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Abstract We examine bounds on the locality of rout-

ing. A local routing algorithm makes a sequence of dis-

tributed forwarding decisions, each of which is made

using only local information. Specifically, in addition to

knowing the node for which a message is destined, an

intermediate node might also know 1) its local neigh-

bourhood (the subgraph corresponding to all network

nodes within k hops of itself, for some fixed k), 2) the

node from which the message originated, and 3) the

incoming port (which of its neighbours last forwarded

the message). Our objective is to determine, as k varies,

which of these parameters are necessary and/or suffi-

cient to permit local routing on a network modelled by

a connected undirected graph. In particular, we estab-

lish tight bounds on k for the feasibility of deterministic

k-local routing for various combinations of these param-

eters, as well as corresponding bounds on dilation (the
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1 Introduction

1.1 Local Routing

Unicast communication in a network is achieved by a

routing algorithm that computes a sequence of forward-

ing decisions that determine the route followed by a

message (e.g., a packet) as it travels to its destination.

Traditionally, routing tables are constructed as a func-

tion of the network topology to provide efficient rout-

ing, where dilation decreases as memory and table sizes

increase (e.g., see [14–17,24,25]). In many networks, im-

plementing centralized routing algorithms or, more gen-

erally, routing algorithms whose initialization requires

knowledge of the entire network topology is impracti-

cal; reasons include that the network is too large, that

the topology of the entire graph is unknown, or that

the network changes dynamically [26], such as in an ad

hoc wireless network, where each node can periodically

acquire and update information about its neighbour-

hood, but not necessarily about distant nodes in the

network. Alternatively, a local routing algorithm makes

a series of distributed forwarding decisions, computed

at each of the intermediate nodes along the route; when

a node receives a message, it selects a port (i.e., one of

its neighbours) to which to forward the message using

only local information. Specifically, each node is only

aware of the subset of the network consisting of nodes

within k hops from itself, for some k. Consequently,

the route cannot be precomputed entirely in general.
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Furthermore, message overhead and local memory are

often limited [21]. In particular, a network node can-

not be expected to maintain a history of messages that

have passed through it (i.e., the network is memory-

less). Similarly, the message overhead cannot store the

set of nodes visited by the message (i.e., the routing

algorithm is stateless).

Although a straightforward flooding algorithm is

possible, such a strategy has obvious drawbacks, in-

cluding high traffic loads [26], cyclic behaviour (if the

network is memoryless), and requiring knowledge of an

upper bound on the diameter of the network to en-

sure both termination and successful delivery. In this

paper we consider single-path deterministic routing al-

gorithms.

We represent a network by a connected, unweighted,

undirected, simple graph G with unique vertex labels. A

network node (graph vertex) is identified by its label. In

some networks, a node’s label may provide information

about its neighbourhood in the network (e.g., a grid

graph node can be labelled by its grid coordinates). In

general, we suppose that the vertex labelling is indepen-

dent of the graph; that is, a node’s label does not encode

additional information about the topology of the graph

or the node’s neighbourhood. Equivalently, we consider

routing algorithms that succeed on any (possibly adver-

sarial) permutation of the vertex labels ofG. We assume

that every node knows its own label as well as the labels

of its neighbours. A message also requires a destination

node, identified by that node’s label. Some or all of the

following additional information may be available to an

intermediate node u to compute the next node to which

a message should be forwarded:

1. origin-awareness: knowledge of the node from which

the message originated,

2. predecessor-awareness: knowledge of the incom-

ing edge (port) along which the message was for-

warded to u (equivalently, the neighbour of u that

last forwarded the message), and

3. k-locality: knowledge of the k-neighbourhood of u

(i.e., the subgraph of G consisting of all paths rooted

at u with length at most k).

Our objective is to determine which of these parameters

are necessary and/or sufficient to permit local routing

as k varies.

1.2 Overview of Results

We identify tight bounds on the value of the locality pa-

rameter k for the feasibility of k-local routing in each of

the four combinations of constraints: predecessor-aware

T (n) origin-aware origin-oblivious

predecessor-aware n/4 n/3
predecessor-oblivious n/2 n/2

Table 1 Main result: there exists a k-local routing algorithm

when k ≥ T (n), but no k-local routing algorithm exists when k <

T (n), where n denotes the number of network nodes. Rounding
operators are omitted; see Theorems 1 through 3, Corollaries 2

and 5, and Theorems 5 through 8 for exact values of T (n).

k n/4 n/3 n/2

lower bound 5 3 1
upper bound 6 3 1

Table 2 Bounds on the dilation attainable by a k-local routing

algorithm. S(k) ≥ 2n/k − 3 is a lower bound on the worst-case

dilation of any k-local routing algorithm. The bound on S(k) is
tight when k ∈ {n/3, n/2} and is bounded from above by 6 when

k = n/4. See Theorems 4, 7, 8, and 6.

or predecessor-oblivious, and origin-aware or origin-obli-

vious. In each case, let T (n) denote the corresponding

threshold. That is, for every k < T (n), every k-local

routing algorithm is defeated by some connected graph

on n vertices. Similarly, for every k ≥ T (n), there ex-

ists a k-local routing algorithm that succeeds on all

connected graphs on n vertices. Our main result is the

identification of the values of T (n); see Table 1. In ad-

dition, we establish a lower bound of S(k) = 2n/k − 3

on the worst-case dilation of any k-local routing algo-

rithm and show this bound is tight for three of the four

combinations of constraints; see Table 2.

Thus, our objective is to identify bounds on the fea-

sibility of guaranteed delivery for memoryless, stateless,

deterministic local routing. Specifically, we answer the

question of exactly how much of the network each node

must be aware for local routing to succeed. Local rout-

ing succeeds in particular settings, e.g., on some classes

of geometric graphs, such as unit disc graphs, planar

graphs, and triangulations (see Section 3). In this pa-

per, we seek to determine whether similar local routing

algorithms are possible beyond these restricted classes

of graphs. As we show, guaranteeing delivery using local

routing in arbitrary connected graphs requires nodes to

have knowledge of a neighbourhood of size Ω(n) nodes

in some cases, suggesting that local information (small

k) is insufficient and that the routing algorithm must be

modified or extended using a different paradigm, such

as centralized routing (routing tables), randomization,

increased memory (passed with the message or stored

at each node), or leveraging specific additional graph

properties (e.g., a geometric embedding).
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2 Modelling Local Routing

In this section we formalize our model for local routing.

2.1 k-Local Routing Functions

Given a (simple undirected) graph G, we employ stan-

dard graph-theoretic notation, where V (G) denotes the

vertex set of G; E(G) denotes the edge set of G; for

each vertex v ∈ V (G), Adj(v) = {u | {u, v} ∈ E(G)}
denotes the set of vertices adjacent to v; and deg(v) =

|Adj(v)| denotes its degree. Let dist(u, v) denote the

(unweighted) graph distance between vertices u and v,

i.e., the number of edges in a shortest path from u to

v. The girth of G is the length of its shortest cycle or

∞ if G is acyclic.

The k-neighbourhood of a vertex u ∈ V (G), denoted

Gk(u), is the subgraph of G that contains all paths

rooted at u with length at most k. A routing algorithm

is origin-aware, predecessor-aware, and k-local if it can

be defined as a function f(s, t, u, v,Gk(u)), where

– s ∈ V (G) is the origin node,

– t ∈ V (G) is the destination node,

– the message is currently at node u ∈ V (G) (we say

u is the current node),

– node u received the message from its neighbour v ∈
Adj(u) (let v =⊥ before s forwards the message for

the first time),

– Gk(u) is the k-neighbourhood of u, and

– f(s, t, u, v,Gk(u)) returns the neighbour of u to which

the message should be forwarded (i.e., the port to

which node u must forward the packet).

Every k-local routing algorithm A has a corresponding

routing function f . A sequence of calls to function f

returns a sequence of forwarding decisions that corre-

sponds to a walk, i.e., the route, through G originating

at s.

We consider two constraints on k-local routing al-

gorithms: an origin-oblivious k-local routing algorithm

is not provided the parameter s, and a predecessor-

oblivious k-local routing algorithm is not provided the

parameter v.

To simplify notation for predecessor-aware algorithms,

let fu(v) denote the local routing function at node u for

a given s, t, u, andGk(u), where fu(v) = f(s, t, u, v,Gk(u)).

That is, fu(v) returns the neighbour of u to which the

message is forwarded as a function of the neighbour v

from which it is received.

Observation 1 Given any k ≥ 1, any predecessor-

aware k-local routing algorithm A, any connected graph

G, and any {s, t} ⊆ V (G), the direction in which a

message traverses a given edge uniquely determines the

next forwarding decision by A. In particular, if A suc-

cessfully delivers a message to t, then the message has

traversed each edge in E(G) at most once in each di-

rection.

Naturally, not all routing functions can be imple-

mented efficiently as local routing algorithms. The rout-

ing function model allows stronger negative results to

be established for a more general class of routing al-

gorithms, regardless of implementation concerns. With

respect to positive results, the routing algorithms we

present can be implemented efficiently locally; imple-

mentation details are not the focus of this paper.

Let C denote a connected component of Gk(u) \
{u}. We refer to C as a local component of u. If v ∈
V (C) ∩ Adj(u), then we say C is rooted at v (C can

have multiple roots). If C contains a vertex z such that

dist(u, z) = k, then (relative to u) C is an active com-

ponent, edge {u, v} is an active edge (where v ∈ V (C)),

v is an active neighbour of u, and a shortest path from

u to z is an active path. In other words, C extends to

the limit of u’s knowledge: node z may have neighbours

outside C, but this information is not known locally at

u. If C is an active component of u and every active

path in C passes through some vertex w 6= u, then

C is a constrained active component and w is a con-

straint vertex. If a local component C is not an active

component, then we say C is a passive component. If u

is connected to its local component C by a single edge

(i.e., C has a unique root), then we say C is an indepen-

dent component. Every independent active component

is a constrained active component. See Figure 1.

A cycle C is a local cycle at node u if u lies on C

and C has length at most 2k. That is, C ⊆ Gk(u),

|V (C)| ≤ 2k, and u ∈ V (C).

2.2 Evaluating Routing Algorithms

A routing algorithm A defined by a routing function f

succeeds (synonymously, guarantees delivery) if for all

graphs G and all origin-destination pairs (s, t) in G,

the sequence of values returned by f corresponds to a

walk from s to t in G. Otherwise, A is defeated by (or

fails on) some graph G and some pair (s, t) in G. A

routing algorithm A has dilation bounded by δ if for all

graphs G and all origin-destination pairs (s, t) in V (G)

such that s 6= t, rA(s, t)/ dist(s, t) ≤ δ, where rA(s, t)

denotes the length of the route from s to t returned

by A. A routing algorithm that guarantees dilation δ

is sometimes said to have a stretch factor [11] bounded

by δ or to be δ-competitive [3].
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Fig. 1 In this example, G8(u) consists of four local components,

corresponding to the four connected components of G8(u) \ {u}.
B1, B3, and B4 are active components. B2 is a passive compo-

nent. B1 and B3 are constrained active components, but B2 and

B4 are not. B1 and B2 are independent components, but B3 and
B4 are not. Node v is an active neighbour of u and edge {u, v} is

an active edge. Node w is a constraint vertex in the constrained
active component B3. All three paths from u to z of length eight

are active paths.

Other measures of quality in routing include con-

gestion (traffic load), running time, and scalability. This

paper considers questions of existence of successful rout-

ing algorithms. As such, the measures of interest are

guaranteed delivery and bounds on dilation.

3 Related Work

In position-based routing, network nodes are embedded

in some space (typically R2 or R3) and each node knows

its spatial coordinates (i.e., nodes are location-aware).

Position-based routing is also known as geo-routing, ge-

ographic routing, or geometric routing. Many recent re-

sults related to local routing are position based (e.g., [1,

4,5,10,12,13,18,20–22,26]); we briefly describe some of

these and discuss the interdependence between position-

based and position-oblivious routing.

Greedy routing [12] (forward the message to the

neighbour closest to the destination), compass routing

[21] (forward the message along the edge that forms the

smallest angle with the line segment to the destination),

and greedy-compass routing [1] (apply greedy routing

to the two edges adjacent to the line segment to the des-

tination) are three well-known position-based routing

algorithms, each of which succeeds on specific classes

of graphs but is defeated by some planar graph [4].

All three algorithms are predecessor-oblivious, origin-

oblivious, and 1-local.

To show that a routing algorithm fails on some class

of graphs G, it suffices to identify a graph in G on which

the algorithm cycles infinitely without reaching the des-

tination. Stronger negative results are those that apply

to all routing algorithms, showing that no routing algo-

rithm succeeds on a given class of graphs. Bose et al. [1]

show that every position-based, predecessor-oblivious,

origin-oblivious, 1-local routing algorithm is defeated

by some convex subdivision.

Face routing [21] was one of the first position-based

1-local routing algorithms to succeed on more general

classes of graphs embedded in the plane. In brief, face

routing forwards the message in a clockwise direction

along the edges of a face, and along the sequence of faces

that intersect the line segment between the origin and

destination nodes. Forward progress is guaranteed by

storing a parameter such as the furthest intersection of

the line segment with a visited face. As such, face rout-

ing is not stateless since it requires Θ(log n) bits to be

stored with the message. Face routing succeeds on pla-

nar graphs [21], on unit disc graphs [5], and on d-quasi

unit disc graphs for any d ∈ [1/
√

2, 1] [22]. See Bose et

al. [5] and Kuhn et al. [22] for definitions of unit disc

graphs and quasi unit disc graphs, respectively. Fraser

considers a generalization of face routing to graphs em-

bedded on tori [18]. See Guan [20] and Stojmenović [26]

for discussions of face routing and its variants.

Although our discussion focuses on deterministic

routing algorithms, we briefly note that randomized so-

lutions permit k-local routing on more general classes

of graphs. Chen et al. [9] show that while random-

ization can provide an (expected) guarantee of deliv-

ery, the expected dilation remains high. Specifically,

they show that for every randomized position-based,

predecessor-oblivious, origin-oblivious, 1-local routing

algorithm, there exists a convex subdivision in the plane

on which the expected route length is Ω(n2), matching

the expected length of a random walk from s to t. Flury

and Wattenhofer consider the problem of randomized

local routing on unit ball graphs [13] and show that any

randomized position-based local routing algorithm has

expected route length Ω(l3), where l denotes the length

of the shortest path.

Durocher et al. [10] show that for every fixed k, ev-

ery origin-aware, predecessor-aware, k-local routing al-

gorithm fails on some unit ball graph. The proof has

two parts. First, the corresponding position-oblivious

result is proven: for every fixed k, every origin-aware,

predecessor-aware, k-local routing algorithm fails on

some graph. Next, a k-local reduction from (unembed-

ded) graphs to unit ball graphs is used to show that

if some (possibly position-based) k-local routing algo-

rithm succeeds on unit ball graphs, then some position-
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oblivious k-local routing algorithm succeeds on all graphs.

This interdependence between position-based and posi-

tion-oblivious routing algorithms motivates the ques-

tion of exploring the boundary between feasibility and

impossibility of local routing algorithms as a function

of the local information available. In this paper we con-

sider the position-oblivious case.

4 When Local Routing is Impossible: Negative

Results

In this section we present negative results: every k-

local routing algorithm fails on some graph when the

degree of locality k is less than the given bound. For

each combination of origin-awareness/obliviousness and

predecessor-awareness/obliviousness, we demonstrate a

counter-example consisting of a set of graphs such that

any k-local routing algorithm fails on at least one of the

graphs in the set.

4.1 Properties of Local Routing Functions

The proofs of Theorems 1 through 3 refer to Lemma 1

and Corollary 1, which generalize an observation of

Durocher et al. [10] showing that if a k-local routing

algorithm guarantees delivery, then each local routing

function corresponds to a circular permutation (under

certain conditions). Recall that a circular permutation

of n distinct elements is an ordering of these elements

in a cycle.

Lemma 1 Given an arbitrary graph G and any node
u ∈ V (G) such that

1. deg(u) ≥ 2,

2. every local component of u is an independent active

component, and

3. neither the origin node s nor the destination node t

is in Gk(u),

if A is an origin-aware, predecessor-aware, k-local rout-

ing algorithm that guarantees delivery, then the local

routing function of A at u is a circular permutation of

Adj(u).

Proof Choose any k ≥ 1, any node u, and any k-neigh-

bourhood Gk(u) such that Properties 1 through 3 hold.

Suppose A is any k-local routing algorithm that guar-

antees delivery for which the local routing function fu
is not a circular permutation.

Case 1. Suppose fu is not a permutation. That is, fu is

not surjective. Therefore, there exists some v ∈ Adj(u)

such that for all w ∈ Adj(u), fu(w) 6= v. Let B1 denote

B2

B1
s

t

k

v u

Fig. 2 This example illustrates the graph constructed in Case

1 of Lemma 1 for a given Gk(u) when k = 8. Note that Gk(u)

consists of independent active components.

the local component of u that contains v and let B2

denote any other local component of u. By Property 2,

each local component of u is an active component. Let

G denote a graph that contains Gk(u) such that node t

has degree one and is the only node adjacent to B1 out-

side Gk(u). Similarly, let node s have degree one such

that it is the only node adjacent to B2 outside Gk(u).

See Figure 2. Since for all w ∈ Adj(u), fu(w) 6= v,

the message will never enter B1 and, consequently, will

never reach t. Therefore, Algorithm A fails on graph G,

deriving a contradiction.

Case 2. Suppose fu is a permutation but not a de-

rangement (a derangement is a complete permutation).

Therefore, fu(v) = v for some v ∈ Adj(u). Let G be

a graph as defined in Case 1, with the exception that

nodes s and t are interchanged. It follows that the mes-

sage will never enter any local component other than

B1 and, consequently, will never reach t. Therefore, Al-

gorithm A fails on graph G, deriving a contradiction.

Case 3. Suppose fu is a derangement but not a circu-

lar permutation. Therefore, fu cannot be expressed as a

single permutation cycle. Let (a1 . . . ak) and (b1 . . . bj)

denote any two distinct permutation cycles of fu. Ob-

serve that {a1, . . . ak} and {b1, . . . , bj} are disjoint sub-

sets of Adj(u). Let G be a graph as defined in Case 1,

with the exception that node s is adjacent to a local

component B1 rooted at a node in {a1, . . . ak} and t is

adjacent to a local component B2 rooted at a node in

{b1, . . . , bj}. It follows that the message will never en-

ter B2 and, consequently, will never reach t. Therefore,

Algorithm A fails on graph G, deriving a contradiction.

All three cases derive a contradiction and our as-

sumption must be false. Therefore, the local routing

function fu must be a circular permutation. ut
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In other words, without additional information on

which to base a local routing decision, an intermediate

node u must try all possibilities and sequentially for-

ward the message to each of its neighbours. When node

u has degree two, a unique circular permutation is pos-

sible: a message received from one neighbour of u must

be forwarded to the opposite neighbour. If node u has

degree j, then (j − 1)! circular permutations are pos-

sible. If routing Algorithm A is origin oblivious, then

Lemma 1 gives:

Corollary 1 Given an arbitrary graph G and any node

u ∈ V (G) such that

1. deg(u) ≥ 2,

2. every local component of u is an independent active

component, and

3. the destination node t is not in Gk(u),

if A is an origin-oblivious, predecessor-aware, k-local

routing algorithm that guarantees delivery, then the lo-

cal routing function of A at u is a circular permutation

on Adj(u).

Proof Given any node u, any k ≥ 1, and any k-neigh-

bourhood Gk(u), if Properties 1 through 3 hold (as

defined in Lemma 1), then the local routing function

fu is a circular permutation by Lemma 1. Since A is

origin oblivious, function fu remains constant for any

given Gk(u) and t, regardless of s. In particular, fu is

a circular permutation regardless of whether or not s is

contained in Gk(u). The result follows. ut

Theorems 1 through 3 and Corollary 2 establish

lower bounds corresponding to each of the four combi-

nations of k-local routing algorithms: origin-aware/obli-

vious and predecessor-aware/oblivious.

4.2 Predecessor Aware and Origin Aware

Theorem 1 For every k < b(n + 1)/4c, every origin-

aware, predecessor-aware, k-local routing algorithm fails

on some connected graph.

Proof Choose any k < b(n+ 1)/4c, k ∈ Z+. Therefore,

k ∈ {1, . . . , r}, where r = b(n − 3)/4c. Let G1, G2,

and G3 denote the graphs illustrated in Figure 3, such

that each path P1 through P4 consists of r vertices that

are labelled consistently relative to node u in all three

graphs. In each graph, Gk(u) is a tree consisting of four

paths of length k rooted at u, none of which contains s

nor t. In addition to the 4r nodes in paths P1 through

P4, each graph includes nodes u, s, and t. Depending

routing strategy circular permutation succeeds fails

1 (P1P2P3P4) G1, G3 G2

2 (P1P2P4P3) G1, G2 G3

3 (P1P3P2P4) G2, G3 G1

4 (P1P3P4P2) G1, G2 G3

5 (P1P4P2P3) G2, G3 G1

6 (P1P4P3P2) G1, G3 G2

Table 3 Each routing strategy corresponds to a circular permu-

tation of the neighbours of s.

on the value of n mod 4, between zero and three ex-

tra nodes remain; these are added between s and P1

to bring the total number of nodes to n. Any success-

ful routing algorithm must pass the message across P1

to node u. Since u has degree four, its local routing

function is one of six possible circular permutations by

Lemma 1. The remaining nodes have degree at most

two. Therefore, when the message is passed to a node

on a path that does not contain s or t, by Lemma 1, the

message must continue forward until it returns again

to u. As shown in Table 3, for each of the six possible

routing strategies, the message never enters the path

containing t in at least one of the graphs G1, G2, or

G3. That is, for every routing strategy A, there exists

a graph on which A fails. ut

4.3 Predecessor Aware and Origin Oblivious

Using an argument similar to the proof of Theorem 1,

we now show that the lower bound on the locality pa-

rameter k increases to b(n + 1)/3c for origin-oblivious

k-local routing algorithms:

Theorem 2 For every k < b(n + 1)/3c, every origin-

oblivious, predecessor-aware, k-local routing algorithm

fails on some connected graph.

Proof Choose any k < b(n+ 1)/3c, k ∈ Z+. Therefore,

k ∈ {1, . . . , r}, where r = b(n − 2)/3c}. Let G1, G2,

and G3 denote the graphs illustrated in Figure 4, such

that each path P1 through P3 consists of r vertices that

are labelled consistently relative to node s in all three

graphs. In each graph, Gk(s) is a tree consisting of three

paths of length k rooted at s, none of which contains t.

In addition to the 3r nodes in paths P1 through P3, each

graph includes nodes s and t. Depending on the value

of n mod 3, between zero and two extra nodes remain;

these are added between t and the corresponding path

Pi nearest to t to bring the total number of nodes to n.

Since node s has degree three, its local routing function

is one of two possible circular permutations by Corol-

lary 1. A routing strategy must specify the direction in

which a message initially leaves node s (three directions
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Fig. 3 The k-neighbourhood Gk(u) is identical in graphs G1, G2, and G3. In this example, suppose n mod 4 = 0. Consequently, one

extra node is added between s and P1 such that the total number of nodes is n.
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Fig. 4 The k-neighbourhood Gk(s) is identical in graphs G1, G2, and G3. In this example, suppose n mod 3 = 0. Consequently, one

extra node is added next to t such that the total number of nodes is n.

are possible). The remaining nodes have degree at most

two. Therefore, when the message is passed to a node

on a path that does not contain t, by Corollary 1, the

message must continue forward until it returns again to

node s. As shown in Table 4, for each of the six pos-

sible routing strategies, the message never enters the

path containing t in at least one of the graphs G1, G2,

or G3. That is, for every routing strategy A, there ex-
ists a graph on which A fails. ut

4.4 Predecessor Oblivious and Origin Aware

When knowledge of the predecessor node is withheld,

the lower bound on the locality parameter k increases

to bn/2c for k-local routing algorithms:

Theorem 3 For every k < bn/2c, every origin-aware,

predecessor-oblivious, k-local routing algorithm fails on

some connected graph.

Proof Choose any k < bn/2c, k ∈ Z+. Therefore, k ∈
{1, . . . , r}, where r = bn/2c−1. Let G1 denote a path of

n vertices with the origin node s located at the (r+1)st

vertex and the destination node t located at the far

end. Let G2 denote the analogous graph upon moving

node t to the opposite end of the path. Let the remain-

ing nodes be labelled consistently relative to node s in

b

r r

sa b t

r r

sat

G2

G1

Fig. 5 For any k < bn/2c, the k-neighbourhood of s does not

contain t.

both graphs. See Figure 5. The k-neighbourhood Gk(s)

is identical in G1 and G2. If Algorithm A sends the

message right at s, then A fails on graph G2 since it

must eventually send the message left, at which point

its behaviour becomes cyclic. Similarly, if Algorithm A
sends the message left at s, then it fails on graph G1.

ut

4.5 Predecessor Oblivious and Origin Oblivious

Finally, if we further constrain the knowledge available

to intermediate nodes (e.g, remove knowledge of the

origin), then the lower bound on the locality parameter

k given in Theorem 3 applies:

Corollary 2 For every k < bn/2c, every origin-obli-

vious, predecessor-oblivious, k-local routing algorithm

fails on some connected graph.
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routing strategy circular permutation initial direction succeeds fails

1 (P1P2P3) toward a G1, G3 G2

2 (P1P2P3) toward b G1, G2 G3

3 (P1P2P3) toward c G2, G3 G1

4 (P1P3P2) toward a G1, G2 G3

5 (P1P3P2) toward b G2, G3 G1

6 (P1P3P2) toward c G1, G3 G2

Table 4 Each routing strategy corresponds to a circular permutation of the neighbours of u paired with an initial direction.

Proof The result follows by Theorem 3. ut

4.6 Dilation

We now consider lower bounds on dilation for k-local

routing algorithms.

Theorem 4 For any k < n/2, no k-local routing algo-

rithm can guarantee dilation less than

2n− 3k − 1

k + 1
, (1)

regardless of whether the algorithm is predecessor-awa-

re/oblivious or origin-aware/oblivious.

Proof Choose any n, any k ∈ [1, n/2), and any k-local

routing algorithm A. If A fails on some graph, then

A has unbounded dilation. In particular, the dilation

exceeds (1). Therefore, suppose that A succeeds on all

graphs. Given a set of n distinct vertex labels, let P de-

note the corresponding set of all n!/2 distinct paths of

length n. Suppose the origin and destination nodes are

labelled s and t, respectively. For every path P ∈ P,

the local neighbourhood of every internal node on P

has two independent components; since n ≥ 2k + 1, at

most one of these components is passive. By Observa-

tion 1, if the message changes direction at a node that

has two active components, then nodes on the path be-

yond the corresponding local component (where t could

be located) will never be visited. Consequently, for any

node u, if Gk(u) has two active components, a message

received from u’s left neighbour must be forwarded to

its right neighbour, and vice-versa (i.e., the local rout-

ing function at u is a circular permutation).

Consider any local neighbourhood Gk(u) that is a

path of length 2k. Thus, Gk(u) has two active compo-

nents. There exist paths P and P ′ in P that contain

Gk(u) such that s lies to the left of u in both P and

P ′, and t lies to the left of Gk(u) in P but to the right

of Gk(u) in P ′. Consider the first time node u receives

the message. Algorithm A sends the message toward

the destination t in path P or path P ′, and away from

t in the other. Consequently, there exists a path P ′′ in

P such that dist(s, t) = k + 1, A initially forwards the

n−2k−1k

sa ut c

k−1

Fig. 6 Node u is the leftmost node right of s that can confirm

that t does not lie to the right of c.

message away from s, and A continues forwarding the

message away from t while both local components of

the current node are active. In particular, Algorithm

A can send the message away from s to n − 2k − 1

nodes before the message reaches a node that has a

passive component such that for each node u visited,

dist(u, t) ≥ k + 1. See Figure 6. The message must re-

turn to s before proceeding in the opposite direction

back to t. The corresponding route has length at least

2(n−2k−1)+dist(s, t) = 2n−3k−1, while the shortest

path has length dist(s, t) = k + 1. ut

The bound on dilation (1) is perhaps more clearly

expressed in the limit as the number of nodes approaches

infinity and k = c · n for some constant c ∈ (0, 1). We

denote this limit by S(k):

S(k) = lim
n→∞

2n− 3k − 1

k + 1
=

2n

k
− 3. (2)

Of particular interest are the values of k ∈ {n/4, n/3,
n/2}, for which the corresponding bounds on dilation

are 5 (when k = n/4), 3 (when k = n/3), and 1 (when

k → n/2). As shown in Theorems 7 and 8 and Corol-

lary 5, these bounds are tight for k = n/3 and k = n/2.

5 When Local Routing is Possible: Routing

Strategies

In this section we present positive results: there ex-

ists a successful k-local routing algorithm when the

degree of locality k exceeds the given bound. We de-

scribe a k-local routing algorithm for each combina-

tion of origin-awareness/obliviousness and predecessor-

awareness/obliviousness.
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A B

k

t

t

s s

Fig. 7 The red arrow denotes the neighbour to which the message is initially forwarded from the origin s. Blue arrows denote

subsequent forwarding decisions as a function of the neighbour from which the message was received. (A) The right-hand rule
guarantees delivery on any tree. (B) The right-hand rule can fail if some cycle has length greater than 2k. Furthermore, it can occur

that the message is never forwarded to a node whose k-neighbourhood contains the destination t. In this example, if k ≤ 4 then

the right-hand rule forwards the message from s counter-clockwise around the cycle with t being excluded from every visited node’s
k-neighbourhood.

5.1 Predecessor Aware and Origin Aware

Given any k ≥ n/4, we describe a predecessor-aware,

origin-aware, k-local routing algorithm that succeeds on

all connected graphs on n vertices.

Motivation: Generalizing the Right-Hand Rule

Routing on a tree is easily accomplished using a right-

hand rule. That is, the message is passed along the

sequence of edges on the face determined by any non-

crossing embedding of the tree in the plane. Specifically,

if every local routing function is a circular permutation,

then every message is guaranteed to reach its destina-

tion (i.e., knowledge of the embedding is not required).

A right-hand rule can be implemented on any graph G

by selecting a subset of its edges that forms a spanning

tree of G.

If G contains only local cycles, then any cycle on

which a node u lies is entirely visible in Gk(u). Node

u can label one edge on every local cycle as dormant.

If this labelling rule were applied consistently at all

nodes and the message were forwarded only across rout-

ing (non-dormant) edges, then it would suffice to define

each local routing function to be a cyclic permutation

of its routing edges.

If G may contain cycles of arbitrary length, then the

right-hand rule cannot be applied directly since a node

u has no knowledge of cycles not entirely contained in

Gk(u). In particular, cyclic behaviour can occur such

that the message never comes within distance k of the

destination. See Figure 7. Since k ≥ n/4, however, the

number of cycles of length 2k + 1 or greater is limited.

Using a simple set of k-local rules which we now define,

we show how to guarantee delivery in any graph G.

Preprocessing: Identifying Routing Edges in Gk(u)

When a message arrives at a node u, the algorithm be-

gins with a k-local preprocessing step to identify the

edges of Gk(u) on which routing takes place. We call

these edges routing edges and denote the corresponding

edge-induced subgraph of Gk(u) by G′
k(u). Specifically,

some edges of Gk(u) may be identified as dormant edges

locally at u. Once dormant edges are removed from

Gk(u), the remaining edges that lie on paths rooted

at u with length at most k are identified as routing

edges. Graph G′
k(u) is not always a spanning subgraph

of Gk(u); any remaining edges of Gk(u) (those that are

neither routing nor dormant edges) are edges whose dis-

tance from u along routing edges exceeds k and, con-

sequently, are not included in G′
k(u). Every edge adja-

cent to u, however, is identified either as a routing or

dormant edge; this classification forms the basis of our

routing algorithm.

The unique labelling of nodes determines a strict to-

tal order on the edges of G (e.g., label each edge by con-

catenating the labels of its endpoints and order edge la-

bels lexicographically). We refer to the label of an edge

e as its rank, denoted rank(e), where edge a precedes

edge b in the order if and only if rank(a) < rank(b).

In particular, any set of edges has an edge of minimum

rank. Using a technique similar to those applied by Li

et al. [23] and Chávez et al. [7] (used to break cycles in

Gk(u) to construct a k-local minimum spanning tree on

a unit disc graph) graph G′
k(u) is constructed locally at

node u by classifying the edge of minimum rank on ev-

ery local cycle of u as a dormant edge. See Figure 8. A

local cycle may contain multiple dormant edges if two

or more local cycles share a common edge. See Figure 9.

If edge e is not classified as a dormant edge in any

local neighbourhood, then we say e is consistent. Oth-

erwise, we say e is inconsistent. A consistent path or

cycle is one whose edges are all consistent. Similarly,
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3
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u

Fig. 8 k-local preprocessing. Suppose node u has three active neighbours, v1 through v3, and Gk(u) contains a local cycle that
includes vertices v1, u, and v2 (A). The preprocessing step classifies one of the edges on the cycle as a dormant edge (magenta). The

selected edge may be distant from u (B) or adjacent to u (C and D). The choice of dormant edge does not affect nodes not on the

cycle (e.g., v3) since all edges of the local cycle lie in the same local component of the corresponding vertex (E); in particular, none
of the cycle’s edges are adjacent to v3.

CA B

u
C

2
e

1
e

1
C

2

u u

Fig. 9 (A) Suppose k = 5 and edges e1 and e2 have the lowest and second-lowest ranks, respectively, among all edges in Gk(u). Gk(u)

contains two local cycles: C1 (light red) and C2 (light blue). Gk(u) also contains a third cycle (light green), but its length exceeds 2k.
Edges e1 and e2 are classified as dormant for cycles C1 and C2, respectively. (B) The resulting subgraph G′

k(u) is illustrated. Edges

and vertices whose distance from u along routing edges is greater than k are not included in G′
k(u), even if these are routing edges

that appear in Gk(u). (C) This simplification of G′
k(u) illustrates that u has two independent active components (light blue) and one

independent passive component (light red).

some edge in an inconsistent path or cycle is inconsis-

tent.

We establish some properties of the set of consistent

edges in Lemmas 2 and 3, and Proposition 1.

Lemma 2 Every edge adjacent to u in G′
k(u) is con-

sistent.

Proof Suppose there exists an inconsistent edge e =

{u, v} such that e is a routing edge in G′
k(u). There-

fore, edge e is dormant in Gk(w) for some node w. Fur-

thermore, there exists a local cycle C in Gk(w) that

contains nodes u, v, and w on which edge e has min-

imum rank. Since the cardinality of C is at most 2k,

cycle C must be contained in Gk(u) and, consequently,

edge e is classified as dormant in Gk(u), deriving a con-

tradiction. ut

Lemma 3 is similar to that of Li et al. [23, page 5,

Lemma 2]. Lemma 3 is included here for completeness

since the definition of edge consistency used by Li et al.

differs slightly from the one used in this paper.

Lemma 3 Given any two nodes u and v in G, there

exists a consistent path from u to v.

Proof Let D denote the set of inconsistent edges that

lie on paths from u to v in G and let e = {a, b} denote

the edge of maximum rank in D. Since edge e is classi-

fied as dormant in Gk(w) for some node w, it must lie

on a local cycle C consisting of edges whose ranks are

greater than rank(e). Since e has maximum rank among

all edges in D, therefore, the path C \{e} joining a and

b is consistent. Consider the set D′ = D \ {e} and let

e′ = {a′, b′} denote the edge of maximum rank in D′.

Using an analogous argument it follows that there ex-

ists a consistent path from a′ to b′. In particular, if

some path from a′ to b′ includes edge e, there exists a

corresponding consistent path from a′ to b′ that avoids

e by following the path C \ {e}. This argument can be

repeated recursively until D′ = ∅. ut

Observe that all components in G′
k(u) are indepen-

dent components. The number of active neighbours of u
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in G′
k(u) is its active degree. Since an active edge joins

u to a component containing at least k ≥ n/4 nodes

and 4k + 1 > n, we get the following proposition:

Proposition 1 Every node has active degree at most

3.

Routing Algorithm

We now describe the local routing algorithm applied

at each node u upon receiving a message. If the des-

tination t is in Gk(u), then the message is forwarded

along a shortest path to t (see Algorithm 1, Case 1).

If t is not in Gk(u) (and therefore not in G′
k(u)), then

the message is forwarded along a routing edge into an

active component of u (since passive components are

dead ends with respect to consistent edges). The algo-

rithm must ensure that previous forwarding decisions

are not repeated (without explicitly recording these).

In brief, the algorithm applies a strategy inspired by

the right-hand rule to sequentially explore all active

components, except when doing so could lead to a dead

end or to cyclic behaviour. Potential future cycling is

identified and averted by using the origin node s as a

point of reference; if the message is sent toward s, its

direction is eventually altered to avoid repeating pre-

vious routing decisions (see Algorithm 1, Cases 2 and

4). The preprocessing step need not be repeated unless

the network topology changes. Once a node has iden-

tified its routing edges, a simple set of rules determine

forwarding decisions, defined as a function of five local

navigational cues at u:

1. whether the destination node t lies in Gk(u),

2. whether node u is the origin node s (i.e., u = s),

3. whether the origin node s lies in a passive compo-

nent of G′
k(u),

4. the number of active components in G′
k(u), and

5. the neighbour of u from which the message was re-

ceived.

The routing algorithm consists of four cases outlined

below, each of which applies simple deterministic rules

to make a forwarding decision. Let u denote the current

node.

Rule S3Rule S1 Rule S2

a

bs a

b

s sa

c

Fig. 10 Algorithm 1, Case 2: The message is at the origin

node s. Suppose nodes are labelled such that rank(a) < rank(b) <

rank(c). Light blue regions denote active components of s. If s has
i active components, then rule Si is applied. Passive components

are not illustrated. The red arrow denotes the neighbour to which
the message is initially forwarded from s. Blue arrows denote

subsequent forwarding decisions as a function of the neighbour

from which the message was received.
.

Rule U3Rule U1 Rule U2

a

ua

c

u a

b

b u

Fig. 11 Algorithm 1, Case 3: The message is at a node

u 6= s such that either s is in an active component of G′
k(u)

or s 6∈ V (G′
k(u)). Light blue regions denote active components of

u. If u has i active components, then rule Ui is applied. Passive
components are not illustrated. Blue arrows denote forwarding

decisions as a function of the neighbour from which the message

was received.
.

Algorithm 1: (n/4)-local, origin-aware,

predecessor-aware routing algorithm

Case 1. Suppose dist(u, t) ≤ k. That is, t ∈
V (Gk(u)). The algorithm forwards the message to any

neighbour of u on a shortest path from u to t until the

message arrives at t.

Case 2. Suppose dist(u, t) > k and u = s. Forwarding

decisions are illustrated in Figure 10. If v =⊥ (i.e.,

the message is being sent from the origin s for the

first time) then s forwards the message to its active

neighbour of lowest rank (node a).

Case 3. Suppose dist(u, t) > k, u 6= s, and either

s 6∈ V (G′
k(u)) or s is in an active component of u.

Forwarding decisions are illustrated in Figure 11.

Case 4. Suppose dist(u, t) > k, u 6= s, and s is in a

passive component of G′
k(u). Forwarding decisions are

illustrated in Figure 12. If the message is received from

the passive component containing the origin node s,

then u forwards the message to its active neighbour

of lowest rank (node a).
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Rule US3Rule US1 Rule US2

acbu a

s

u

s

a

b

s u

Fig. 12 Algorithm 1, Case 4: The message is at a node u 6= s

such that s is in a passive component of G′
k(u). Suppose nodes

are labelled such that rank(a) < rank(b) < rank(c). Light blue
regions denote active components of u. If u has i active compo-

nents, then rule USi is applied. The light red region denotes the
passive component of u that contains s. Other passive compo-

nents are not illustrated. The red arrow denotes the neighbour

to which the message is initially forwarded from the passive com-
ponent containing s. Blue arrows denote subsequent forwarding

decisions as a function of the neighbour from which the message

was received.
.

The success of Algorithm 1 relies on the property

that each node has active degree at most 3. Notice that

the lower bound argument of the proof of Theorem 1

consists of graphs that have one node with active degree

4; by Proposition 1, this cannot occur when k ≥ n/4.

Properties of Algorithm 1

We begin by establishing the following properties which

are used in Lemma 7 to show the correctness of Algo-

rithm 1. Corollaries 3 and 4 follow from the definition

of Algorithm 1 and by Lemma 2.

Corollary 3 Algorithm 1 forwards a message only along

consistent edges.

Corollary 4 Any message that enters a passive com-

ponent must pass through its root. Furthermore, Algo-

rithm 1 forwards a message into a passive component

if and only if that component contains the destination

node t.

Lemma 4 If Rules S1, U1, or US1 are applied at a

node u to reverse the direction of a message, then G′
k(u)

has a passive component containing at least k−1 nodes.

Proof Suppose Rule U1 is applied at a node u such

that u receives the message from its neighbour a and

returns the message immediately back to a. By the def-

inition of Rule U1, node a is the unique active neigh-

bour of u. Furthermore, by the definition of Algorithm

1, Rule U1 is applied only if dist(u, t) > k. It follows

that dist(a, t) > k, otherwise, (by Algorithm 1) the mes-

sage would not have been forwarded to u. Consequently,

node a forwarded the message to an independent active

component C of G′
k(a). Every active component con-

tains at least k nodes. Since u is a constraint vertex in

C, it follows that u has a passive component containing

at least k − 1 nodes. The result follows by applying an

analogous argument to Rules S1 and US1. ut

Lemma 5 Every consistent cycle in G has length at

least 2k + 1.

Proof Some edge on every cycle C of length at most 2k

is classified as dormant in Gk(u) for every node u in C.

The result follows. ut

Expressed in graph-theoretic terms, the graph in-

duced by the consistent edges of G has girth at least

2k + 1.

Lemma 6 Any graph of girth at least g that contains

two or more cycles has at least 3g/2− 1 vertices.

Proof Choose any g and any graph G with girth at least

G that contains at least two cycles.

Case 1. Suppose G contains two vertex-disjoint cycles.

Each cycle has at least g vertices. Therefore, |V (G)| ≥
2g.

Case 2. Suppose G contains two cycles that have a

single vertex in common. Similarly, |V (G)| ≥ 2g − 1.

Case 3. Suppose all pairs of cycles in G have at least

two vertices in common. Any two intersecting cycles de-

fine at least one additional cycle. It suffices to show that

a graph of girth g with exactly three cycles has at least

3g/2− 1 vertices. Such a graph consists of three paths

joined at two vertices of degree three. Let a, b, and

c denote the number of vertices on each path, respec-

tively, not including the two vertices of degree three.

Therefore,

min{a+ b, a+ c, b+ c}+ 2 ≥ g

⇒ a+ b+ c+ 2 ≥ 3g

2
− 1.

The result follows since |V (G)| ≥ a+ b+ c+ 2. ut

Correctness of Algorithm 1

We now prove the correctness of Algorithm 1 and derive

a tight bound on the corresponding dilation.

Lemma 7 Given any connected graph G on n nodes,

any k ≥ n/4, and any {s, t} ⊆ V (G), Algorithm 1 suc-

cessfully delivers a message from node s to node t.

Proof By Proposition 1, every node u has at most three

active components. Consequently, one of Cases 1 through

4 of Algorithm 1 is applicable at each step.
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Suppose Algorithm 1 is defeated by some graph G,

for some k ≥ n/4 and some origin-destination pair

(s, t) ∈ V (G)×V (G). Since n is finite and Algorithm 1

is deterministic, the message must visit a repeating se-

quence of vertices and edges in G. Let R denote the

corresponding repeating subgraph of G. Let S ⊆ V (G)

denote the set of vertices of G not in R visited prior

to entering the repeating sequence R. Finally, let T =

V (G) \ (V (R) ∪ S) denote the set of vertices of G that

are never visited. The set {V (R), S, T} partitions V (G).

Since the message does not reach its destination t,

Case 1 of Algorithm 1 never occurs. Consequently,

∀v ∈ V (R) ∪ S, dist(v, t) ≥ k + 1

⇒ |T | ≥ k + 1. (3)

Furthermore,

|V (R)| = n− |T | − |S|, by definition of R, S, and T ,

≤ n− |T |
≤ 4k − |T |, since k ≥ n/4,

≤ 3k − 1, by (3). (4)

By Lemmas 5 and 6, and Inequality (4), R contains at

most one consistent cycle. By Lemma 3, there exists a

consistent path in G from t to some vertex in V (R). Let

{qR, qT } denote the last edge on such a path such that

qR ∈ V (R) and qT ∈ T . It follows that qT is an active

neighbour of qR that is never visited. Consequently, nei-

ther Rule S1, U1, nor US1 is applied at qR. Similarly,

since qR is visited multiple times (i.e., qR ∈ V (R)), nei-

ther Rule S2, U2, nor US2 is applied at qR, since each

of these rules implies qT having received the message.

Thus, only Rules S3, U3, or US3 may be applied at qR,

implying the following observation:

Observation 2 Node qR has active degree three. Fur-

thermore, two of its active neighbours are in V (R) while

the third, qT , is in T .

Case 1. Suppose graph R contains a consistent cycle.

By Lemma 5, this cycle must contain at least 2k + 1

nodes. Consequently,

|V (R)| ≥ 2k + 1. (5)

Since k ≥ n/4, by (3) and (5), we have,

|S| ≤ k − 2. (6)

The following observation follows from Corollary 4, Lemma 4,

and (6):

Observation 3 Neither Rule S1, U1, nor US1 can be

applied in the repeating sequence.

Therefore, the message can reverse its direction at a

node in R if and only if Rule S2 or US2 is applied.

Consequently, every vertex in R has active degree two

or greater in G. Rule S2 applies if and only if s has

two active components. Conversely, Rule US2 can be

applied only if s has only one active component since

s is in a passive component of u. Therefore at most

one of Rule S2 or US2 is applicable, implying there

is at most one node in R at which the message can

reverse its direction. Both Rules S2 and US2 initially

forward the message in the opposite direction from that

in which the reversal occurs. Consequently, the active

component in which the message is originally forwarded

cannot be in R if the message reverses its direction by

Rule S2 or US2 in R. Therefore, either the initial active

component is in S, contradicting (6), or the message

reverses its direction in that component, requiring that

one of Rule S1, U1, or US1 be applied, contradicting

Observation 3. Thus, none of Rules S1, U1, US1, U2,

or US2 can be applied to reverse the message direction

in R. We conclude that R consists of a single connected

cycle (without any dangling branches).

Case 1a. Suppose the origin node s is in a passive com-

ponent of some node p ∈ V (R) that has active degree

two. Consider the first time node p receives the message.

Rule US2 is applied a first time, forwarding the mes-

sage in one direction around cycle R. Since s 6∈ V (R) it

follows that Rule S2 is not applied and the message con-

tinues around cycle R until it returns to node p. Rule

US2 is applied once again, forwarding the message in

the opposite direction around cycle R. Upon return-

ing to node p, the message is again forwarded in the

same direction, and continues cycling in this direction

infinitely. The message has visited every node in R at

least once from each direction. By Observation 2, Rule

U3 is applied at qR. In particular, Rule U3 is applied

from two directions. In one of these directions the mes-

sage will be forwarded along the edge {qR, qT }. Since

qT 6∈ V (R), we derive a contradiction.

Case 1b. Suppose the origin node s is in a passive com-

ponent of some node p ∈ V (R) that has active degree

three. We derive a contraction by an argument analo-

gous to Case 1a, by applying Rule US3 instead of Rule

US2 at node p.

Case 1c. Suppose the origin node s is in V (R) and s

has active degree two. We derive a contraction by an

argument analogous to Case 1a, by applying Rule S2

instead of Rule US2 at node p = s.

Case 1d. Suppose the origin node s is in V (R) and s

has active degree three. We derive a contraction by an

argument analogous to Case 1b, by applying Rule S3

instead of Rule US3 at node p = s.
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Case 1e. Suppose the origin node s is in an active com-

ponent of some node p ∈ V (R) and s ∈ S. Therefore,

p has active degree three. Since the message cannot re-

verse its direction in R and R is a cycle, the entire

active component containing s must be in S, implying

|S| ≥ k. We derive a contradiction by (6).

Case 2. Suppose graph R is acyclic. Since R must

be connected, R is a tree. Consequently, the message

crosses every edge in E(R) from both directions. By

Observation 2, Rule U3 is applied at qR. Again, Rule

U3 is applied from two directions. In one of these di-

rections the message will be forwarded along the edge

{qR, qT }. Since qT 6∈ V (R), we derive a contradiction.

Each case derives a contradiction, implying our as-

sumption must be false. Therefore, the message does

not visit any repeating sequence of vertices. Since the

graph is finite, the message must eventually reach node

t. ut

Lemma 8 Algorithm 1 has dilation at most 7. Further-

more, for any ε > 0, there exists a network on which

Algorithm 1 has dilation at least 7− ε.

Proof Lemma 7 shows that every message eventually

reaches its destination. By Observation 1, a message can

traverse each edge at most twice, once in each direction.

Nodes at which Case 1 of Algorithm 1 applies are visited

at most once. By Corollary 3, the message travels only

along consistent edges of G. We partition the consistent

edges into those that forward the message exactly once

and those that forward the message at most twice, and

bound the cardinalities of these two sets.

Case 1. Suppose neither Case 2, 3, nor 4 of Algorithm

1 is applied. Therefore, only Case 1 is applied, the mes-

sage follows a shortest path to its destination, and the

dilation is 1.

Case 2. Suppose Cases 2, 3, or 4 of Algorithm 1 are

applied. Therefore,

dist(s, t) ≥ k + 1. (7)

In particular, Case 1 of Algorithm 1 is applied at the

last k + 1 nodes, each of which is visited exactly once.

These nodes form a path T of length k. That is,

|V (T )| = k + 1 and |E(T )| = k. (8)

Let Q denote the consistent subgraph of G induced by

the remaining nodes at which Cases 2, 3, or 4 may be

applied. Since k ≥ n/4 and by (8),

|V (Q)| = n− |V (T )| ≤ 4k − (k + 1) = 3k − 1. (9)

n − k − 6

k

c

d

e

t

bsa

Fig. 13 The red arrow denotes the neighbour to which the mes-

sage is initially forwarded from s. Blue arrows denote subsequent

forwarding decisions as a function of the neighbour from which
the message was received. Algorithm 1 forwards the message from

the origin node s clockwise around the cycle back to node s. The

message is then forwarded counter-clockwise around the cycle
back to node c before being forwarded along the path from c to

the destination node t. This route has length 2n−k− 3, whereas

the shortest path has length k + 3.

By Lemmas 5 and 6, and by (9), it follows that Q con-

tains at most one cycle. Therefore,

|E(Q)| ≤ |V (Q)| ≤ 3k − 1, (10)

where each edge in E(Q) is visited at most twice. Each

edge in E(T ) is visited exactly once. One additional

edge of G is followed once from Q to T . Therefore, the

dilation, S(k), is bounded by

S(k) ≤ |E(T )|+ 2|E(Q)|+ 1

dist(s, t)
≤ k + 2(3k − 1) + 1

k + 1
< 7,

(11)

by (7), (8), and (10).

We now show that (11) is tight. Choose any ε > 0

and let n ≥ 96/ε. Let G denote the graph on n vertices

illustrated in Figure 13 along with the corresponding

local routing functions for nodes s and c (Rules S2 and

U3, respectively). Observe that Rule U2 applies at all

remaining nodes on the cycle and Case 1 of Algorithm

1 applies at all nodes on the path from node d to the

destination node t. The route followed by Algorithm 1

has length 2n − k − 3, whereas the shortest path has

length k+3. Therefore, when k = n/4, Algorithm 1 has

dilation

2n− n/4− 3

n/4 + 3
= 7− 96

n+ 12
> 7− ε,

showing that (11) is tight. ut

Theorem 5 follows from Lemmas 7 and 8:
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11 2 3 4

susu

Fig. 14 (A) In the original definition of Algorithm 1, the re-

peated application of Rule U2 forwards the message right from u
until it reaches s. Here, Rule S2 is applied, sending the message

back to u. (B) Algorithm 1B reverses the direction of the message

pre-emptively at node u (Rule U2c).

Theorem 5 For every k ≥ n/4, there exists an origin-

aware, predecessor-aware, k-local routing algorithm that

succeeds on all connected graphs while guaranteeing di-

lation at most 7.

Reducing Dilation

Lemma 8 shows that Algorithm 1 cannot guarantee di-

lation less than 7− ε for any ε > 0. As shown in Theo-

rem 4, no (n/4)-local routing algorithm can guarantee

dilation less than 5. In Appendix A we describe a refine-

ment of Rule U2 that reduces the dilation of Algorithm

1 to at most 6. We refer to this new routing strategy as

Algorithm 1B.

Informally, the modification to Rule U2 applies Rules

S2 or US2 pre-emptively if the current node has suffi-

cient information to determine that one of these two

rules is about to be applied at a node in its local neigh-

bourhood. That is, instead of forwarding the message

in a given direction only to have the message reverse its

direction a few hops away, the direction of the message

is reversed immediately. See Figure 14.

We prove the following theorem in Appendix A:

Theorem 6 For every k ≥ n/4, there exists an origin-

aware, predecessor-aware, k-local routing algorithm that

succeeds on all connected graphs while guaranteeing di-

lation at most 6.

5.2 Predecessor Aware and Origin Oblivious

Given any k ≥ n/3, we describe a predecessor-aware,

origin-oblivious, k-local routing algorithm that succeeds

on all connected graphs on n vertices.

Routing Algorithm

The k-local preprocessing step of Algorithm 1 is ap-

plied to identify a set of routing edges in Gk(u) which

we denote by G′
k(u). Since 3k + 1 > n and an active

component contains at least k nodes, we get the follow-

ing proposition, analogous to Proposition 1:

Proposition 2 Every node has active degree at most

2.

Forwarding decisions are determined by the follow-

ing set of rules, similar to those defined in Algorithm 1.

Let u denote the current node.

Algorithm 2: (n/3)-local, origin-oblivious,

predecessor-aware routing algorithm

Case 1. Suppose dist(u, t) ≤ k. That is, t ∈
V (Gk(u)). The algorithm forwards the message to any

neighbour of u on a shortest path from u to t until the

message arrives at t.

Case 2. Suppose dist(u, t) > k, u = s, and v =⊥.

That is, the message is being sent from the origin for

the first time. The algorithm forwards the message

along any active edge of u.

Case 3. Suppose dist(u, t) > k and v 6=⊥. Forward-

ing decisions are illustrated by Rules U1 and U2 in

Figure 11. If the message arrived at u via a passive

component of u, then the algorithm forwards the mes-

sage along any active edge of u.

Correctness of Algorithm 2

We now prove the correctness of Algorithm 2 and derive

a tight bound on the corresponding dilation. Observe

that Lemmas 2, 3, 5, and 6, and Corollaries 3 and 4 ap-

ply directly to Algorithm 2. Furthermore, the following

lemma follows by an argument analogous to the proof

of Lemma 4:

Lemma 9 If Rule U1 is applied at a node u to reverse

the direction of a message, then G′
k(u) has a passive

component containing at least k − 1 nodes.

Using arguments similar to the proofs of Lemmas 7

and 8, we now prove the correctness of Algorithm 2 and

derive a tight bound on the corresponding dilation.

Lemma 10 Given any connected graph G on n nodes,

any k ≥ n/3, and any {s, t} ⊆ V (G), Algorithm 2 suc-

cessfully delivers a message from node s to node t.

Proof By Proposition 2, u has at most two active com-

ponents. Consequently, one of Cases 1 through 3 of Al-

gorithm 2 must apply at every node u.

Suppose Algorithm 2 is defeated by some graph G,

for some k ≥ n/4 and some origin-destination pair

(s, t) ∈ V (G)×V (G). Since n is finite and Algorithm 2

is deterministic, the message must visit a repeating se-

quence of vertices and edges in G. Let R denote the cor-

responding repeating subgraph of G. Let T = V (G) \
V (R) denote the set of remaining vertices of G, includ-

ing all those that are never visited. By Lemma 3, there
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exists a consistent path in G from t to some vertex in

V (R). Let {qR, qT } denote the last edge on such a path

such that qR ∈ V (R) and qT ∈ T . Since the message

does not reach its destination t, Case 1 of Algorithm 2

never occurs. Consequently,

∀v ∈ V (R), dist(v, t) ≥ k + 1,

implying that qT is an active neighbour of qR. By Propo-

sition 2, node qR has at most two active neighbours, one

of which is node qT . Since the message is in a repeating

sequence, Case 3 of Algorithm 2 applies. In particular,

Rule U2 applies, and the message is forwarded to node

qT . Since qT 6∈ V (R), we derive a contradiction. There-

fore, the message does not visit any repeating sequence

of vertices. Since the graph is finite, the message must

eventually reach node t. ut

Lemma 11 Algorithm 2 has dilation at most 3.

Proof Lemma 10 shows that every message eventually

reaches its destination. By Observation 1, a message can

traverse each edge at most twice, once in each direction.

Nodes at which Case 1 of Algorithm 2 applies are visited

at most once. By Corollary 3, the message travels only

along consistent edges of G. We partition the consistent

edges into those that forward the message exactly once

and those that forward the message at most twice, and

bound the cardinalities of these two sets.

Case 1. Suppose neither Case 2 nor 3 of Algorithm 2

is applied. Therefore, only Case 1 is applied, the mes-

sage follows a shortest path to its destination, and the

dilation is 1.

Case 2. Suppose Cases 2 or 3 of Algorithm 2 are ap-

plied. Therefore,

dist(s, t) ≥ k + 1. (12)

In particular, Case 1 of Algorithm 2 is applied at the

last k + 1 nodes, each of which is visited exactly once.

These nodes form a path T of length k. That is,

|V (T )| = k + 1 and |E(T )| = k. (13)

Let Q denote the consistent subgraph of G induced by

the remaining nodes at which Cases 2 or 3 may be ap-

plied. Since k ≥ n/3 and by (13),

|V (Q)| = n− |V (T )| ≤ 3k − (k + 1) = 2k − 1. (14)

By Lemmas 5 and 6, and by (14), it follows that Q is

acyclic. Therefore,

|E(Q)| < |V (Q)| ≤ 2k − 1. (15)

Case 2a. Suppose Rule U1 is never applied. Thus, the

message never changes direction. Since Q is acyclic, the

message never visits any edge in E(Q) more than once.

One additional edge of G is followed once from Q to T .

Each edge in E(T ) is visited exactly once. Therefore,

the dilation, S(k), is bounded by

S(k) ≤ |E(T )|+ |E(Q)|+ 1

dist(s, t)
≤ 3k

k + 1
< 3,

by (12), (13), and (15).

Case 2b. Suppose Rule U1 is applied at some node u.

By Lemma 9 and (15), at least k − 1 edges in E(Q)

are not visited. Consequently, at most k edges of E(Q)

are visited, each of which is visited at most twice. One

additional edge of G is followed once from Q to T . Each

edge in E(T ) is visited exactly once. Therefore, the di-

lation, S(k), is bounded by

S(k) ≤ 3k + 1

k + 1
< 3.

In all cases, we get that S(k) < 3. ut

Theorem 7 follows from Lemmas 10 and 11:

Theorem 7 For every k ≥ n/3, there exists an origin-

oblivious, predecessor-aware, k-local routing algorithm

that succeeds on all connected graphs while guaranteeing

dilation at most 3.

As shown in Theorem 4, no (n/3)-local routing al-

gorithm can guarantee dilation less than 3. Therefore,

Algorithm 2 is optimal with respect to worst-case route

length.

5.3 Predecessor Oblivious and Origin Oblivious

Given any k ≥ bn/2c, we describe a predecessor-oblivious

origin-oblivious k-local routing algorithm that succeeds

on all connected graphs on n vertices.

Since 2k+ 1 ≥ n and an active component contains

at least k nodes, we get the following proposition, anal-

ogous to Propositions 1 and 2:

Proposition 3 Every node has active degree at most

2.

We begin by establishing the following property which

is used to show the correctness of Algorithm 3 in Lemma 13:

Lemma 12 Given any connected graph G on n nodes,

any k ≥ bn/2c, and any {u, t} ⊆ V (G), either dist(u, t) ≤
k or Gk(u) has one constrained active component.
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Proof By Proposition 3, u has at most two active com-

ponents.

Case 1. Suppose u has no active components. The

entire network is contained in Gk(u) and, therefore,

dist(u, t) ≤ k.

Case 2. Suppose u has two active components. Since

2k + 1 ≥ n, the entire network is contained in Gk(u)

and, therefore, dist(u, t) ≤ k.

Case 3. Suppose u has one unconstrained active com-

ponent. Since every unconstrained active component

contains at least 2k vertices and 2k + 1 ≥ n, the entire

network is contained inGk(u) and, therefore, dist(u, t) ≤
k.

Consequently, if dist(u, t) > k, node u must have

one constrained active component. ut

Forwarding decisions are determined by the follow-

ing set of rules. Let u denote the current node.

Algorithm 3: (n/2)-local, origin-oblivious,

predecessor-oblivious routing algorithm

Case 1. Suppose dist(u, t) ≤ k. That is, t ∈
V (Gk(u)). The algorithm forwards the message to any

neighbour of u on a shortest path from u to t until the

message arrives at t.

Case 2. Suppose dist(u, t) > k and u has one con-

strained active component. Let v denote the con-

straint vertex in Gk(u) that is furthest from u. The

algorithm forwards the message to any neighbour of

u that reduces the distance to v. This procedure con-

tinues until the algorithm enters Case 1.

Lemma 13 Given any connected graph G on n nodes,

any k ≥ bn/2c, and any {s, t} ⊆ V (G), Algorithm 3

successfully delivers a message along a shortest path

from s to t.

Proof By Lemma 12, either Case 1 or Case 2 of Algo-

rithm 3 must apply at every node u. In Case 1, the dis-

tance from the current node u to the destination node

t, dist(u, t), decreases by one unit each time the mes-

sage is forwarded. In Case 2, observe that dist(u, t) =

dist(u, v) + dist(v, t). Therefore a decrease in dist(u, v)

implies an equal decrease in dist(u, t). It follows that

the route from s to t has length dist(s, t). Therefore,

Algorithm 3 finds a shortest path from s to t. ut

Theorem 8 follows from Lemma 13:

Theorem 8 For every k ≥ n/2, there exists an origin-

oblivious, predecessor-oblivious, k-local routing algorithm

that succeeds on all connected graphs and finds a short-

est path from the origin to the destination.

An alternative solution to Algorithm 3 can be de-

fined analogously to Algorithms 1 and 2. That is, when

at a node u, the same preprocessing step could be ap-

plied to identify routing edges. Upon doing so, a node

has active degree at most 3 in Algorithm 1 (k ≥ n/4),

active degree at most 2 in Algorithm 2 (k ≥ n/3), and

active degree at most 1 in Algorithm 3 (k ≥ n/2). Ignor-

ing predecessor- and origin-awareness/obliviousness, this

trend suggests that the locality parameter k is inversely

proportional to the number of possible forwarding de-

cisions that a k-local routing algorithm must consider

at each node.

5.4 Predecessor Oblivious and Origin Aware

An origin-aware, k-local routing algorithm does not re-

quire a greater locality parameter k than does an origin-

oblivious k-local routing algorithm to guarantee deliv-

ery. In other words, providing knowledge of the ori-

gin cannot hinder an origin-oblivious routing algorithm.

This gives the following corollary:

Corollary 5 For every k ≥ n/2, there exists an origin-

aware, predecessor-oblivious, k-local routing algorithm

that succeeds on all connected graphs and finds a short-

est path from the origin to the destination.

6 Discussion and Directions for Future

Research

6.1 Optimal Dilation

Algorithms 1 is a predecessor-aware, origin-aware, (n/4)-

local routing algorithm. Lemma 8 shows a tight bound

of 7 on the dilation of Algorithm 1. In Appendix A we

describe how to modify Algorithm 1 to reduce its dila-

tion: Lemma 16 shows a tight bound of 6 on the dilation

of the modified Algorithm 1. Theorem 4 implies a lower

bound of 5 on the worst-case dilation of any (n/4)-local

routing algorithm. Determining the exact bound on the

dilation possible for any (n/4)-local routing algorithm

within the interval [5, 6] remains open. One possible

strategy for further reducing the dilation of Algorithm

1 from 6 to 5 is to modify the preprocessing step such

that dormant edges on local cycles in Gk(s) are selected

to maximize the active degree of nodes in Gk(s).

6.2 Directed Graphs

The results of this paper concern k-local routing on

undirected graphs. Of course, the analogous questions

can be posed in the setting of directed graphs, many of
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which remain open. Preliminary investigations of local

routing on directed graphs have been made by Chávez

et al. [8] who describe 1-local routing algorithms for

Eulerian graphs and outerplanar graphs and Fraser et

al. [19] who show that every 1-local routing algorithm

requires Ω(n) bits of memory on directed graphs (i.e.,

no stateless 1-local routing algorithm exists).

6.3 Using Additional Memory

Relaxing constraints and allocating additional mem-

ory the message overhead to store state information

allows more general solutions to the local routing prob-

lem. Braverman [6] shows that there exists a position-

oblivious 1-local routing algorithm using Θ(log n) state

bits that succeeds on all graphs. An interesting open

question is to determine whether there is a correspond-

ing lower bound. Alternatively, does there exist a position-

oblivious, origin-aware, predecessor-aware, k-local rout-

ing algorithm with o(log n) state bits for k ∈ O(1)? In

general, can we identify tight bounds on memory re-

quirements for deterministic k-local routing under var-

ious models?
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A Reducing Dilation

We describe a refinement of Rule U2 that reduces the

dilation of Algorithm 1 to at most 6. We refer to this

new routing strategy as Algorithm 1B.

Modified Routing Algorithm

The new rule is defined formally as follows, replacing

Rule U2 of Algorithm 1. Let u denote the current node.

Recall that Rule U2 applies if u has two active compo-

nents, dist(u, t) > k, u 6= s, and either s 6∈ G′
k(u) or s is

in an active component of u. Let dist′(·, ·) denote graph

distance in G′
k(u) (dist(·, ·) still denotes graph distance

in G).

Case U2a. Suppose s 6∈ V (G′
k(u)) or dist′(u, s) = k.

Rule U2 remains unchanged; forwarding decisions are

illustrated in Figure 11.

In the remaining cases, U2b–U2f, u has two active

components, dist′(u, s) < k, u 6= s, dist(u, t) > k, and

s is in an active component of u.

Case U2b/c. Suppose the origin node s is a constraint

vertex in G′
k(u). Suppose furthermore that s has neigh-

bours c and d in G′
k(u) that are also constraint vertices

inG′
k(u). Without loss of generality, assume dist′(u, c) =

dist′(u, s) + 1 and dist′(u, d) = dist′(u, s) − 1. Note, if

dist′(u, s) = 1 then d = u. If rank(c) > rank(d) (Case

U2b), then forwarding decisions are illustrated in Fig-

ure 15B. Otherwise (Case U2c), forwarding decisions

are illustrated in Figure 15C. In Case U2c, u can deter-

mine the imminent application of Rule S2 and applies

this rule pre-emptively.

Case U2d/e. Suppose the origin node s is in a pas-

sive component of some constraint vertex e in G′
k(u).

Suppose furthermore that e has neighbours c and d in

G′
k(u) that are also constraint vertices in G′

k(u). With-

out loss of generality, assume dist′(u, c) = dist′(u, e)+1

and dist′(u, d) = dist′(u, e) − 1. Note, if dist′(u, e) = 1

then d = u. If rank(c) > rank(d) (Case U2d), then for-

warding decisions are illustrated in Figure 16D. Oth-

erwise (Case U2e), forwarding decisions are illustrated

in Figure 16E. In Case U2e, u can determine the im-

minent application of Rule US2 and applies this rule

pre-emptively.

Case U2f. Suppose none of Cases U2b to U2e apply.

Rule U2 remains unchanged; forwarding decisions are

illustrated in Figure 11.

Correctness of Algorithm 1B

We now prove the correctness of Algorithm 1B and de-

rive a tight bound on the corresponding dilation.

B C

usb u csbc

Fig. 15 Algorithm 1B, Cases U2b/c: The message is at node
u. Light blue regions denote the portion of each active component

of u that extends to the boundary of Gk(u). Passive components

are not illustrated. Blue arrows denote forwarding decisions at u
as a function of the neighbour from which the message is received.

Green and red arrows denote anticipated forwarding decisions at

s (Rule S2) as a function of the neighbour from which s receives
the message.

ED
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s

Fig. 16 Algorithm 1B, Cases U2d/e: The message is at node
u. Light blue regions denote the portion of each active compo-

nent of u that extends to the boundary of Gk(u). The light red
region denotes the passive component of e that contains s. Other

passive components are not illustrated. Blue arrows denote for-

warding decisions at u as a function of the neighbour from which
the message is received. Green and red arrows denote anticipated

forwarding decisions at e (Rule US2) as a function of the neigh-

bour from which e receives the message.

Given any connected graph G on n nodes, any k ≥
n/4, and any {s, t} ⊆ V (G), let {σi} and {σ′

i} denote

the sequences of edges in E(G) visited by Algorithms

1 and 1B, respectively, on a route from s to t. For any

x ≥ 1, let {ai}x denote the first j edges in the sequence

{ai}, where j = min(x, |{ai}|).

Lemma 14 For any x ≥ 1, {σ′
i}x is a subsequence of

{σi}.

Proof We use induction on x. When the message is first

forwarded from the origin node s, both routing algo-

rithms apply the identical Rules S1, S2, or S3. There-

fore, σ1 = σ′
1 and the claim holds when x = 1. Choose

any y ≥ 1 and assume the claim holds for x = y. We

show the claim holds for x = y + 1.

Case 1. Suppose {σ′
i}y = {σ′

i}y+1 (i.e., {σ′
i} contains

at most y elements). The claim holds for x = y + 1 by

the inductive hypothesis.

Case 2. Suppose {σ′
i}y 6= {σ′

i}y+1. Let u, v, and b de-

note nodes in V (G) such that σ′
y = (v, u) and1 σ′

y+1 =

(u, b). That is, u denotes the current node, having re-

ceived the message from node v, and b denotes the node

to which Algorithm 1B forwards the message after u.

By the inductive hypothesis, (v, u) ∈ {σi}. That is, Al-

gorithm 1 forwards the message from v to u. We show

1 Although graph edges are undirected, ordered pairs are used
here to denote the direction in which a message is forwarded

across an edge: (sender, receiver).
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that Algorithm 1 eventually forwards the message from

u to b.

Consider the forwarding rule applied by each algo-

rithm at node u.

Case 2a. Suppose both algorithms make identical for-

warding decisions, sending the message from u to b.

Thus, (u, b) must follow (v, u) in both sequences and

the claim holds for x = y + 1.

The algorithms differ only in Rules U2c and U2e.

Furthermore, the forwarding decisions made by each

algorithm differ only if the message was received from

node b (i.e., v = b), where b denotes the active neigh-

bour of u opposite s (see Figures 15C and 16E).

Case 2b. Suppose Algorithm 1B applies Rule U2c and

v = b. Let a denote the active neighbour of s opposite

b. Let node c denote the active neighbour of s opposite

a. See Figure 15C. Algorithm 1 applies Rule U2 and

forwards the message from u to a whereas Algorithm

1B reverses the direction of the message, sending it from

u back to b. Since c is a constraint vertex in G′
k(u), no

node on the path P from b to c can have an active

edge outside P . In particular, Algorithm 1 can only

forward the message toward s or reverse its direction

back toward u. If Algorithm 1 forwards the message

all the way to s, then Rules S1 or S2 apply. Otherwise,

Algorithm 1 applies Rule U1 before the message reaches

s. In either case, Algorithm 1 sends the message back

to u and then to b.

Observe that no rule other than S1, S2, U1, or U2

can be applied by Algorithm 1 when forwarding the

message along path P . In particular, because the mes-

sage started at node s, dist(p, t) > k for all nodes

p ∈ V (P ); otherwise, Case 1 of Algorithms 1 and 1B

would have applied initially at node s, and Rule U2c

could not have been applied by Algorithm 1B at node

u.

Consequently, (u, b) must appear after (v, u) in se-

quence {σi}. Therefore, by the inductive hypothesis,

the claim holds for x = y + 1.

Case 2c. Suppose Algorithm 1B applies Rule U2e and

v = b. The claim holds for x = y + 1 by an argument

analogous to Case 2b. ut

Lemma 15 Given any connected graph G on n nodes,

any k ≥ n/4, and any {s, t} ⊆ V (G), Algorithm 1B

successfully delivers a message from node s to node t.

Proof Algorithms 1 and 1B each terminate only once

the message reaches t. Therefore, it suffices to show that

{σ′
i} is finite. By Lemma 7, Algorithm 1 guarantees

delivery. In particular, {σi} is finite. By Lemma 14,

therefore {σ′
i} is also finite. ut

Lemma 16 Algorithm 1B has dilation at most 6. Fur-

thermore, for any ε > 0, there exists a network on which

Algorithm 1B has dilation at least 6− ε.

Proof Lemma 15 shows that every message eventually

reaches its destination. Observe that Lemmas 4–6 and

Corollary 3 apply directly to Algorithm 1B. By Corol-

lary 3, the message travels only along consistent edges

of G.

Case 1. Suppose neither Case 2, 3, nor 4 of Algorithm

1B is applied. Therefore, only Case 1 is applied, the

message follows a shortest path to its destination, and

the dilation is 1.

Case 2. Suppose Cases 2, 3, or 4 of Algorithm 1B are

applied. Therefore,

dist(s, t) ≥ k + 1. (16)

In particular, Case 1 of Algorithm 1B is applied at the

last k + 1 nodes, each of which is visited exactly once.

These nodes form a path T of length k. That is,

|V (T )| = k + 1 and |E(T )| = k. (17)

Let Q denote the consistent subgraph of G induced by

the remaining nodes at which Cases 2, 3, or 4 may be

applied. By Observation 1, a message can traverse each

edge in Q at most twice, once in each direction. Since

k ≥ n/4 and by (17),

|V (Q)| = n− |V (T )| ≤ 4k − (k + 1) = 3k − 1. (18)

By Lemmas 5 and 6, and by (18), it follows that Q

contains at most one cycle. Therefore,

|E(Q)| ≤ |V (Q)| ≤ 3k − 1. (19)

Case 2a. Suppose Q is a tree and the message does

not reverse direction. Therefore, each vertex in V (G) is

visited at most once. Since k ≥ n/4 and by (16), the

dilation, S(k), is bounded by

S(k) ≤ |V (G)− 1|
dist(s, t)

≤ n− 1

k + 1
≤ n− 1

n/4 + 1
< 4.

Case 2b. Suppose Q is a tree and the message reverses

direction at least once. If a reversal results from Rules

S2, US2, U2c, or U2e, then edge (u, b) will have been

traversed twice in the same direction (see Figures 10, 12

15, and 16); by Observation 1, the message will never

reach t, contradicting Lemma 15. Therefore, a reversal

must result from Rules S1, U1, or US1. By Lemma 4, at

least k− 1 edges in E(Q) are not visited. Let B denote

this set of edges. Thus,

|B| ≥ k − 1. (20)
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The remaining edges in E(Q) \ B are visited at most

twice. One additional edge of G is followed once from

Q to T . Therefore, the dilation, S(k), is bounded by

S(k) ≤ |E(T )|+ 2(|E(Q)| − |B|) + 1

dist(s, t)
≤ 5k − 3

k + 1
< 5,

by (16), (17), (19), and (20).

Case 2c. Suppose Q contains a cycle C and the mes-

sage never reverses direction. By Lemma 5,

|E(C)| ≥ 2k + 1. (21)

Let B = E(Q) \ E(C). By (19) and (21),

|B| ≤ k − 2. (22)

Consequently, every edge in E(C) is visited at most

once and every edge in B is visited at most twice. One

additional edge of G is followed once from Q to T .

Therefore, the dilation, S(k), is bounded by

S(k) ≤ |E(T )|+ 2|B|+ |E(C)|+ 1

dist(s, t)

=
|E(T )|+ |B|+ |E(Q)|+ 1

dist(s, t)

≤ 5k − 2

k + 1

< 5,

by (16), (17), (19), and (22).

Case 2d. Suppose Q contains a cycle C and the mes-

sage reverses direction at least once. Let B = E(Q) \
E(C). Again, (21) and (22) hold as in Case 2c. By (22)

and Lemma 4, a reversal cannot result from Rules S1,
U1, or US1 of Algorithm 1B. Furthermore, (22) implies

that a reversal cannot result from Rules S2 or US2,

since Rules U2c or U2e would have been applied ear-

lier. Thus, the reversal must result from Rules U2c or

U2e. By Observation 1, at most one reversal can occur.

Let u denote the node at which Rule U2c or U2e

is applied. If Rule U2c is applied, then let nodes be

labelled as in Figure 15C and let I denote the path from

u to s in G′
k(u). If Rule U2e is applied, then let nodes

be labelled as in Figure 16E and let I denote the path

from u to e in G′
k(u). The message is never forwarded

along any edge in E(I). If |E(I)| < k − 1, then some

passive component D adjacent to I in G′
k(u) must have

appeared active in G′
k(b) (otherwise, Rules U2c or U2e

would have applied at node b). Consequently,

|E(I)|+ |E(D)| ≥ k − 1 (23)

Furthermore, since D ⊆ B and by (22),

|E(D)| ≤ |E(B)| ≤ k − 2. (24)

a

s t
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Fig. 17 Solid line segments denote routing edges and the dotted
line segment denotes a dormant edge. The red arrow denotes the

neighbour to which the message is initially forwarded from the

passive component containing s. Blue arrows denote subsequent
forwarding decisions as a function of the neighbour from which

the message is received. When k = n/4, Algorithm 1B forwards

the message from the origin node s along the path to node e,
and then clockwise around the cycle to node u. Node u applies

Rule U2e, sending the message counter-clockwise around the cy-
cle back to node c before being forwarded along the path from c to

the destination node t. This route has length n+ 2k− 6, whereas

the shortest path (via the dormant edge {s, d}) has length k + 1.

Thus, each edge in Q is traversed at most twice. How-

ever, not all edges in Q are traversed twice: edges in

I are never traversed and edges in D are traversed at

most once. One additional edge of G is followed once

from Q to T . Therefore, the dilation, S(k), is bounded

by

S(k) ≤ 2(|E(Q)| − |E(I)| − |E(D)|) + |E(D)|+ |E(T )|+ 1

dist(s, t)

≤ 2[(3k − 1)− (k − 1)] + (k − 2) + k + 1

k + 1

≤ 6k − 1

k + 1

< 6, (25)

by (16), (17), (19), (23), and (24).

In all cases, we get that S(k) < 6.

We now show that (25) is tight. Choose any ε > 0

and let n ≥ 48/ε. Let G denote the graph on n vertices

illustrated in Figure 17 along with the corresponding lo-

cal routing functions for nodes u, e, and c (Rules U2e,

US2 and U3, respectively). Let edge {s, d} have mini-

mum rank. Node s lies on a cycle of length n− 3k + 1.

Since k ≥ n/4, this cycle is local and edge {s, d} is iden-

tified as dormant. Rule S1 applies at node s. Rule US1

applies at all nodes on the path from s to a. Case 1

of Algorithm 1B applies at all nodes on the path from

node d to the destination node t. Rule U2 applies at all
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remaining nodes other than u, e, and c. The route fol-

lowed by Algorithm 1B has length n+ 2k − 6, whereas

the shortest path has length k + 1. Therefore, when

k = n/4, Algorithm 1B has dilation

n+ 2(n/4)− 6

n/4 + 1
= 6− 48

n+ 4
> 6− ε,

showing that (25) is tight. ut

Theorem 6 follows from Lemmas 15 and 16:

Theorem 6 For every k ≥ n/4, there exists an origin-

aware, predecessor-aware, k-local routing algorithm that

succeeds on all connected graphs while guaranteeing di-

lation at most 6.


