formal details of the reduction.

4 Increasing-Chord Paths

In this section we attempt to reduce 3-SAT to the prob-
lem of finding an increasing-chord path (IC-Path) be-
tween a pair of vertices in a given straight-line drawing.
We were unable to bound the coordinates of the drawing
to a polynomial number of bits, and hence the computa-
tional complexity question of the problem remains open.
We hope that the ideas we present here will be useful
in future endeavors to settle the question.

Here we briefly describe the idea of the reduction.
Given a 3-SAT instance I = (X,C), the corresponding
drawing D for IC-Path consists of straight-line draw-
ings Di−1, where 1 ≤ i ≤ β, e.g., see Figure 4(a). The
drawing Di−1 corresponds to the each clause ci. We will
refer to the bottommost (topmost) point of Di−1 as tci−1

(tci). We will choose tc0 and tcβ to be the points t and t′,
respectively, and show that I admits a satisfying truth
assignment if and only if there exists an increasing-chord
path P from t to t′ that passes through every tci . For
every i, the subpath Pi−1 of P between tci−1 and tci will
correspond to a set of truth values for all the variables
in X. The most involved part is to show that the truth
values determined by Pi−1 and Pi are consistent. This
consistency will be ensured by the construction of D,
i.e., the increasing-chord path Pi−1 from tci−1

to tci in
Di−1 will determine a set of slabs, which will force a
unique increasing-chord path Pi in Di between tci and
tci+1

with the same truth values as determined by Pi−1.

Construction of D: The construction of Di−1 de-
pends on an arrangement of lines Ai−1. The construc-
tion of A0 is the same as the construction of arrange-
ment A, which we described in Section 3. Figure 4(c) il-
lustrates A0 in dotted lines. For each variable xj , where
1 ≤ j ≤ α, there exists an interval λ0xj of L2j−1 on the

upper envelope ofA0. Similarly, for each xj , there exists
an interval λ0xj of L2j on the upper envelope of A0.

We now describe the construction of D0. Choose
tc0 (tc1) to be the bottommost (topmost) point of λ0x1

(λ0xα). We then slightly shrink the intervals λ0x1
and λ0xα

such that tc0 and tc1 no longer belong to these segments.
Assume that c1 contains δ literals, where δ ≤ 3, and let
σ1, . . . , σ2δ−1 be the satisfying truth assignments for c1.
We construct a graph Gc1 that corresponds to these sat-
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isfying truth assignments, e.g., see Figure 4(b) and the
full version [2] for formal details. The idea is to en-
sure that any path between tc0 and tc1 passes through
exactly one point in {qσkxj , q

σk
xj
}, for each truth assign-

ment σk, which will set the truth value of xj . In D0,
the point qσkxj (qσkxj ) is chosen to be the midpoint of λi−1xj

(λi−1xj
). Later, we will refer to these points as q-points,

e.g., see Figure 4(c). We may assume that for each xj ,
the points qσkxj lie at the same location. One may later
perturb them to remove vertex overlaps.

By Observation 1, any y-monotone path P ′ between
tc0 and tc1 must be an increasing-chord path. If P ′

passes through qσxj , then we set xj to true. Otherwise,
P ′ must pass through qσxj , and we set xj to false. In the
following we replace each q-point by a small segment.
The slabs of these segments will determine A1. Con-
sider an upward ray r1 with positive slope starting at
the q-point on λx1 , e.g., see Figure 4(c). Since all the
edges that are currently in D0 have negative slopes, we
can choose a sufficiently large positive slope for r1 and a
point a1 on r1 such that all the slabs of D0 lie below a1.
We now find a point b1 above a1 on r1 with sufficiently
large y-coordinate such that the slab of tc1b

1 does not
intersect the edges in D0. Let l1x1

be the line determined
by r1. For each xj and xj (except for j = 1), we now
construct the lines l1xj and l1xj that pass through their

corresponding q-points and intersect r1 above b1. The
lines l1xj and l1xj determine the arrangement A1. Ob-
serve that one can construct these lines in the decreasing
order of the x-coordinates of their q-points, and ensure
that for each l1xj (l1xj ), there exists an interval λ1xj (λ1xj )

on the upper envelope of A1. Note that the correspon-
dence is inverted, i.e., in A1, λ1xj corresponds to λ0xj ,

and λ1xj corresponds to λ0xj .

For each j, we draw a small segment s0xj (s0xj ) perpen-

dicular to l1xj (l1xj ) that passes through the q-point and

lies to the left of q, e.g., see Figure 4(d). The construc-
tion of Di, where i > 1, is more involved. The upper
envelope of Ai+1 is determined by the upper envelope of
the slabs of the s-segments in Di−1. For each i, we con-
struct the q-points and corresponding graph Gci . The
full version [2] includes the formal details.

In the reduction we show that any increasing-chord
path P from t to t′ contains the points tci . We set a
variable xj true or false depending on whether P passes
through s0xj or s0xj . The construction of D imposes the

constraint that if P passes through si−1xj (si−1xj
), then it

must pass through sixj (sixj ). Hence the truth values
in all the clauses are set consistently. By construction
of Gci , any increasing-chord path between tci−1

to tci
determines a satisfying truth assignment for ci. On the
other hand, if I admits a satisfying truth assignment,
then for each clause ci, we choose the corresponding
increasing-chord path Pi between tci−1 and tci . The

union of all Pi yields the required increasing-chord path
P from t to t′. The full version [2] presents the construc-
tion in details, and explains the challenges of encoding
D in a polynomial number of bits.

5 Open Problems

The most intriguing problem in this context is to settle
the computational complexity of the increasing-chord
path (IC-Path) problem. Another interesting ques-
tion is whether the problem IC-Tree remains NP-hard
under the planarity constraint; a potential attempt to
adapt our hardness reduction could be replacing the
edge intersections by dummy vertices.
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