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Online Square Packing with Predictions*

Stephane Durocher!

Abstract

Square packing is a geometric variant of the classic
bin packing problem, which asks for the placement of
squares of various lengths into a minimum number of
unit squares. In this work, we study the online variant
of the problem in which the input squares appear se-
quentially, and each square must be packed before the
next square is revealed. We study the problem under
the prediction setting, where the online algorithm is en-
hanced with a potentially erroneous prediction about
the input sequence. We design an online algorithm that
receives predictions concerning the sizes of input squares
and analyze its consistency (the competitive ratio as-
suming no error in the predictions) and robustness (the
competitive ratio under adversarial error). In particu-
lar, our algorithm has consistency 1.779 and robustness
at most 5.89. These results show improvements over the
best previous algorithm [24], designed for perfect pre-
dictions, with a consistency of 1.84 and a robustness of
at least 21.

1 Introduction

Given a multiset of n square items, each with a fixed
sidelength in (0, 1], the square packing problem seeks
to assign each item to a unit square bin, such that the
number of bins is minimized. We consider orthogonal
packings, in which each item’s interior is contained in
the interior of its assigned bin, each item’s edges are
oriented parallel to its assigned bin’s edges (axis paral-
lel), and no two items’ interiors in the same bin inter-
sect (pairwise interior-disjoint). We refer to a square’s
sidelength as its size. This is a geometric variant of
the classic bin packing problem. Similarly to the bin
packing problem, square packing is NP-hard, but ad-
mits an Asymptotically Polynomial-Time Approxima-
tion Scheme (APTAS) [10].

We consider online square packing, in which input
square items are revealed one at a time in an online
sequence. Upon receiving each item, an algorithm must
assign it to a bin with sufficient space immediately, with-
out any knowledge about future items. Bin assignments
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are irrevocable. The standard measure for evaluating
an online algorithm is the asymptotic competitive ratio,
which compares the cost of the online algorithm against
the optimal (offline) cost in the worst case. For the
online square packing problem, the asymptotic compet-
itive ratio of an online algorithm ALG is

|ALG(0)]

li —_
im sup Or(o)|’

n=90 5:lo|=n
where | ALG(0)| denotes the number of bins used by
ALG to pack the input sequence o, and | OpT(0)| de-
notes the minimum number of bins required by any (op-
timal) packing of o. We refer to asymptotic competi-
tive ratio simply as competitive ratio. No online square
packing algorithm can achieve a competitive ratio bet-
ter than 1.75 [8], while the best previous algorithm has
a competitive ratio of at most 2.0885 [20].

Square packing has been studied under the advice set-
ting, which relaxes the assumption that the algorithm
has no advance information about the input sequence,
and provides the online algorithm access to error-free in-
formation about the input sequence called advice before
packing the first item in the input sequence [18]. The
objective is to quantify trade-offs between the compet-
itive ratio and the number of bits of advice. For square
packing, there is an online algorithm that achieves a
competitive ratio of at most 1.84 with O(logn) bits of
advice [24]. Unfortunately, this result has little practi-
cal significance, partially because the advice is assumed
to be error-free.

In this paper, we study the online square packing prob-
lem under a recently developed and more practical
model, which seeks to leverage predictions about the
input sequence [28]. Specifically, the algorithm can ac-
cess some machine-learned information about the input
sequence. Unlike with advice, predictions may be erro-
neous. Moreover, the predictions should be efficiently
learnable (e.g., via sampling the input sequence). The
objective is to design an algorithm that performs well
if the prediction is accurate while maintaining a good
competitive ratio even when the prediction is highly er-
roneous (i.e., adversarial). We refer to the competi-
tive ratio of an online algorithm with an error-free pre-
diction as its consistency and to the competitive ratio
with an adversarial prediction as its robustness [28].
Several online optimization problems have been stud-
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ied under the prediction model, including bin pack-
ing [3, 4], scheduling [2, 12, 30, 32], knapsack [11, 23, 33],
caching [28, 31], matching [5, 25, 26], and various graph
problems [7, 9, 14, 15, 19]. See also the survey by
Mitzenmacher and Vassilvitskii [29] and the collection
at [1].

1.1 Contribution

We study the square packing problem under a set-
ting where the online algorithm exploits natural pre-
dictions concerning the frequency of item sizes. We
classify square items based on their sizes and con-
sider predictions on the number of items within cer-
tain classes. To be more precise, predictions specify
the number of items in the input sequence with side-
lengths in the ranges (2/3,4/5], (3/5,2/3], (11/20,3/5],
(1/2,11/20], and (1/3,2/5]. For an input sequence of n
items, these predictions can be encoded in O(logn) bits,
and they are Probably Approximately Correct (PAC)-
learnable [13]. We design an algorithm, named Reserve-
and-Pack (RAP), which makes use of the above predic-
tions. Our results can be summarized as follows:

e We show that RAP has a consistency of 1.779 (The-
orem 6). In other words, when predictions are
error-free (they are advice), the competitive ratio
of RAP is at most 1.779. This result is an improve-
ment over the algorithm of [24], Almost-Online-
Square-Packing (AospP), which has a consistency
of 1.84. Both algorithms use a prediction (advice)
of size O(logn).

e We show that the robustness of AOSP is at least 21
(Theorem 7). Moreover, we prove that the robust-
ness of RAP is at most 100/17  5.89 (Theorem 8).
In other words, RAP dominates AOSP regarding
both consistency and robustness. This is due to
its improved item classification and increased flex-
ibility in adapting to patterns in the input rather
than overly relying on the predicted patterns.

2 Reserve and Pack (RAP) Algorithm

In this section, we present our algorithm Reserve-And-
Pack (RaP). RAP works by classifying items based
on their sizes and receiving predictions about the fre-
quency (number) of items from certain classes with
larger sizes. The algorithm proceeds by reserving a
placeholder for each of these items in anticipation of
their arrival. We point out that AOSP receives sim-
ilar predictions and also uses placeholders [24]. RAP
improves over AOSP by refining the item classification,
which results in improved consistency. In addition, RAp
only reserves space for certain items of larger size, unlike
Aosp, which forms an offline packing of the predicted
input and reserves placeholders for all items (except for

Class Interval Class Interval

la (4/5, 1] 2a (2/5, 1/2]

1b (2/3, 4/5] 2b (1/3, 2/5]

1c (3/5, 2/3] 3-29  (1/i+1,1/i]

1d (11/20,3/5] 30 (0, 1/30]
]

le (1/2,11/20

Table 1: Item classification used by RAp

“tiny” items). In other words, RAP’s reliance on predic-
tion is minimal compared to AOSP. As a result, it has
superior robustness in the case of erroneous predictions.

Item Classification. RAP classifies items into 30
classes based on their sizes. For i € [1..29], items
with size in the range (Z_%l, 1] belong to class i. Items
with sizes in the (0,1/30] form the 30th class and are
called tiny items. Items of Class 1, which are larger
than 0.5, are called large items and are further divided
into 5 subclasses 1la, 1b, 1¢, 1d, and le with sizes corre-
sponding to the intervals (£,1], (2,2], (2, 2], (45, 2],
and (3, 35|, respectively. Similarly, items of Class 2
are called medium items and are further divided into
two subclasses 2a and 2b with respective associated in-
tervals (%, %} and (%, %} Table 1 summarizes defined
classes and their corresponding size intervals.

In addition to items, each bin of RAP has a type, which
is determined by the class of items it contains. Specif-
ically, LM-bins contain a large or a medium item, say
of type ¢, and smaller items of the same type t > 3,
in which case the bin is referred to as a (¢,¢) bin. For
example, when ¢ = 2b and ¢t = 10, the LM-bin is of type
(2b,10) and only contains medium items of type 2b and
small items of type 10 (see Figure 1c). When the large
item is of type ¢ = le and the small item is of type
t = 4, an LM-bin is called a critical bin and is allowed
to contain items of a third type t’, in which case it is
referred to as a (le, 4,t') bin. In addition to LM-bins,
RAP maintains harmonic bins that only include items
of the same type, say t, in which case the bin is said to
be a harmonic-t bin. A harmonic-¢ bin is said to be a
large harmonic bin if t is a large or medium type and
small harmonic bin otherwise. We note that large har-
monic bins may change their type to become LM-bins
(when a small or tiny item is placed in them).

Preprocessing. RAP relies on predictions about the
number of items belonging to large and medium
types. Specificly, RAP uses a frequency vector f =
(f1bs f1e, f1ds f1es fob), where f; is the predicted num-
ber of class t items in the input sequence o. Note that
the predictions do not concern la and 2a items as they
are “easy to pack”;i.e., they can be packed into almost
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full bins without involving other items, as will be clar-
ified later. Before packing the input sequence, for each
predicted frequency f;, RAP creates f; placeholders of
class t, that is, a reserved space of equal size to the
maximum size of class ¢t items. RAP assigns placehold-
ers of each class in separate bins, while groups of four 2b
placeholders share one bin. These bins are “virtually”
open, and they contribute to the cost of RAP only after
an item is placed into them. We assume placeholders
are positioned on the top-left of their respective bins.

Online Packing. When possible, RAP places large and
medium items in placeholders reserved in the prepro-
cessing step. This is done through a procedure called
AssiGNLM that we will describe shortly. Small and
tiny items, however, are packed into designated contain-
ers that are formed and placed in an online manner. A
container is a dedicated space that can accommodate
either a single small item or multiple tiny items. Upon
the arrival of a small or tiny item of class ¢, it is placed
in an available container of the same class using the cor-
responding ASSIGNSMALL or ASSIGNTINY procedures,
which will also be described later. If no such container
exists, RAP creates a new set of class ¢ containers using
a subroutine called RESERVE.

The RESERVE subroutine, for any given class ¢ > 3
(small or tiny), first attempts to place containers of class
¢ in a critical bin, and if not possible, a large harmonic
bins using the L-shape tiling of [24]. This involves plac-
ing containers of type ¢ in the non-reserved space of
the bin in a greedy manner in columns and rows that
collectively form an “L”-shape. If no critical or large
harmonic bin is available, it opens a new small har-
monic bin of type c¢. More precisely, RESERVE takes the
following steps to create new containers of type c:

1. If ¢ > 5 and there is a critical bin B (i.e., a bin of
type (le, 4)), add containers of type ¢ to B, using L-
shape tiling, and update the type of B to (le, 4, c).

2. If a large harmonic bin B of type ¢ with a reserved
space of r is available, and 1/¢ < 1—r, use L-shape
tiling to place containers of class ¢ to B, and update
the type of B to (¢, c). Here, “available” means that
B does not contain any other containers.

3. Otherwise, open a new harmonic bin of type ¢ and
place ¢? containers of class ¢ into it.

RAP consists of three main components: ASSIGNLM,
ASSIGNSMALL, and ASSIGNTINY, packing correspond-
ing items of large/medium, small, and tiny classes.

e ASSIGNLM assigns each la, or four 2a items into
a single bin. In addition, it packs an item of class
c € {1b,1¢, 1d, 1e, 2b} into any available placeholder
of class ¢. If no placeholder is available (due to a
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prediction error), it opens a new bin and declares
it as a large harmonic bin of type c.

e ASSIGNSMALL packs small items of class ¢ into the
next empty container of size 1/¢. If no such con-
tainer is available, it creates a new set of containers
by invoking the RESERVE subroutine.

e ASSIGNTINY places tiny items into tiny containers.
A tiny container is of size 1/5 and is dedicated to
tiny items. As before, if no tiny container exists,
ASSIGNTINY first creates a new set of tiny con-
tainers by calling RESERVE. We borrow the algo-
rithm of [22] to pack tiny items into tiny containers.
The algorithm repeatedly splits tiny containers into
smaller sub-containers to pack a tiny item of size
s into a sub-container of size 1/2%, where k is the
largest integer such that s < 1/2F.

Figure 1 shows examples of bins packed by RaAp. In
particular, Figures la and le are bins that used to be
critical and had their types changed after receiving ad-
ditional small containers.

3 Consistency Analysis

Overview. In this section, we analyze the consistency
of RApr. First, we use the following lemma to show
that all tiny containers, except possibly the last one,
are almost full.

Lemma 1 [22] Consider the square packing problem
where all items are smaller than or equal to 1/M for
some integer M > 2. There is an online algorithm that
creates a packing in which all bins, except possibly a
constant number of them, have an occupied area of size

at least (M2 —1)/(M +1)°.

In our context, tiny items of size at most 1/30 are packed
into containers of size 1/5. With a scaling argument, the
above result applies with M = 6. Another ingredient in
our proof is a lower bound for the number of containers
of a given class placed into a bin using L-shape tiling.
In particular, we will use the following lemma:

Lemma 2 Consider a square space S of sidelength s €
{0.75,1}, from which a square space of size r < s is
reserved. It is possible to pack 2ki — k2 containers of
size ¢ in the remainng area of S, where i = |s/c] and

k= (s —r)/e].

Proof. Consider an empty bin of size s; it fits i?> con-
tainers of size ¢, where i = |s/c|. However, (i — k)2 of
these containers overlap with the reserved space, where
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Figure 1: FExamples of possible bin types of RAP.
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(d) small harmonic-4

(g) (16,9)

(h) large harmonic-2a

The light-colored areas represent reserved spaces, while

dark-colored areas show the minimum occupied area by items of each specified type. Blue areas are placeholders,
while green and purple areas are containers. Purple containers are extra containers added to critical bins.

k= |(s—1r)/c|. It implies that there is room to add

Ls/e)® = (ls/c) = (s = )/c))?
=i?— (i — k)
= k(2i — k)
= 2ki — k?

containers to this bin which completes the proof. O

When using L-shape tiling to place containers in large
harmonic bins (packing green containers in Figure 1), we
have s = 1. When using L-shape tiling to place small
containers in critical bins (packing purple containers in
the figure), we have s = 0.75. Table 2 in Appendix
presents the minimum occupied area of all LM bins by
applying Lemmas 1 and 2.

To prove an upper bound of 1.779 for the consistency of
RAP, we consider three possibilities for the final pack-
ings of RAP. The first case is when all bins in the final
packing contain a large or medium item. In other words,
no small harmonic bin is opened. In this case, we use
a standard weighting technique [6] to prove the upper
bound for the competitive ratio (Lemma 3). The sec-
ond case is when the final packing has a harmonic bin
of class ¢ > 5. In this case, we show that all bins are
sufficiently full to prove the upper bound (Lemma 4).
Finally, the third case concerns situations in which there
is no harmonic bin of class ¢ > 5 in the final packing.
In this case, we use a more complicated weighting argu-

ment that involves solving an integer program to prove
the upper bound (Lemma 5).

Case I: No small harmonic bin. Suppose no bin is
opened for containers of tiny or small items. We assign
a weight of w(z) to an item of size x, and prove that
(i) the total weight of items in any bin of RAP, except
possibly a constant number of them, is at least 1, while
(i) the weight of items in any bin of OPT is at most
«. Therefore, if W denotes the total weight of all items
in the input, we can write RAp(c) < W + ¢, for some
constant ¢, while OPT(0) > [W/a], which yields to a
competitive ratio of at most a.

Lemma 3 Suppose there is no small harmonic bin of
class ¢ > 3, in the final packing of Rap. Then, the
competitive ratio of RAP is at most 1.75.

Proof. We assign to all items of class ¢ > 3 a weight of
0. Large items have a weight of 1, and medium items
have a weight of 1/4. All bins in the final packing of
RAP, except possibly two of them, either contain a large
item or four medium items. Therefore, all bins opened
by RAP have a total weight of at least 1. It follows
that |RAP(0)] < W, where W is the total weight of
all items in o. On the other hand, a bin of OPT(0)
may contain three medium and one large item, e.g.,
an item of size 0.5 + € and three items of size 0.5 — e.
Moreover, no more than one large item and four medium
items fit into the same bin, giving a maximum total
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weight of 1.75 for items in any bin of OpT. Therefore,
| OpT(0)| > W/1.75, resulting in a competitive ratio of
at most 1.75 for RAP. O

Case IlI: There is a small harmonic bin of type ¢ > 5.
Suppose there is at least one small harmonic bin of type
t > 5 in the final packing. We show that all opened bins,
except possibly a constant number of them, have an
occupied area of at least 9/16, which indeed guarantees
a competitive ratio of at most 16/9.

Lemma 4 Assume there is a harmonic-t bin in the fi-
nal packing of RAP, for somet > 5. Then, the occupied
area in all bins, except possibly a constant number of
them, is at least 9/16.

Proof. We begin by observing that large harmonic bins
with an item of Class 1a or four items of Class 2a have an
occupied area of at least 16/25 = 0.64. Next, we show
that the final packing of RAP contains no large harmonic
or critical bins. For the sake of contradiction, suppose
there is a large harmonic or critical bin B of type ¢, and
note that B receives a placeholder in the preprocessing
step. Therefore, before opening small harmonic bins,
specifically t-harmonic bins, RESERVE must use L-shape
tiling to place containers of class ¢ in B. This would
change the type of B to ({,t), contradicting its final
type being a large harmonic bin of type ¢. We conclude
that the final packing of RAP only contains LM bins
and small harmonic bins.

Note that RESERVE procedure adds new containers to
one bin upon each call, and it is only invoked once there
are no empty containers left for an arrived item. It
implies there is at most a constant number of empty
containers at any time during the execution of the algo-
rithm. Therefore, harmonic bins of type ' > 3, except
possibly a constant number of them (which have empty
containers), each contains t'? items of class t and a min-
imum occupied area of at least t'2/(t' + 1)2 > 9/16.
Similarly, by Lemma 1, each tiny bin has a minimum
occupied area of 35/49 > 9/16. Finally, Lemmas 1 and
2 show that all LM-bins, except those with empty con-
tainers, each has a minimum occupied area of at least
9/16, as reported in Table 2 [Appendix]. Therefore, all
bins in the final packing of RAP, except possibly a con-
stant number of them, have a minimum occupied area
of at least 9/16. O

Case IlI: All small harmonic bins are of Class 3 or 4.
We consider the case where there is no small harmonic
bin of type ¢ > 5 in the final packing of RAP, while there
is a small harmonic of Type 3 or 4. In this case, there
are critical bins in the packing, and not enough small
items of class t > 5 were revealed to cover the “wasted”
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space in these critical bins. Similar to Case I, we use a
weighting argument to prove the following lemma.

Lemma 5 Assume there is no small harmonic bin of
type t > 5 in the final packing, while there is a small
harmonic-t' bin, where t' < 5. Then, the competitive
ratio of RAP is at most 1.779.

Proof. We assign a fixed weight to all items of the same
class except for tiny items, which receive a weight pro-
portional to their sizes. We define w = (wy, ..., ws4),
where w; is the weight assigned to items of (sub)class
i < 34. Additionally, we assign a weight of w(z) =
d x s(x)? to a tiny item x, where s(x) is the size of x
and d is a fixed constant called the density of tiny items.
The specific weights are specified in Table 3 [Appendix].
These weights are defined in a way to guarantee a to-
tal weight of at least 1 for all bins in the final packing,
except possibly a constant number of them. We use an
integer program to prove an upper bound on the weight
of bins in OPT. Let t = (t1,...,t35) denote the max-
imum size of items in each class, in decreasing order;
that is, for i« < 7, t; denotes the maximum size of large
or medium items of subclass ¢ and, for j > 7, t; denote
the maximum size of items of class j — 5. Let z; denote
the number of items of class 7 in a bin, say B, packed
by OPT. To maximize the weight of the items in B, we
can write the following integer program:

maximize:
34 34
! :Zwi-xi—l-d- (1 —Zmi-t?+1>
i=1 i=1
subject to:
34
D mitf, <1 (1)
i=1
34

D ltivr - (w+1))* 2 <w?, Vue{l,...,60} (2)
=1
r; >0and z; € Z ,

Vie{l,...,34}

The first component of the objective function is the total
weight of all non-tiny items, and the second is an upper
bound on the weight of all tiny items in B. Constraint 1
ensures the total area of non-tiny items of B does not
exceed 1, and Constraint 2 ensures all items fit into B
without overlap. This constraint must hold because,
for any integer v > 1, a bin cannot contain more than
u? squares of size above %H Figure 2 represents the
optimal solution to the integer program resulting in a
1.779 upper bound on « which completes the proof. O
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Figure 2: The packing that maximizes the total weight
of items in a bin of OPT, as discussed in Lemma 5

Wrapping up. Our results imply the following upper
bound for the consistency of RAP.

Theorem 6 RAP has a consistency of at most 1.779.

Proof. Lemmas 3 and 4 show that the competitive
ratio is at most 1.779 in Cases I and III. In case II,
Lemma 5 shows that RAP opens at most 16W/9 + ¢
bins, where W is the total area of all items, and c is
a constant. Given that OPT opens at least W bins,
the competitive ratio, in this case, is at most 16/9 <
1.779. O

4 Robustnes Analysis

In this section, we study the robustness of online square-
packing algorithms. We first present a lower bound on
the robustness of the previously proposed algorithm,
Aosp of [24]. AosP forms an offline packing of predicted
frequency to reserve a placeholder for all non-tiny items.
Therefore, AOSP is overly reliant on the correctness of
the predictions. In particular, one can generate adver-
sarial inputs, formed only by tiny items, in which all
placeholders of AOSP remain empty.

Theorem 7 The AOSP algorithm of [24] has a robust-
ness of at least 21.

Proof. We show that AOSP has a competitive ratio of
841/40 =~ 21 on an input sequence o and adversarial
frequency predictions f, which implies a lower bound of
21 on its robustness.

AospP forms an offline packing of predicted frequency to
reserve a placeholder for all expected items, except for
“tiny” items. In the context of the AOsP algorithm, tiny
items have a size of at most 1/15. As a result, AOSP is
overly reliant on the correctness of the predictions. e. g.,
all placeholders of some class ¢ remain empty if items of
that type never arrive.

Given a frequency prediction f , encoded by an adver-
sarial oracle, predicting 7n small items of size at most
1/4 and n large items of size at most 3/5, Aosp forms
an offline packing of n bins, where each bin contains

one placeholder for a large item, seven placeholders for
small items, and forty containers of size at most 1/15
to pack tiny items online.

Consider an input sequence o, consist of 40n tiny items
of size 1/30 + e. Given the prediction f, Aosp(o,f)
has n bins that are partially filled by tiny items. OPT,
however, fits each 292 = 841 of these tiny items into
a one bin; therefore, OpT(c) = 40n/841. It follows,
AospP(o, f) has a competitive ratio of 841 /40 ~ 21 which
completes the proof. O

We now show that RAP has a robustness of at most
5.89. For that, we prove a lower bound for the minimum
occupied area of the bins that RAP opens.

Theorem 8 RAP has a robustness of at most 5.89.

Proof. The final packing of RAP consists of harmonic,
LM, and critical bins. A small harmonic bin of class
i has a minimum occupied area of i2/(i + 1)2, which
implies a minimum occupied area of 9/16 for all small
harmonic bins. Moreover, the occupied area in bins that
include large or medium items is at least 1/4.

Next, we consider bins with an empty placeholder.
Placeholders for these items were reserved during the
preprocessing step and remained empty due to predic-
tion errors. We note that these bins have received non-
empty containers with small or tiny items; otherwise,
they would be virtually open (do not contain any items),
and do not contribute to the final cost. Therefore, the
occupied area of LM-bins is at least the minimum total
occupied area of the small or tiny items they contain.
Table 4 in Appendix shows lower bounds for the occu-
pied area. In particular, the worst-case scenario is real-
ized by the (1b,9) bins, as shown in Figure 1g, when the
placeholder for 1b-items stays empty and the occupied
area is at least 0.17. We can conclude that all bins in the
final packing of RAP, except possibly a constant num-
ber of them, have a minimum occupied area of at least
0.17, regardless of the quality of predictions. It follows,
RAP has a robustness of at most 100/17 < 5.89. 0

5 Concluding Remarks

In this paper, we introduced RAP, an online square-
packing algorithm that leverages frequency predictions
and has superior consistency and robustness over an
existing algorithm of [24], Aosp, which overly relies
on predictions. The techniques we used for the de-
sign of RAP, e.g., differentiating between placeholders
and containers, and its analysis, e.g., solving the inte-
ger program in Lemma 5, are likely helpful in studying
other geometric packing problems under the prediction
model such as 2-dimensional box packing [16, 27] and
d-dimensional cube packing [17, 21] problems.
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Appendix (Omitted Tables)

reserved types Class t;41 weight
small 1b 1le 1d le le,4 — la 4/5 1.0
type 1b 2/3 0.765625
3 — 0.67 0.61 056 — 0.56 le 3/5 0.6785570840932904
4 — 0.64 0.58 0.53% — 0.64 1d 11/20 0.4650876739816575
5 0.69 060 074 0.69 066 0.69 le 1/2 0.4650876739816575
6 0.66 076 071 0.65 067 0.73 2a 2/5 0.25
7 0.64 073 067 076 067 0.76 2b 1/3 0.19140625
8 0.62 070 0.8 0.73 066 0.79 3 1/4 0.1111111111111111
9 061 081 075 081 0.64 0.81 4 1/5 0.0764160465740489
10 0.74 078 083 077 0.72 0.82 5 1/6 0.04
11 072 075 080 0.75 072 0.84 6 1/7 0.02777777TITTIITT
12 0.70 083 077 081 0.71 0.85 7 1/8 0.0222880135840976
13 0.68 080 083 0.78 0.69 0.86 8 1/9 0.015625
14 0.67 0.78 081 0.83 0.68 0.87 9 1/10 0.0137867647058823
15 0.76 084 086 0.81 075 0.87 10 1/11 0.01
16 074 082 084 085 074 0.88 11 1/12 0.0082644628099173
17 073 080 082 0.83 072 0.89 12 1/13 0.0069444444444444
18 071 08 08 087 072 0.89 13 1/14 0.0059171597633136
19 0.70 0.83 084 084 0.71 0.90 14 1/15 0.0051020408163265
20 0.77 0.82 088 0.88 0.76 0.90 15 1/16 0.0044444444444444
21 0.75 08 086 086 074 091 16 1/17 0.00390625
22 0.74 084 084 084 0.74 0091 17 1/18 0.0034602076124567
23 073 083 088 087 073 091 18 1/19 0.0030864197530864
24 072 087 0.8 085 0.73 0.92 19 1/20 0.002770083102493
25 0.77 085 0.89 088 0.75 0.92 20 1/21 0.0025
26 0.76 084 087 086 0.75 0.92 21 1/22 0.0022675736961451
27 0.75 087 0.8 089 0.75 0.92 22 1/23 0.0020661157024793
28 074 08 089 087 074 093 23 1/24 0.0018903591682419
29 073 084 087 090 073 093 24 1/25 0.0017361111111111
tiny 070 0.61 075 0.70 0.67 0.71 25 1/26 0.0016
26 1/27 0.0014792899408284
Table 2: A summary of the minimum occupied area in 27 1/28 0.0013717421124828
each LM bin type with no empty containers, rounded 28 1/29 0.0012755102040816
to 2 decimal places. For each large type, the minimum 29 1/30 0.0011890606420927
occupied area is highlighted. The entry marked with * tiny density 1.2500557840816486

shows the minimum occupied area of critical bins in the
final packing.

Table 3: Weights of items of different classes, as used in
Lemma 5
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reserved types

small 1b 1lc 1d le

types containers total area containers total area containers total area containers total area
3 — — 5 0.3125 5 0.3125 5 0.3125
4 — — 7 0.2800 7 0.2800 7 0.2800
5 9 0.2500 9 0.2500 16 0.4444 16 0.4444
6 11 0.2244 20 0.4081 20 0.4081 20 0.4081
7 13 0.2031 24 0.3750 24 0.3750 33  0.5156
8 15 0.1851 28  0.3456 39 0.4814 39 0.4814
9 17 0.1700 45  0.4500 45 0.4500 56 0.5600
10 36 0.2975 51 0.4214 64 0.5289 64 0.5289
11 40 0.2777 57  0.3958 72 0.5000 72 0.5000
12 44 0.2603 80 0.4733 80 0.4733 95 0.5621
13 48  0.2448 88  0.4489 105  0.5357 105  0.5357
14 52 0.2311 96 0.4266 115 0.5111 132 0.5866
15 81 0.3164 125 0.4882 144 0.5625 144 0.5625
16 87 0.3010 135 0.4671 156 0.5397 175  0.6055
17 93 0.2870 145 0.4475 168 0.5185 189  0.5833
18 99  0.2742 180  0.4986 203  0.5623 224 0.6204
19 105 0.2625 192 0.4799 217 0.5424 240 0.5999
20 144 0.3265 204 0.4625 256  0.5804 279 0.6326
21 152 0.3140 245 0.5061 272 0.5619 297  0.6136
22 160 0.3024 259  0.4896 288 0.5444 315 0.5954
23 168  0.2916 273 04739 333 0.5781 360  0.6250
24 176 0.2816 320  0.5120 351 0.5615 380 0.6079
25 225  0.3328 336 0.4970 400  0.5917 429  0.6346
26 235 0.3223 352 0.4828 420  0.5761 451  0.6186
27 245  0.3125 405 0.5165 440  0.5612 504  0.6428
28 255  0.3032 423 0.5029 495  0.5885 528  0.6278
29 265 0.2944 441 0.4899 517 0.5744 585  0.6500
tiny 9 0.2571 9 0.2571 16 0.4571 16 0.4571

Table 4: Lower bounds for the area ccupied by tiny and small items in LM bins of RAP. The minimum occupied
area over all classes is highlighted.
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