CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Computing Batched Depth Queries and the Depth of a Set of Points

Stephane Durocher*

Abstract

Simplicial depth and Tukey depth are two common mea-
sures for expressing the depth of a point g relative to a
set P of points in R%. We introduce definitions that gen-
eralize these notions to express the depth of a set @ of
points relative to a set P of points in R?, and we exam-
ine algorithms for computing these in R?, capitalizing
on the relative cardinalities of P and Q.

1 Introduction

Depth measures quantify the centrality of an object rel-
ative to a set of objects. For univariate quantitative
data, a natural definition for the depth of a point ¢ rel-
ative to a set P of points in R is to measure how deeply
nested ¢ is in P by the lesser of the number of points
of P less than ¢, and the number of points of P greater
than ¢. By this measure, outliers relative to P have
low depth, whereas a median of P has maximum depth.
Various generalizations to higher dimensions exist, in-
cluding simplicial depth and Tukey depth.

The simplicial depth of a query point ¢ relative to a
set P of points is the number of simplices determined
by points in P that contain g¢:

Definition 1.1 (Simplicial depth [14]) Given a set
P of n points in R? and a point q in R?, the simplicial
depth of g relative to P is

SDp(q) =) I(g € S), (1)

Ses

where S denotes the set of (dil) closed simplices, each
of which is the convex hull of d+1 points from P, and I
is an indicator function such that I(A) =1 if A is true
and 1(A) = 0 otherwise.

The Tukey depth of a query point ¢ relative to a set
P of points is the minimum number of points of P in
any closed half-space containing ¢:

Definition 1.2 (Tukey depth [19]) Given a set P of
n points in R? and a point q in R?, the Tukey depth (or

*Department of Computer Science, University of Manitoba,
stephane.durocher@Qumanitoba.ca, rajapakl@myumanitoba.ca

TDepartment of Statistics, University of Manitoba,
alex.leblanc@umanitoba.ca

113

Alexandre Leblanc’

Sachini Rajapakse*

half-space depth) of q relative to P is

TDp(g)= min |HNP|, (2)
HNq#2

where H is the set of all closed half-spaces in RY.

Given ¢ and P in R2, the simplicial depth and the
Tukey depth of ¢ relative to P can be computed in
O(nlogn) time, respectively, where n = |P| [9, 17, 10],
both of which have matching lower bounds of Q(n logn)
worst-case time [1].

A depth median of a set P is a point of maximum
depth relative to P for a given depth measure. We refer
to a simplicial median and Tukey median, which can be
computed in O(n*) time [2] and O(nlog®n) time [12] in
R2, respectively. An in-sample median of P is a point
of P with maximum depth, which can be identified in
O(n?) time in R? for simplicial depth [9].

Depth measures are typically defined to describe the
location of a single query point (an individual) relative
to a set of points (a population). In this paper, we
examine (1) computing a batch of depth queries relative
to a common set of points, and (2) deriving a single
estimator for the depth of a set of query points relative
to another set of points.

Computing a batch of depth queries by iteratively
running an algorithm designed to calculate the depth
of a single query point can be inefficient. To address
this, we present algorithms to compute a batch of depth
queries; the choice of which algorithm to apply to mini-
mize running time depends on the relative cardinalities
of the query point set @ to the input point set P. Defin-
ing and evaluating the depths of a set of query points
has various applications in data analysis, e.g., finding a
center-outward ordering of a set @) relative to a set P.
Next, we derive a single estimator to express the depth
of @ relative to P. Applications include (1) measur-
ing the centrality of @ relative to P (e.g., the position
of one soccer team relative to the opposing team), (2)
classifying a set @) selected from the same distribution
as the sets Py, ..., P, to determine within which set P;
the set @ is most deeply contained.

Our results In Section 3.1 we present three algorithms
for computing a batch of k simplicial depth queries in
R? in O(knlogn) time, O(n? + nk) time, and O(n* +
klogn), respectively. The first algorithm is fastest when

34" Canadian Conference on Computational Geometry, 2022

k € O(ig;), the second when k € Q(2) and k €

O(n?), and the third when k € Q(n?). In Section 3.2 we
present two algorithms for computing a batch of k Tukey
depth queries in R? in O(knlogn) time and O(n? +
klogn) time, respectively. The first algorithm is fastest
when k € O(;;), and the second when k € (7).

In Section 4 we introduce definitions for the simpli-
cial depth and Tukey depth of a set @ relative to a
set P, which can be computed in R? by applying the
algorithms above. Finally, we examine properties and
probabilistic interpretations for the simplicial depth of
a set of points.

2 Related Work

2.1 Simplicial Depth and Simplicial Median

Multiple algorithms compute the simplicial depth of a
point ¢ relative to a set P of n points in R? in O(n logn)
time [9, 17, 10]. Given the radial ordering of P around
g, the simplicial depth of ¢ can be computed in O(n)
time [9]. Given a set P = {p1,...,pn} of points in
R?, Lee and Ching [13] showed that the radial order of
P\ {p;} with respect to p; for all : € {1,...,n} can be
determined in O(n?) time. Consequently, the simplicial
depths of all points in P can be obtained in O(n?) time
[9], and an in-sample simplicial median can be identified
in O(n?) time [9]. Khuller and Mitchell studied a similar
problem independently [10].

When defined in terms of closed simplices, a simplicial
median lies at an intersection of simplex boundaries [2].
Rousseeuw and Ruts described how to find a simplicial
median by searching the set of intersection points in
O(n®logn) time [17]. Aloupis et al. [2] derived a faster
algorithm to compute a simplicial median in O(n* logn)
time, which they further reduced to O(n*) time. We
apply a technique similar to that of Aloupis et al. [2] in
Algorithm S.IIT in Section 3.1.

2.2 Tukey Depth and Tukey Median

The Tukey depth of a point ¢ relative to a set P of n
points in R? can be computed in O(nlogn) time [17].
Tukey depth contours are a collection of nested poly-
gons that partition the plane into regions of equal Tukey
depth, which can be computed in O(n?) time [15]. A
Tukey median can be found in O(nlog® n) time [12].

2.3 Depth of a Set of Points

Recently, Pilz and Schnider introduced a definition for
the Tukey depth of a set of points [16]:

Definition 2.1 (Generalized Tukey depth [16])
The generalized Tukey depth of a set Q@ C R? with

respect to a set P C R s

. |HnP
GTDp(Q) = min :HM?', (3)
QNH#£D

where H is the set of all closed half-spaces in RY.

Definition 2.1 differs from our Definition 4.2 intro-
duced in Section 4.2. Definition 2.1 selects a single non-
empty half-space that minimizes the ratio (3), i.e., the
number of points of P in the half-space H relative to
the number of points of @ in H. On the other hand,
Definition 4.2 incorporates the respective Tukey depths
for each point in @), i.e., different half-spaces may be
selected for each point.

Depth histograms provide a characterization of
the combinatorial structure of a point set [6, 4].
Bertschinger et al. studied Tukey depth histograms of
k-flats [4] and defined variations of Tukey depth for a
set @ relative to P, including affine Tukey depth and
convex Tukey depth.

Recently, Barba et al. [3] introduced a definition for
the cardinal simplicial depth! of a set of points:

Definition 2.2 (Cardinal simplicial depth [3])
The cardinal simplicial depth of a set Q@ C R% with
respect to a set P C R s

CSDp(Q)=>_ I(QNS # o), (4)

ses

where S denotes the set of (dil) closed simplices, each
of which is the convex hull of d+1 points from P, and I
is an indicator function such that I(A) =1 if A is true
and I(A) =0 otherwise.

Definition 2.2 differs from our Definition 4.1 intro-
duced in Section 4.1. Definition 2.2 counts the number
of non-empty simplicies (the cardinality of the set of
non-empty simplicies), whereas Definition 4.1 is a nor-
malized sum of the number of points of Q contained
in each simplex. See further discussion in Section 4.1.
Barba et al. gave an algorithm to compute CSDp(Q)
for given sets P and Q in O(N7/310g®®) N) time, where
N=|P|+|Q|=n+k.

3 Computing a Batch of Depth Queries

In this section, we describe algorithms that compute a
batch of simplicial depth queries or Tukey depth queries
for k£ points in a set @ relative to a set P of n points,
where P U Q is in general position in R2. For simplicial
depth we propose three algorithms: Algorithm S.I is not

ITo disambiguate between Definitions 2.2 and 4.1, we refer to
Definition 2.2 as the cardinal simplicial depth because it corre-
sponds to the cardinality of the set of non-empty simplicies.

114

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

new [9, 17, 10]; Algorithms S.IT and S.IIT are new. For
Tukey depth we propose two algorithms: Algorithms T.I
and T.IT apply techniques used in existing algorithms
for Tukey depth and Tukey depth contours.

3.1 Computing a Batch of Simplicial Depth Queries
3.1.1 Algorithm S.I

In Section 2.1 we mentioned algorithms for computing
the simplicial depth of a single query point g relative to
a set P of n points in R? in O(nlogn) time [9, 17, 10].
When the number of query points k is small relative to
n, a straightforward approach for computing the depths
of k points is to iteratively compute the simplicial depth
of each query point using one of these existing algo-
rithms. Using this approach, we can compute the sim-
plicial depth of all k points in O(kn logn) time and O(n)
space to store the angular order of P around each query
point (this space is reused for each query point). Due
to the lower bound of 2(nlogn) on the worst-case time
required for computing the simplicial depth of a single
point [1], this approach is optimal when & € O(1).

Lemma 1 Given a set P of n points and a set QQ of
k query points in general position in R?, Algorithm S.I
computes SDp(q) for every ¢ € Q in O(knlogn) total
time and O(n + k) space.

3.1.2 Algorithm S.II

Algorithm S.I is efficient when k is small relative to
n, but more efficient approaches are possible for larger
values of k. We describe an algorithm that computes
the simplicial depths of points in @ relative to P in
O(n? + nk) time and O(n?) space. Using an approach
similar to the in-sample simplicial median algorithm of
Gil et al. [9] (Step 1), we compute the radial order of
the n points of P around each point in @, and (Step 2)
we use this ordering to compute the simplicial depth of
each point in Q.

To perform Step 1, we modify the method described
by Gil et al. [9] and Khuller and Mitchell [10]. First, the
sets P and @ are transformed into sets of lines Lp and
Lg in the dual plane, respectively. The sorted order
of P around a point ¢ can be obtained by considering
the intersection order of Lp with the dual-line L, us-
ing a method described in [13]. This step requires O(n)
time for each point in Q). The planar graph construction
method in [5] can be implemented to find the line inter-
section order of Lp set with each line in L,. We con-
struct a graph G of the arrangement of lines induced by
Lp incrementally by introducing one line at a time, and
construct the doubly connected edge list of Lp, which
requires O(n?) time and O(n?) space. Then we continue
this process by temporarily inserting each line in L, to
G, and finding the order of intersections of lines in Lp

115

with L, by traversing the sequence of edges in G along
L,, which takes O(n) time. Then, applying a method
analogous to that described in [13], the angular sorted
order of P around each point ¢ can be obtained in O(n)
time. Step 1 requires O(n?) time and O(n?) space for
preprocessing. In Step 2, the simplicial depth of each
point ¢ € @ relative to P can be found in O(n) time us-
ing the angular order of points of P around ¢ [9]. This
takes O(nk) time, giving a total time of O(n? + nk).

Step 1 requires finding the order of intersections be-
tween Lp and each line in L,. Finding the order of
intersections between one line and a set of m lines can
be achieved using one of various methods: (a) incre-
mental planar graph construction [5] in O(m?) time and
O(m?) space, (b) line sweeping [18] in O(m? logm) time
[8], or (c) topological sweeping [7] in O(m?) time and
O(m) space. Despite its lower costs as a function of
m, when applied to our problem, topological sweeping
takes O(n? + k?) time and O(n + k) space because it
processes additional intersections in Lp and Lg that
are not needed for Step 1. The most efficient method
for finding the ordered intersections between Lp and
each L, line is incremental planar graph construction,
which takes O(n? + nk) time and O(n?) space.

Lemma 2 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm S.II
computes SDp(q) for every ¢ € Q in O(n? + nk) total
time and O(n* + k) space.

3.1.3 Algorithm S.11I

When k£ is large relative to n, construct the arrange-
ment L formed by lines between every pair of points in
P. This arrangement partitions the plane into ©(n*)
convex cells in which every point within a cell has equal
simplicial depth. By modifying the O(n*)-time simpli-
cial median algorithm of Aloupis et al. [2], we can com-
pute the depths of all cells in O(n*) time. Aloupis et
al. consider the arrangement of line segments connecting
every pair of points in P, which also has O(n?*) inter-
sections and O(n?) cells. This method computes the
number of points on each side of each line segment of
P in O(n?) time. Further, Aloupis et al. showed that
starting from a known depth value on a line segment,
by processing each intersection point in O(1) time, the
simplicial depth along the line segment can be computed
in O(n) time [2]. We adapt this depth-finding method
along a line segment to find the simplicial depth of cells
in our arrangement L as described below.

Each line [in L is partitioned into three by the two
points p; and py in P that determine I: the line seg-
ment between p; and py (colour this segment blue) and
two rays (colour the rays red) on [rooted at p; and pa,
respectively. In the arrangement determined by L, only
the blue segments are boundaries of simplices. There-

34" Canadian Conference on Computational Geometry, 2022

fore, when crossing from one cell to an adjacent cell, the
depth changes if the two cells share a blue line segment
on their common boundary. Similarly, if the two cells
share a red segment on their common boundary, then
both cells have the same simplicial depth.

We compute the number of points on each side of
each line in L in O(n3) time. Starting from a cell C;
with known simplicial depth, the algorithm traverses the
arrangement, calculating the simplicial depth of each
cell relative to the depth of an adjacent cell whose depth
was already computed. To find the simplicial depth of
a cell C; that shares a blue edge with Cj, subtract the
number of points in P on the side of C; to the blue edge
and add the number of points in P on the side C; to
the blue edge. The simplicial depth inside C; includes
simplicies (triangles) bounded by the blue line segment
and points in P on the side of C;. When crossing the
blue edge to C;, we exit (subtract) one set of triangles
and enter (add) a new set of triangles based on the blue
line segment and points of P on the C; side of the blue
edge. If depth on simplex boundaries is required, then
the depth on the blue edge is calculated by adding depth
in C; to the number of points in the side of C}; no query
point lies on a simplex boundary when PUQ is in general
position.

All cells outside the convex hull of P have depth zero;
we can initiate our algorithm at any of these cells. The
algorithm proceeds to compute the depths of all cells by
traversing the planar graph determined by L starting
from an extreme cell (with depth zero) using the tech-
nique described above. The depth of each individual
cell is computed in O(1) time. Therefore, the traver-
sal takes time and space proportional to the number of
cells: ©(n?).

Finally, for each point ¢ in @ we apply a point lo-
cation algorithm to identify the cell in the arrangement
determined by L that contains ¢q. Kirkpatrick’s point lo-
cation algorithm can be implemented in a t-edge planar
subdivision with O(¢) preprocessing time, O(t) space,
and O(logt) query time [11]. In our case, t € O(n),
corresponding to ©(n?) cells in the planar subdivision
determined by L (the number of edges is also ©(n?)).
Therefore, Kirkpatrick’s point location algorithm can be
used to find the locations of each point in @ in O(n?)
preprocessing time, O(n*) space and O(klogn) query
time. The simplicial depths of all points in @ can be
computed in O(n* + klogn) time and O(n*) space.

Lemma 3 Given a set P of n points and a set QQ of k
query points in general position in R?, Algorithm S.III
computes SDp(q) for every ¢ € Q in O(n* + klogn)
total time and O(n* + k) space.

Lemmas 1-3 give:

Theorem 4 Given a set P of n points and a set Q of
k query points in general position in R?, the simplicial

depths of points in Q with respect to P can be computed
in O(min{knlogn,n? + nk,n* + klogn}) time.

3.2 Computing a Batch of Tukey Depth Queries

In this section, we describe two methods for computing
a batch of Tukey depth queries based on previous work
related to computing Tukey depth [17] and Tukey depth
contours [15].

3.2.1 Algorithm T.I

In R2, the Tukey depth of a point ¢ relative to a set
P of n points can be computed in O(nlogn) time [17].
Similar to Algorithm S.I in Section 3.1, a straightfor-
ward method for computing the Tukey depths of k query
point is to apply a Tukey depth algorithm iteratively for
each point of). This process take O(knlogn) time and
O(n) space to store the sorted order of P around each
point of Q.

Lemma 5 Given a set P of n points and a set QQ of
k query points in general position in R?, Algorithm T.I
computes TDp(q) for every g € Q in O(knlogn) total
time and O(n + k) space.

3.2.2 Algorithm T.II

Algorithm T.I is efficient when k is small relative to n,
but more efficient approaches are possible for larger val-
ues of k. Algorithm T.II begins by computing the Tukey
depth contours of P using the algorithm of Miller et al.
in O(n?) time and space [15]. Miller et al. showed how
to build a point location data structure on the contours
in O(n?) time to support O(logn)-time Tukey depth
queries. Therefore, the Tukey depths of k£ points can be
calculated in O(n? + klogn) time and O(n?) space.

Lemma 6 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm T.II
computes TDp(q) for every ¢ € Q in O(n? + klogn)
total time and O(n® + k) space.

Lemmas 5 and 6 give:

Theorem 7 Given a set P of n points and a set Q of k
query points in general position in R2, the Tukey depths
of points in Q with respect to P can be computed in
O(min{knlogn,n? + klogn}) time.

4 Depth of a Set of Query Points

We introduce definitions for the simplicial depth and
Tukey depth of a set @ of points relative to a set P of
points. As we discuss below, our new definitions differ
from previous definitions introduced by Barba et al. [3]
and Pilz and Schnider [16].

116

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

L] L]
o o o o o © °
L]
e o
L] L]
A B

Figure 1: Relative to the blue set, the green and red sets
have the same cardinal simplicial depth (Definition 2.2).
However, by Definition 4.1, the simplicial depth of the
green set is triple that of the red set. An analogous prop-
erty holds for Tukey depth: the green and red sets have
the same generalized Tukey depth (by Definition 2.1)
relative to the blue set, but their Tukey depths differ
(by Definition 4.2).

4.1 Simplicial Depth of a Set of Query Points

We define the simplicial depth of a set @ relative to a
set P as the normalized sum of the number of points of
@ contained in each simplex determined by points in P:

Definition 4.1 (Simplicial depth of a set of points)
Given a set P of n points and a set QQ of k points in
R?, the simplicial depth of Q relative to P is

‘Q| dlens, (5)

Ses

SD5(Q

where S denotes the set of (dil) closed simplicies, each
of which is the convex hull of d + 1 points from P.

SD%(Q) can be expressed as the average simplicial
depth of points in Q:

SDH(Q = a0 QI > SDp(q (6)

q€Q

A derivation of (6) is given in Appendix A. (6) implies
that SD%(Q) also has a natural probabilistic interpre-
tation. If ¢ is selected uniformly at random from @, the
expected value of the simplicial depth of ¢ relative to P
is SD%(Q).

Definition 4.1 differs from CSDp(Q) (Definition 2.2)
introduced by Barba et al. [3]. CSDp(Q) counts the
number of non-empty simplicies, which can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set @) can de-
termine the depth of @ relative to P. See Figure 1. On
the other hand, Definition 4.1 is a normalized sum of
the number of points contained in each simplex. Equa-
tion (6) also suggests a family of measures that can be
used to define the simplicial depth of a set () with re-
spect to a set P by substituting the average with another
summary statistic of the distribution of the depths of
points in Q. We discuss this briefly in Section 5.

We can compute SD}5(Q) by computing the simpli-
cial depth SDp(q) for each point ¢ € @, and taking the

117

average of these depth values. This can be achieved ef-
ficiently using the algorithms introduced in Section 3.1,
which gives the following corollary.

Corollary 8 Given a set P of n points and a set Q of
k points in general position in the plane, SD%(Q) can
be computed in O(min{knlogn,n? + nk,n* + klogn})
time.

As mentioned earlier, CSDp(Q) can be computed in
O(N7/310g°M) N) time, where N = n + k. By Corol-
lary 8, the simplicial depth, SD%(Q), introduced in this
paper can be computed asymptotically faster for any
values of n and k.

Next, we consider another generalization of simplicial
depth to sets, which we show is equivalent to Defin-
ion 4.1. For this, we introduce the normalized simplicial
depth (NSD) of a query point g relative to P as

SDP(Q)
=5 2 1@ S

Ses

NSDp(

that is, it is the proportion of simplices from S that con-
tain ¢. Interestingly, this normalized simplicial depth
can also be interpreted as the probability that the query
point ¢ lies in a simplex whose vertices are selected at
random from P or, equivalently,

P(q € 5), (8)

where S is selected uniformly at random from S.
Liu [14] argued that this is an estimator of the prob-
ability that the query point ¢ lies in a simplex formed
from d + 1 independent random points selected from a
common distribution F in R?.

Now, consider generalizing the idea described above
by selecting a simplex at random from S, but by in-
stead focusing on the expected number of points of Q
that lie in that simplex. This depth measure, which we
denote ERSp(Q) (Expected number of points of @ in
a Random Simplex from P) is then

NSDp(q) =

ERSp(Q) = E[Yo(5)], (9)

where S is again randomly selected from S, and where
the random variable Y5 (S) denotes the number of points
of @ that lie inside S. This is a reasonable measure
of the depth of @ with respect to P, has an elegant
and intuitive interpretation, and reduces to (8) when
() contains a single point. Indeed, when () contains a
single point, E[Y(S)] = E[I(q € S)] = P(q € S), the
normalized simplicial depth of ¢. We now justify that
ERSp and SD} are equivalent measures of depth.

The number of points of () that lie inside a simplex
S constructed from points of P can be expressed as

Yo($) =) I(a€S),

q€Q

(10)

34" Canadian Conference on Computational Geometry, 2022

and takes values in {0,1,...|Q|}. Also, the proportion
of simplices in S that contain exactly y points of @ is

s () \S|Z [Yo(s (11)

seS

for y =0,1,...,|Q|. This also corresponds to the prob-
ability that the simplex constructed from three points
selected at random from P contains exactly y points of
Q.

In this context, the expectation of Yg(S), which cor-
responds to the mean of the probability distribution in
(11), can be shown to satisfy (see Appendix A)

S|
Q|

From this, the simplicial depth of (), as defined in Defi-
nition 4.1, is equivalent to ERSp(Q), the expected num-
ber of points in) that lie a randomly selected simplex
constructed from points of P, as the two depth measures
are always proportional to each other.

We conclude this section by highlighting how CSDp,
defined in (4) as the number of simplices constructed
from points of P that contain at least one point of @,
relates to the discussion above. Specifically, it is possible
to write (see Appendix A)

CSDp(Q) = S| B(Yo(S) > 0). (13

)
This implies that, as a measure of depth, CSDp(Q)
is equivalent to P(Yo(S) > 0), the probability that a
random simplex contains at least one point of Q.
the case where () contains a single point, this further
reduces to P(Yg(S) > 0) = P(¢ € S) and justifies that
CSDp(Q) is also a direct generalization of simplicial
depth that applies to sets, but differs from ERSp(Q).

SD5(Q) = 2 ERSp(Q). (12)

4.2 Tukey Depth of a Set of Query Points

We define the Tukey depth of a set @ relative to a set
P as follows:

Definition 4.2 (Tukey depth of a set of points)
Given a set P of n points and a set Q of k points in
R?, the Tukey depth on relative to P is

TD5(Q = a0 %TDP (14)

As with (6), (14) corresponds to the average Tukey
depth of points in @ relative to P, and carries the same
probabilistic interpretation as for simplicial depth: (14)
corresponds to the expected depth of a point selected
uniformly at random from Q.

To compute TD}:(Q), we can compute the Tukey
depth of each point in @ relative to P using the algo-
rithms introduced in Section 3.2, and take the average
of those depth values. Therefore, we have the following
corollary.

Corollary 9 Given a set P of n points and a set Q of
k points in general position in the plane, TD%(Q) can
be computed in O(min{knlogn,n? + klogn}) time.

As mentioned in Section 2.3, Pilz and Schnider [16]
introduced the generalized Tukey depth of a set () rela-
tive to a set P, GTDp(Q). This definition can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set @) can de-
termine the depth of @ relative to P. See Figure 1. Pilz
and Schnider did not provide an algorithm to compute
GTDp(Q), but based on Definition 2.1, a straightfor-
ward iterative approach for computing GT'Dp(Q) would
require O(n3+k3) time. This time can likely be reduced
to O(n? + k?) time by constructing the arrangement of
lines determined by pairs of points in QU P, and travers-
ing the arrangement to examine all possible subsets of
QU P contained in a half-plane; traversing from one cell
in the arrangement to a neighbouring cell corresponds
to adding or removing O(1) points from Q U P.

5 Discussion and Directions for Future Research

In this paper, we introduced new definitions for the sim-
plicial depth and Tukey depth of a set @) of points rel-
ative to a set P of points in R?, and we presented algo-
rithms for computing these in R2.

This work suggests various possible generalizations of
simplicial depth and Tukey depth to measure the depth
of a query set Q. As the computation of these depth
measures involves computing the depth of each point in
Q, we could instead define a depth measure as a func-
tion of a different summary of the distributions of the
simplicial depths and Tukey depths of individual points
of @) relative to P. For instance, we could summarize
the distribution of depths using a median, a minimum,
a maximum, or a measure of spread, such as variance,
range, skewness, or quantiles of this distribution. These
different summaries of the constructed depth distribu-
tions over the points of Q can all be computed in the
same time and space complexities as in Corollaries 8
and 9. One could also define the depth of a set using
another depth for individual points altogether.

Future work is warranted to investigate the character-
ization of these depth measures of sets of points. SD}
and T'D} are invariant under affine transformations and
vanish at infinity. 7D} is consistent across dimensions.
Other properties such as convexity, stability, and ro-
bustness remain to be analyzed, requiring appropriate
generalizations for the depth of a set of points. Finally,
some questions remain unanswered with respect to the
possibility of improving the running times of the algo-
rithms presented in Theorems 4 and 7. In particular,
can we show corresponding lower bounds on the worst-
case running time expressed in terms of n and k?

118

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

References

1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

G. Aloupis, C. Cortés, F. Gémez, M. Soss, and G. Tou-
ssaint. Lower bounds for computing statistical depth.
Computational Statistics & Data Analysis, 40(2):223—
229, 2002.

G. Aloupis, S. Langerman, M. Soss, and G. Tous-
saint. Algorithms for bivariate medians and a Fermat-
Torricelli problem for lines. Computational Geometry,
26(1):69-79, 2003.

L. Barba, S. Lochau, A. Pilz, and P. Schnider. Sim-
plicial depth for multiple query points. In Proc. Eu-
ropean Workshop on Computational Geometry, pages
29:1-29:7, 2019.

D. Bertschinger, J. Passweg, and P. Schnider. Tukey
depth histograms. arXiv preprint arXiv:2103.08665,
2021.

B. Chagzelle, L. J. Guibas, and D.-T. Lee. The power
of geometric duality. BIT Numerical Mathematics,
25(1):76-90, 1985.

S. Durocher, R. Fraser, A. Leblanc, J. Morrison, and
M. Skala. On combinatorial depth measures. Interna-
tional Journal of Computational Geometry & Applica-
tions, 28(04):381-398, 2018.

H. Edelsbrunner and L. J. Guibas. Topologically sweep-
ing an arrangement. Journal of Computer and System
Sciences, 38(1):165-194, 1989.

H. Edelsbrunner and E. Welzl. Constructing belts in
two-dimensional arrangements with applications. STAM
Journal on Computing, 15(1):271-284, 1986.

J. Gil, W. Steiger, and A. Wigderson. Geometric me-
dians. Discrete Mathematics, 108(1-3):37-51, 1992.

S. Khuller and J. S. Mitchell. On a triangle counting
problem. Information Processing Letters, 33(6):319—
321, 1990.

D. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal on Computing, 12(1):28-35, 1983.

S. Langerman and W. Steiger. Optimization in arrange-
ments. In Proc. Symposium on Theoretical Aspects of
Computer Science, pages 50-61. Springer, 2003.

D. T. Lee and Y.-T. Ching. The power of geomet-
ric duality revisited. Information Processing Letters,
21(3):117-122, 1985.

R. Y. Liu. On a notion of data depth based on ran-
dom simplices. The Annals of Statistics, pages 405—414,
1990.

K. Miller, S. Ramaswami, P. Rousseeuw, J. A. Sell-
ares, D. Souvaine, I. Streinu, and A. Struyf. Efficient
computation of location depth contours by methods

of computational geometry. Statistics and Computing,
13(2):153-162, 2003.

A. Pilz and P. Schnider. Extending the centerpoint
theorem to multiple points. Leibniz International Pro-
ceedings in Informatics, 123:53-1, 2018.

119

[17]

[18]

[19]

P. J. Rousseeuw and I. Ruts. Bivariate location depth.
Journal of the Royal Statistical Society. Series C (Ap-
plied Statistics), 45(4):516-526, 1996.

M. I. Shamos and D. Hoey. Geometric intersection
problems. In Proc. Symposium on Foundations of Com-
puter Science, pages 208-215. IEEE, 1976.

J. W. Tukey. Mathematics and the picturing of data.
In Proc. International Congress of Mathematicians, vol-
ume 2, pages 523-531, 1975.

34" Canadian Conference on Computational Geometry, 2022

A Proofs

In this Appendix we include complete details of proofs and
arguments omitted from the main text due to space con-
straints.

Derivation of Equation (6): Starting with Definition 4.1,
and noting that

RQNS|=> Ige9),

q€Q

we see that

as claimed.

Derivation of Equation (12): To avoid confusion in what
follows, we reserve S to denote a randomly selected simplex
and use s otherwise. First, we note that

Q|

E[Yo(S)] =Y yPs(y)

y=0

= EZYQ(S). (15)
Now, using (10), we can further simplify (15) to get

E[Yo(S)] = |?1\ S S Iges)

s€ES qeQ

PN

qeQ seS

= 5 2 5Dr(0)

qeQ
_ el

=5l SDp(Q). (16)

Finally, (9) and (16) together imply that

ERSp(Q) = %SD;@),

which is equivalent to (12).

Derivation of Equation (13): First, we write
CSDp(Q) = > I[Ya(s) > 0].
s€S

Then, making use of (11), derivations similar to those pro-
vided above allow one to see that

QI
CSDp(Q) = ZZI[YQ(S) =y
seSy=1
QI
= ZZI[y > 0]1[Yo(s) =y
s€S y=0
Q|
=> Iy >0]> I[Yo(s) =]
y=0 seS
Q|
=81 Iy > 0]Ps(y)

= [S|E[I(Yo(S) > 0)]
= |S[P(Yo(S) > 0),

as claimed.

120

	001b copyright
	002 sponsors
	Blank Page

	003 preface
	004 pc
	005 reviewers
	005b local organization
	006 toc
	007 all-papers-reduced-numbered
	paper_51
	Introduction
	Related Work
	A New Framework for Evolving Data

	Problem Formulation
	Probabilistic Tools
	Lower Bounds on the Distance
	Algorithm
	Analysis
	Random Evolver and Speedup 2
	Adversarial Evolver and Speedup > 2
	Adversarial Evolver and Speedup < 2

	Concluding Remarks

	paper_12
	Introduction
	Preliminaries
	Nonexistence of Small Common Unfoldings for Q0 and Q1
	Gluing Map
	standard
	Checking Polygon Closure

	Computational Experiment
	Conclusion
	Appendix

	paper_30
	paper_63
	paper_52
	paper_60
	paper_21
	paper_35
	paper_27
	paper_4
	paper_34
	Introduction
	Preliminaries
	Inscribed histogons
	Largest inscribed unit histogon
	Largest inscribed histogon of a fixed width
	An Lg-time algorithm
	An Lg-time algorithm

	Largest inscribed histogon

	Smallest circumscribed histogon
	Discussion

	paper_24
	paper_25
	paper_39
	Introduction
	Preliminaries
	Embedding Fixed-Angle Orthogonal Equilateral Closed Chains is Strongly NP-complete
	HP Optimal Folding a Fixed-Angle Orthogonal Equilateral Open Chain is Strongly NP-complete
	Packing Fixed-Angle Orthogonal Equilateral Open Chains into Squares is Strongly NP-complete

	paper_16
	Introduction
	Background
	Flat tori
	Delaunay triangulations and flip algorithms
	Stereographic projection and Delaunay flips

	Lower bound
	Upper bound
	Statement of Proposition 4
	Proof of Proposition 4
	Proof of the upper bound

	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	paper_28
	paper_43
	paper_31
	Introduction
	Iterated interval exchange transformations
	Partial integer interval exchange
	Converting reflection to partial integer interval exchange
	The main result

	paper_32
	Introduction
	Shapes that can shrink into themselves
	An instructive example
	A locked surface
	Conclusions and open problems

	paper_33
	Introduction
	Model of computation
	The orthogonal Dehn invariant
	Invariance of the Dehn invariant
	The rank of the Dehn invariant
	Geometric realizability
	Dissectability
	Putting the pieces together
	Dissection into prototiles
	Conclusions

	paper_58
	paper_5
	paper_47
	paper_61
	Introduction
	Inspiration and Outline

	Megalit: Gameplay and Decision Problem
	Ramunto's Extraction Algorithm
	Extractable Slabs
	Pizza Oven Template
	Extraction Algorithm
	Flattening Goal to Target Location Goal

	A Toy Problem
	Drop-Ladders
	Drop-Ladders is NP-Complete
	Application: Popils is NP-Hard

	Reduction from 3-SAT
	Primitive Gadgets: Tables and Chunks
	Variable Towers
	Scaffolding

	Proof that Megalit is NP-Hard
	Open Problems

	paper_7
	paper_19
	paper_62
	Introduction
	Related Work
	Contribution

	Online Square Packing
	Item Classification
	Packing Regular Items
	Packing Tiny Items
	Analysis

	Online Tan Packing
	Half-Square-Rotate Algorithm
	Packing Regular Items
	Packing Tiny Item
	Analysis
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Lemma 5
	Proof of Lemma 6

	paper_65
	paper_45
	paper_23
	Introduction
	Previous works
	Our results

	Preliminaries
	Maximum independent chord set of a circle graph
	Minimum partition algorithms by Liu and Ntafos

	Minimum uniformly monotone partition
	Maintaining the circle graph
	With no Steiner points
	With boundary Steiner points
	With boundary and interior Steiner points

	Approximation algorithms

	paper_18
	paper_22
	Introduction
	1.5D Terrains
	Local Extrema
	Coplanar Features
	An algorithm for a strip triangulation
	NP-hardness for the general setting

	Surface Area
	Min Max Steepness
	Conclusion

	paper_20
	paper_42
	Introduction
	Results
	Definitions
	No holes
	Wide holes
	Cubic holes
	Thin horizontal holes
	Separable rectangular holes

	Conclusion

	paper_57
	Introduction
	Preliminaries
	DC-NCM for points in Convex Position
	Concluding Remarks

	paper_50
	paper_2
	Introduction
	Definitions and Terminology
	Approximating L in High Dimensions
	A (1,2)-approximation Algorithm
	A (2,1)-approximation Algorithm
	Hardness of Approximation

	Approximating L1 in High Dimensions
	A (d,2)-approximation Algorithm
	A (1,2d)-approximation Algorithm
	A Better Approximation Algorithm
	How to Find OPT ?

	Conclusion

	paper_38
	Introduction
	Related Work

	Flattening with Perimeter Q
	Tetrahedron
	Cube
	Octahedron
	Dodecahedron and Icosahedron
	Conjecture Revisited

	Open Problems

	paper_10
	paper_49
	paper_59
	Introduction
	Two Combinatorial Lemmas
	Lower Bounds for Complete Bipartite Graphs
	Biplanar Crossing Number of Complete Graphs
	k-Planar Crossing Number of Kn and Kp,q
	Conclusion

	paper_14
	Introduction
	Notation
	Describing Faces and Assigning Labels
	Describing Moves and Paths

	Simplifying the Problem
	Face Saving
	Quadrant Mapping
	Reductions
	Displacement Types

	Large displacements
	Small Displacements
	Breadth First Search Approach
	Systematic Approach
	Symmetry
	x' = 0 and y' = 0
	x' 4 ()
	y' = 0
	 y' = 1
	y' = 2
	y' = 3
	Putting the cases together

	Finalized Approach
	Future Work
	Acknowledgements

	paper_26
	Introduction
	Axiomatic Theory
	Elementary Properties
	Swirls
	Swirling Diagrams
	Uniform Diagrams
	Conclusions

	paper_13
	Introduction
	Background, Definitions, and Prior Work
	Sample Complexity
	Methods of Bounding VC Dimension
	Algorithms in Real Algebraic Geometry

	New VC Dimension Bounds
	Upper Bound of VC Dimension for Inflated Polynomials
	Lower Bound of VC Dimension for Inflated Polynomials via Interpolation

	Application in Robust Adversarial Learning
	Conclusion & Discussion
	Additional Implications

	paper_6
	Introduction
	Related Work
	Preliminaries
	Anchor Structures and Steiner Triangles
	Basic Properties of Anchors
	Steiner Triangle for Three Anchors
	One and Two Anchors

	Evolution of the Budgeted Steiner Network
	With Steiner Point
	No Steiner Point

	Conclusion and Discussions
	Appendix

	008 author_index
	001 cover_page.pdf
	Blank Page

