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ABSTRACT

The Euclidean centre (centre of the smallest enclosing sphere) of a set of points P in
two or more dimensions is unstable; small perturbations at only a few points of P can
result in an arbitrarily large relative change in the position of the Euclidean centre. Any
centre function more stable than the Euclidean centre is eccentric; that is, its associated
radius exceeds the radius of the smallest enclosing circle for some point sets P. Moti-
vated by applications in mobile facility location (in which clients move continuously with
some maximum velocity) we seek alternative notions of centrality that are stable while
maintaining low eccentricity. In general there is a trade-off; centre functions with lower
eccentricity are less stable. In an attempt to balance the conflicting goals of closeness of
approximation and stability, we apply the Steiner centre, traditionally defined for con-
vex polytopes, as a centre function of a set of points in the plane. Although previously
defined, the notion of a Steiner centre had not been analyzed in terms of its approxi-
mation of the Euclidean centre. Exploiting the equivalence of the two definitions of the
Steiner centre established by Shephard,2” we prove the stability of the Steiner centre is
/4 and show that the associated radius is at most 1.1153 times the Euclidean radius
of any point set P. It follows that a mobile facility located at the Steiner centre of the
positions of a set of mobile clients remains close to the Euclidean centre of the clients
yet never moves with relative velocity that exceeds 4/.

Keywords: Centre; Steiner point; Euclidean centre; smallest enclosing circle; stability;
eccentricity; approximation; facility location; mobile facility location.
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1. Introduction

Finding a point that is central to a collection P of data points drawn from some
metric space is a fundamental problem of geometry and data analysis. The centre
of the smallest d-sphere enclosing a set of points P in Euclidean d-space, referred
to as the Euclidean centre, provides a natural, and broadly applicable, definition
for a centre function.

Unfortunately, the Euclidean centre is unstable in the sense that small pertur-
bations at only a few points of P can result in an arbitrarily large relative change
in the position of the Euclidean centre.!® Even small error, perhaps introduced by
discretization in the representation of point coordinates, can result in large rela-
tive error in the position of the Euclidean centre. Clearly, any centre function, T4,
that is more stable than the Euclidean centre must, for some point sets P, have
an associated radius (maximum distance from Y;(P) to any point in P) that ex-
ceeds the Euclidean radius of P. These two attributes, eccentricity (relative radius)
and stability, are in opposition; increased stability implies increased eccentricity
and vice-versa. We formalize these notions through the definitions of k-stability
and A-eccentricity. Together, the properties of stability and eccentricity allow us to
quantify and to compare the quality of various centre functions.

In this paper we apply and analyze the Steiner centre of a set of points in the
plane with the objective of identifying a centre function that balances high stability
with low eccentricity. The Steiner centre has two quite different but equivalent
definitions. Maintaining dual definitions proves significant: the first formulation
using weights defined by turn angles at extreme points (definition by Gaussian
weights) allows for simple implementation using kinetic data structures while the
second formulation using projection and integration lends itself to proving bounds
on stability and eccentricity. We show the Steiner centre is more stable and less
eccentric than several other natural notions of centre functions.

The utility of the Steiner centre extends beyond its definition as a robust centre
of a set of static points. Indeed, our primary motivation arises from the field of
facility location within which the definition and computation of centre functions is
a fundamental and well-studied task. Recently, motivated in part by applications
in mobile computing, there has been considerable interest in recasting a number of
basic questions of facility location in a mobile context.?3:5:9:10:17:20 Given a set of
mobile clients, modelled as points in R¢ that move continuously and with bounded
velocity, the utility of a mobile facility is determined by its eccentricity as well as
the continuity and maximum relative velocity of its motion. We show the stability
of a centre function is inversely related to the maximum relative velocity of a mobile
facility whose location is specified by that function. We evaluate the mobile Steiner
centre as a strategy for the maintenance of a bounded-velocity mobile facility with
low eccentricity.

This paper is organized as follows. Section 2 formalizes the notions of eccentricity
and stability. Section 3 motivates and presents two definitions for the Steiner centre
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of a set of points in R?. Sections 4 and 5 respectively derive the eccentricity and
stability of the Steiner centre. Section 6 explores the concepts of mobile facility
location related to the centre problem, defines the Steiner centre within the mobile
setting, and establishes a tight bound on its maximum relative velocity. Section 7
discusses implementation issues for maintaining the Steiner centre using kinetic
data structures. Section 8 compares the stability and eccentricity of the Steiner
centre against other centre functions. Finally, Section 9 briefly discusses extensions
of the Steiner centre to three dimensions.

2. The Centre of a Set of Points
2.1. Preliminary definitions

A (d - 1)-dimensional hyperplane H partitions R? into three regions: H itself and
the two open connected components of R — H, which we denote by H and H~.
By convention, if A is a set, let A denote its closure, CH(A) its convex hull, and
ﬁ(A) the set of all nonempty bounded subsets of A.

Definition 1. A point p is an extreme point of the set P C R? if and only if for
some (d — 1)-dimensional hyperplane H and associated half-space H™, p satisfies
PnHY = {p}.

Note that the extreme points of P are just the vertices of CH(P).

2.2. Notions of centrality

Given a nonempty bounded set of points P C R?, a fundamental problem of ge-
ometry and data analysis concerns the characterization and computation of points
that are central to P. If § is any metric on R?, then a é-centre of P is defined as a
point ¢ € R? that minimizes max, 5 6(p, ¢). A natural, and for many applications
the default, metric for measuring distance between two points p and q in R? is
the Euclidean metric, equivalent to the £2 norm, ||p — ¢||, of the vector p — ¢. The
corresponding Fuclidean centre of P is the (unique) centre of the smallest d-sphere
enclosing P.
We refer to an arbitrary function Y4 : Z(R?) — R? as a centre function.

Definition 2. The Euclidean centre is the centre function whose value Z4(P),

—

for an arbitrary P € 2(R?), is the point in R? that minimizes

max ||p — Zq(P)]|. )
peP
The value max 5 ||[p — Eq4(P)|| is referred to as the Euclidean radius of P.
The minimum enclosing circle (for points in R?) and minimum enclosing sphere
(for points in R?) problems are well studied with both deterministic and randomized
linear-time algorithmic solutions. Megiddo?? gives a deterministic ©(n)-time linear
programming solution in R?, where n = |P|. Agarwal et al.! extend this result
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to R? for any fixed d in O(d°®n) time. Since every point must be examined,
these results are asymptotically optimal when d is fixed. Welzl®! gives a simpler
randomized algorithm with ©(n) expected time in R? for any fixed d.

2.3. Centre stability

Point coordinates are commonly represented by discretization of real positions to
nearby grid coordinates. That is, each point is approximated by the nearest grid
point. Given a set of points P € ﬁ(Rd) and its Euclidean centre Z4(P), small
perturbations at only a few points of P can result in a relatively large change in
the corresponding position of Z4(P). In this sense, the Euclidean centre is unstable.
As will be discussed in Sec. 6, this implies that the relative velocity of a mobile
facility located at the Euclidean centre of a collection of mobile clients is potentially
unbounded. We formalize the notion of stability by defining x-stability for a cen-
tre function T4 as a measure of its maximum volatility. This requires preliminary
definitions for an e-perturbation and a continuous function.

Definition 3. Given € > 0, function f : P — R? is an e-perturbation on P €
P(R?) ifforallp e P, |lp— f(p)l| <e.

Let FF denote the set of all e-perturbations on P. A prerequisite for stability
is continuity. Specifically, if the stability of centre function Y is bounded, then T
must be continuous.

Definition 4. A centre function T, : @Rd) — R? is continuous if for all P €

—

P (R%) and all § > 0 there exists an £ > 0 such that for all f € FF,

1Ta(P) — Ta(f(P)Il <. (2)
Definition 5. A centre function Ty : ./?T(Rd) — R? is k-stable if
Ve >0, Vf € F, k|| Ta(P) = Ta(F(P)Il <&, 3)

for all P € Z(R?).

Clearly, every centre function is 0-stable. It has been shown previously, in the
context of mobile facility location, that the Euclidean centre 24, though continuous,
is arbitrarily unstable. Specifically, Bespamyatnikh et al.!® show, in effect, that for
d > 2, E4 is not k-stable for any x > 0. For arbitrary Y4, the maximum stability
factor k ranges from 0 to oo, where a greater k value corresponds to a more stable
point. If T, is constant it is oco-stable, but of course such a function is of little
benefit as a notion of centre; as we will see in Sec. 3.1, only maximum stability
factors in the range [0, 1] are of interest.

2.4, Measuring centrality

If centre function Yq is s-stable for any £ > 0 then max 5 ||[p — Tq(P)|| must

exceed the Euclidean radius of P for some P € 2| (R?). We formalize the notion of
the relative radius of a centre function Y4 in terms of the eccentricity of Tg4:
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Definition 6. A centre function Y4 is A-eccentric if

max ||p — Y4(P)|| < Amax||g — Eq(P)|], (4)
peEP geP

for all P € Z(RY).

The eccentricity factor A ranges from 1 to oo, with a 1-eccentric centre function
being the least eccentric (most central). The stability and eccentricity factors, x and
A, allow us to compare the utility of different centre functions. In general, functions
with lower eccentricity have lower stability. Subject to this trade-off we seek centre
functions with stability and eccentricity close to one.

3. The Steiner Centre

Named after Steiner who first introduced this point in the late nineteenth century,?®
the original definition of the Steiner centre was phrased in terms of projection and
integration, leading to the definition in Sec. 3.2. A second, fundamentally different
definition, phrased in terms of Gaussian weights given by turn angles at the extreme
points leads to the definition in Sec. 3.1. The equivalence of these two definitions
was shown by Shephard.?”

3.1. Definition by Gaussian weights

Many centre problems find their simplest non-trivial definitions in R?. In this sec-
tion we motivate using Gaussian weights to define a centre function. The resulting
definition is that of the Steiner centre of a set of points in the plane, defined first for
a finite set P, and then, more generally, for any nonempty bounded set P € P (R?).
As will be discussed in Secs. 6 and 7, the simple and intuitive definition of the Steiner
centre by Gaussian weights will prove effective in efficiently defining the position of
a mobile facility that balances low maximum velocity and low eccentricity

Let P C R? denote a nonempty finite set of points. The simplest definition of
a centre function Y, (that is not independent of P) simply assigns To(P) = p,
for some fixed point p € P. Since ||p — f(p)|| = ||X2(P) — T2(f(P))|| for any
e-perturbation f : R? — R2?, Y, is 1-stable. However, T, is 2-eccentric but not
(2 — €)-eccentric for any € > 0 (the worst case occurs when Yo(P) lies at one end
of a diameter of the minimum enclosing circle of P). In fact, any centre function
that lies within the convex hull of P, regardless of its stability, is at worst 2-
eccentric. This sets an upper bound for A; any reasonable centre function should
have eccentricity at most 2.

Taking the average of points in P improves neither eccentricity nor stability;
Bespamyatnikh et al.l® show the centre of mass is also 1-stable and 2-eccentric.
Furthermore, they show that any centre function with stability factor at least one
must have eccentricity at least two. This relationship extends easily to show that
if a centre function has stability factor greater than one, then its eccentricity must
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be infinite. This sets an upper bound for k-stability; any reasonable s-stable \-
eccentric centre function will have a stability at most 1.

Reducing eccentricity decreases stability and vice-versa. The challenge lies in
understanding the trade-off between eccentricity (in the range [1,2]) and stability
(in the range [0,1]). The actual correlation between & and A is a strictly increasing
bijection over all centre functions Y, and all sets of points P. For a fixed € [0, 1],
let X\*(k) denote the minimum eccentricity over all k-stable centre functions. This
defines a function A* : [0,1] — [1,2], where A*(1) = 2 and A*(0) = 1. Thus, the
eccentricity of any k-stable centre function T is at least A*(k). While the precise
value of function X\*(x) for & € (0,1) remains unknown, the asymptotic behaviour
of A*(k) is understood and shown to be bounded from below by A*(k) > 1+ x2/64
by Bereg et al.”

Observe that any point p € P that lies on the minimum enclosing circle of P
must be an extreme point of P. A natural attempt at defining a centre function 15
might be to define it to be the average of the extreme points of P. However, the
instability (and in fact, discontinuity) of this centre function Y2 becomes evident
whenever a small perturbation of P alters the composition of the set of extreme
points. For the same reason, any centre function defined as a fixed weighted average
of the extreme points of P is not k-stable for any x > 0 (nor is it continuous). Nev-
ertheless, by choosing weights that depend on the degree of extremity of individual
points it is possible to ensure not only continuity but also high stability.

For clarity, Definitions 7 and 8 assume |P| > 2. In the case when |P| =1 (that
is, P = {p}, for some p) the Steiner centre is simply I'y(P) = p.

Definition 7. Let P C R? be a finite set of points with |P| > 2. Let Vp be the set
of extreme points of P. For every p € Vp, let a, be the interior angle formed on
the convex hull boundary at p. The Gaussian weight of p is

_[m—0ap ifpeVp
ws(p) = {0 ifpeP—Vp. (5)

For p € Vp, wy(p) corresponds to the turn angle at p on CH(P). Consequently,
> pep w2(p) = 2m. Note, wz(p) > 0 if and only if p is an extreme point of P. Ex-
pressed in terms of Gaussian weight, the Steiner centre is defined as the normalized
weighted centre of mass of P.

Definition 8. Let P C R? be a finite set of points with |P| > 2. The Steiner
centre of P is the normalized weighted mean of P:

1
Tao(P) = o= > wa(p)p, (6)
pEP
where w4 (p) is the Gaussian weight of point p.

For example, let P = {p1,...,p6} = {(-2,-1),(-1,-1),(2,-1),(2,1),
(0,1),(1,0)}, respectively. See Fig. 1A. Since wa(p) = 7 — op, points p1,...,Ps
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Fig. 1. The Steiner centre I'o(P) defined by Gaussian weights and the Gaussian map of P.

have weights 37 /4, 0, /2, w/2, w/4, and 0, respectively. The Steiner centre of P,
I3(P), lies in position (1/4,—1/4). The Euclidean centre of P, E5(P), lies at the
origin.

The Gaussian map (normal map) provides an equivalent definition for Gaussian
weights. The Gaussian map of a convex polygon Q@ C R? is the set of normals to
edges of @) projected from the origin as vertices on the unit circle (see Ref. 13 for
a discussion of the Gaussian map). Given a nonempty finite set of points P C R?,
the Gaussian map Gp of the convex hull boundary of P divides the unit circle
into sectors such that the Gaussian weight of each extreme point of P is given by
the length of its corresponding arc in G p or, equivalently, the corresponding sector
angle. The example in Fig. 1B displays the Gaussian map of the set of points P
from Fig. 1A.

As a centre function, Gaussian weight formulation of the Steiner centre has
several desirable properties. The Steiner centre is defined solely in terms of the
geometry of the boundary of the convex hull of P. Small changes in the convex hull
result in small changes in the weights of points. Specifically, if a point p is moved
continuously, the weight of p changes continuously, even when p moves along, joins,
or leaves the convex hull boundary. This continuous change in weights results in
continuity in the motion of the Steiner centre by smoothly blending the contribution
of each point.

3.2. Definition by projection

In one dimension, the Euclidean centre of a set of points P € P (R) is simply

1 (migp + max q) . )
2 \peP geP
That is, the one-dimensional Euclidean centre is the average of the two extreme
points. As discussed in Sec. 3.1, while the mean of the extrema does not provide
a robust centre function, Eq. (7) suggests other possible generalizations to higher
dimensions.

One possibility is to project points onto a line through the origin, to find the
one-dimensional centre of the projection, and to average these one dimensional
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Fig. 2. Defining the Steiner centre I'2 by projection.

centres for all lines through the origin.

Let line ly be the line through the origin parallel to the unit vector ug =
(cos6,sinf). Given a set of points P € e9/5(11&2) and an angle § € [0,7), let Py
denote the projection of P onto the line ly. See Fig. 2A. That is,

Py = {ug(p,us) | p € P}. ©)
The midpoint of Py is just the Euclidean centre of Py,

mid(Pp) = %‘9- <mi2(p, ug) + malc(q,ug)) = Z3(Py). 9)
pEP geP

See Fig. 2B. Let p € R? be any fixed point. The average over all projections of p
onto lines ly is

1 ™
* [ woto,us) ds =2 (10)
T Jo
See Fig. 2C. Equivalently, if P = {p},
p= g/ UQ(p,UQ) df = 2/ mid(Pg) de. (11)
T 0 m 0

This suggests the following definition of a centre function (shown to be equiva-
lent to Definition 8 by Shephard?®”):

Definition 9. The Steiner centre of P € ﬁ(l[@) is
T(P) = % / mid(Py) db, (12)
0

where mid(Py) = Z2(Py) is the midpoint of the projection of P onto line y = z tané.

This second definition of the Steiner centre of P can be interpreted in terms
of bounding boxes of P. The bounding box of P with orientation 6 is simply
CH(Py) + CH(Py4r/2), where addition denotes the Minkowski sum. Its centre is
the point mid(Ps) + mid(Ps4r/2). See Fig. 3. Hence,

Lemma 1. The Steiner centre of P € P (R?), T2(P), is equivalent to the average
of the centres of all bounding bozes of P.
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Fig. 3. Illustration supporting Lemma 1.

Proof.

2 ™
T2(P) = = /0 mid(P;) df
2 TI’/2

=2 [ /0 mid(Py) d6 + /7r M) dHJ

2 7I'/2
= ;/ [mid(Pg) + mid(Pg+ﬂ/2)] df. O
0

Observe that the minimum of P, corresponds to the maximum of Py . Specif-
ically, we can rewrite Eq. (12) as

Ty(P) = % /0 " mid(Py) db

2 i
= —/ il (mig(p, ug) + max(q, u0)> do
TJo 2 \peP qeP
1 2m
= —/ ug - max(q, ug) df. (13)
™ Jo geP

The latter, Eq. (13), is used in the proof of Theorem 1.

3.3. Related work

The Steiner centre is known under various names including Steiner curvature
centroid,'>?! Steiner point,'8:2%26:27.28 Kimberling triangle centre X (1115),%2
Gaussian centre,!*1% and projection centre.!® Several useful properties of the
Steiner centre have been established:

(1) locality” I'2(P) € CH(P).

(2) continuity?®28 T, is continuous (see Definition 4).

(3) additivity?® I'y(P) + I'2(Q) = T'2(P + Q), where addition denotes the
Minkowski sum.

(4) invariance under similarity transformations?® [y(t(P)) = t(T'2(P)) for
any similarity transformation ¢ : R¢ — R¢.
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(5) convex decomposition? A relationship analogous to the inclusion-exclusion
principle holds on a convex decomposition of P; that is, given polytopes
Py, ...,P, such that P = P, U...U P, is also a polytope, then

Ty(P)=> T3(P) =Y To(PiNP)+...+ ()" Ty (PN...NP).
i<j
(6) decomposition into j-faces?” I'y(P) can be expressed in terms of the Steiner
centres of the faces, edges, and vertices of P; that is,

L+ (=D)*HT2(P) = Y To(FY) = D To(F}) +... + (=1 D Ta(FF),
where Ff are the j-faces of P.

To our knowledge, previous to our work, neither had the Steiner centre been
evaluated as a stable approximation to the Euclidean centre nor had its quality in
defining the position of a mobile facility been examined.

4. Eccentricity of the Steiner Centre

In this section we prove that the Steiner centre is A-eccentric, where A =~ 1.1153.
We show that this maximum is achieved when the extreme points form an arc
opposite an isolated point on the circle as displayed in Fig. 5B, where o = 0 and
B8 =~ ~ 0.8105.

Lemma 2. Among all sets P € ﬁ(]l@) with Euclidean radius r > 0, the worst-case
eccentricity of I's is realized when the extreme points of P consist of an arc A and
an isolated point m on the circle C with radius r and centre E4(P).

Proof. Since I'y(P) = I'y(CH(P)) and maxpep ||T2(P) — p|| is realized at an
extreme point of P, we can assume that P is a convex set. Let m € P be a furthest
point from I'y(P). Let a, (respectively, a,) denote the z-coordinate (respectively, y-
coordinate) of a point a € R2. Since I'y is invariant under rotation and translation,
without loss of generality, we can further assume that m, = I';(P), and m, >
[9(P)g. Since maxpep ||[T'2(P) — p|| > r > 0, the line induced by m and T's(P) is
well defined.

For p € P, let
(14)

; _ [ left translation of pto €' if p#m
right translation of pto C if p=m’

Let set P’ = {p’ | p € P}. Observe that every point in P’ corresponds to a horizontal
translation of some point in P. See Fig. 4. The z-coordinate of the Steiner centre
of P! is given by

Ty (P, = %/Oﬂ mid(Fp), df. (15)
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Fig. 4. lllustrations supporting Lemma 2.

Since all points of P’ — {m'} are left translations of points in P,

mid(F}). < mid(Ry). + 22, (16)
for any 6 € [0, 7]. Therefore,
[3(P')e <T2(P)s + (my — ma), (17)
and hence
my —T2(P)y > my — T2(P)s. (18)
Since my > I'2(P), and ml, > ['y(P'),,
[mg — T2(P")z| > |[mg — T2(P)yl. (19)
Therefore,
|lm" = T2(P')|| > Img — T2(P')e| > [ma — T2(P)s| = ||m = T2(P)][. (20)

Since all points of P’ lie within the minimum enclosing circle of P, the Euclidean
radius of P’ is at most the Euclidean radius of P. Therefore, Eq. (20) implies that
the eccentricity of P’ is at least as great as the eccentricity of P. The extreme points
of set P’ consist of an arc of C opposite the isolated point m/'. O

Theorem 1. The eccentricity of the Steiner centre I's is A = 1.1153.

Proof. It follows from Lemma 2 that to understand the eccentricity of I'y it
suffices to study point sets P formed by an arc A of a circle C' and an isolated point
m on C. Since I's is preserved by translation, reflection, rotation, and uniform
scaling, we can assume C is the unit circle centred at the origin such that m lies
in the first quadrant and the line induced by m and I'2(P) lies parallel to the
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Fig. 5. Theorem 1: maximizing the eccentricity of the Steiner centre.

z-axis. See Fig. 5A. Thus, point sets of interest are completely characterized by
three parameters which specify the angles «, 8, and « formed, respectively, by the
position of m relative to the positive z-axis and the endpoints of A relative to
the negative z-axis. See Fig. 5B. Let P, g, denote such a set of points. To find
a point set that realizes the worst-case eccentricity of I's we need only maximize
[IT2(Pa,g,v) — m||. Since 's(Py,5.~)z < Mg, this corresponds to identifying values
of a, 3, and ~y that maximize mg —I'y(Py,g,/), While maintaining the property that
Lo (Pa,gy)y = my.

The Steiner centre of P, s 4 is straightforward to calculate by examination of the
various cases for which specific extreme points of P, g, remain extreme in Py. The
coordinates of the extreme points of P are m = (cosa,sina), b = (- cos 8, sin ),
¢ = (—cos~, —sinv), and ug = (cosf,sinb), for § € [r — B, 7 + 7].

Table 1 divides the range of integration, 6 € [0, 2x], into intervals for which each
of the points m, b, ¢, and ug induce a maximum of Fy.

Table 1. Case analysis of extreme points in I'2(Py,3,~)-

interval of 6 arg max,e p (p, ug)
[0, (m+oa—p)/2] m
[(x+a—B)/2, =g b
[ -8, ™+ ] ug
[+, (B +a+17)/2] c
(B 4+ a+7)/2, 27| m

The z-coordinate of the Steiner centre of P, g, is given by

2
Lo(Pagy)e = l/ cos @ - max(ug,p) df
T Jo pEP
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1 (r+a—B)/2 T8
== / cos O{ug, m) df +/ cos (ug, by df
T |Jo (r+a—pB)/2

ey (Brta+y)/2
+/ cos O{ug,ug) df +/ cosB{ug, c) db
m—03 T4y

+/27r cos(ug, m) dﬂ]
(3m+at+v)/2
= i [~2sinf — 2siny — (7 — a — 8) cos B
—(r+a—7v)cosy+ (2r —y—B)cosa]. (21)
Let f denote the function f(a, 8,7) = mg — I'2(Pa,g,v)z- Values of a, 8, and v

that define a local maximum of f must satisfy the following conditions:

0 0 3]
92’ =957 =5/ =0

Specifically,
0 1 .
a5 = 4—7—r[cosﬂ—(7r—-a—ﬁ)s1n6+cosa] =0, (22)
% = %[cos7—(7r+a—'y)sin'y+cosa] =0, (23)
and %f: i[oosv—cosﬂ—(27r+,3+’y)sina]=0. (24)

We now show that the constraints imposed by Egs. (22) through (24) imply that
for (@, B,7) € [0,7/2])3, f has only one local (and hence global) maximum occurring
at a =0 and § =y = 0.81047.

Since o, 8, and « lie in the interval [0,7/2], the term —(2x + 8 + v)sina in
Eq. (24) is nonpositive, meaning that cosy — cos 8 > 0 and, consequently, v < f.
Furthermore, in order for the unit circle to define the minimum enclosing circle
of P, g, line segment €m must pass below the origin, implying that v > a. See
Fig. 5B. These constraints impose an ordering on the angles: 0 < a <y < 8 < «/2.

We bound the value of a. Solving for sina in Eq. (24) gives
cosy — cos 3

R Ty Jrp
1
S g0
Therefore,
0 < a < arcsin (i> ~ 0.159835 < ir_ (25)
-~ 2n 50

We derive an upper bound on § using this bound on a. By Eq. (22),
0=cosf—(mr—a—p)sinf+cosa,
477

<cosf — (—56— - ﬂ) sinf + 1, since a € [O, %7(—:] . (26)
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Let g(8) = cos B — (477 /50 — ) sin 8 + 1. Observe that ¢'(8) < 0 for B € [0,7/2].
Furthermore, g(1) < 0. Consequently, g(8) < 0 for all 8 € [1,7/2]. Since g(8) must
be nonnegative by Eq. (26), it follows that v < 8 < 1.

We now take a linear combination of Egs. (22), (23), and (24).

3} 3} I3}
(5550 5a7) =0
= 2r+ 8+ y)sina—(r+a—y)siny+ (r—a—B)sinf =0
= \ﬂsina—asinﬂj+3’sina—asinz
o t2
+(m —B)sinf — (m —v)siny+ 2msing =0. (27)

ts ts
We examine terms ¢; through ¢4 from Eq. (27). Let h(z) = z/sinz. Observe
that lim,_,o A'(z) = 0 and A"(z) > 0 for = € [0,7/2]. Thus, h(z) is nondecreasing
on the interval [0,7/2], meaning that for any 0 < a <y < 8 < /2,

> .
sinff ~ sina siny ~ sina

5 C and L >-2 (28)

Therefore, terms ¢; and ts in Eq. (27) are nonnegative.

Let i(z) = (7 — z) sinz. Observe that 3" (z) < 0 for z € [0,7/2] and (1) > 0.
Therefore, i(z) is nondecreasing on the interval [0, 1]. Consequently, since 0 < y <
B8 <1, we get

(m—B)sin B — (w — v)siny > 0. (29)

Therefore, term ¢3 in Eq. (27) is nonnegative. Since terms ¢;, t5, and ¢3 are non-
negative and Eq. (27) is equal to zero, term ¢4 must be nonpositive. Thus,

2rsina< 0= a=0. (30)
Furthermore, by Eq. (24),
cosy—cosB=0=~v=2, (31)
and by Eq. (22),
cosf— (r—fB)sinB+1=0. (32)

Since & = 0 and 8 = v, we get I'(Pa,3,7)y = My as required. Eq. (32) has a single
root on (3 € [0,7/2]. This can be seen by the fact that its derivative is nonpositive
and its second derivative is strictly positive on this interval. This root occurs near
B = 0.81047. These values are substituted into f(a, 8,%) to give

sup  ||T(Pagp) —m|| ~ 1.1153. (33)
(eB,7)€[0,7/2)2

Since the Euclidean radius of P is one, this implies the eccentricity of the Steiner
centre is also approximately 1.1153. O
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5. Stability of the Steiner Centre

Closely related to our definition of stability, Alt et al.® define the quality of a refer-
ence point using Hausdorfl distance and show that the quality of the Steiner point
is 4/7. Our definition of stability lends itself better to the notion of a perturbation
of a set of points (for example, our definition enables the stability of the centre
of mass to be analyzed) and allows us to exploit the inverse relationship between
stability and maximum velocity (see Theorem 3). For completeness, we include our
proof of the stability of the Steiner centre.

Theorem 2. The Steiner centre I's is T -stable.

Proof. Choose any P € ﬁ(RQ). Let f : R? — R? denote any e-perturbation.
Let set @ = f(P). Since I'; is invariant under rotation and translation, without loss
of generality assume 'y(P) and I'y(Q) lie on the z-axis. Since the extreme points
in any projection Ay define the midpoint of Ay, for any 6,

|lmid(Pp) — mid(Qp)| < max llp = F(PIl- (34)

Thus, for any 6,

|mid(Pp), — mid(Qg)s| = | cos )| - ||mid(Pp) — mid(Qg)||
< | cos 8] -mea%cllp - fll
P

< |cosd|-e.
We bound the stability of I's from below by
[IT2(P) — T2 (f(P)I| = [T2(P)a — [2(Q)a
- ‘3/ mid(Py), df — 3/ mid(Qs)e dﬁi
™ Jo m™Jo

< 2 [ pwid(Po), - mid(Qo)a| a8
0
2 ™
< —/ |cosf|-e df
™ Jo
_%
==
Therefore,
Ve >0, ¥f € FF, ZIDo(P) ~Da(f(P)Il <, (35)
for all P € P(R?). O

The following example shows that the stability bound is tight. Let P =
{(cos8,sinf) | 0 < § < 27} be the set of points on the unit circle centred at the
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Fig. 6. Illustrations supporting Theorem 2.

origin. Let € € (0,1) be fixed and let function f : R2 — R? be an e-perturbation
defined by

(1+&)p if py >0
= . = 36
1) {(l-a)p if p, <0 (36)
Let set @ = f(P). @ corresponds to an e-perturbation of P such that points on or
above the z-axis are scaled outward by € and points below are scaled inward by e.
See Fig. 6A.
For every 6 € [0,7],
. 1
mid(Py) = 3[us + (~ua)] = (0,0). (37)
Consequently, T's(P) = (0,0). The midpoint of Qg can be described by three cases.
The simplest case occurs when one extremum of )y lies on the outer semicircle and
the second extremum lies on inner semicircle. For example, see points a and b in
Fig. 6A. The second case occurs for angles 8 near zero; in this case, one extremum
of Qg is defined by the projection of one endpoint of the outer semicircle onto line
lp whereas the other extremum remains on the outer outer semicircle. For example,
see points ¢ and d in Fig. 6B. The final case is analogous to the second case and
occurs for angles 8 near w. The angles 6 for which a transition occurs from one case
. _ 1— — _ -1
to the next are given by a = arccos (1 +§) and 8 = ™ — a = arccos (‘ﬁ;) See
Fig. 6C.
The Steiner centre I'2(Q) is defined in terms of mid(Qg). We examine the value
mid(Qy) over the three intervals, [0, o], [a, 8], and [B,7]. For 6 € [0, o],
ug(1+¢€)(1 — cosb)

mid(Qs) = 3 lua(~(1+¢,0),us) +us(1 +£)] = 2 (38)
For 6 € [o, 8],
mid(Qp) = -;-[(1 +&)us + (1 — &) (~ug)] = & - up. (39)
For 0 € [B,n],
mid(Qg) = -;-[uf,a T+ o) +up((l+2,0),up)] = L0F E)él +cost) )
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The Steiner centre of set @ is

Ty(Q) = % /0 " mid(Qo) db

[ ra B m
=2 / mid(Qy) d(9+/ mid(Qg) d0+/ mid(Qs) de}
™ | /o o B8
-1 o 3
_2 +E/ ug(1 — cos6) d0+e/ ug df
™ 2 0 o
+1+£/ ug(1 + cosb) dﬂ]
2 Js
_2[(e(1+3) 1+4e e? 2¢(1 —¢)
= - ( 2079 1 arccosa,1+€ + {0, 17z
Ve(l+3e) 1+e g2
+( 2059 + —— arccosa, T2

4e
=0, ————}.
( w1+ E))
For any fixed € > 0, f(P) defines an actual point set in ﬁ(RQ). Therefore, when
To2(P) # Ta(f(P)), the k-stability of 'y satisfies

£
“S 6@ =T e

) €

< lim |IT2(P) — T2(f(P))]]
. e

= B mCEDN

= lim S —
=0 i)

= Z’

where P and f are as described above. It follows that I'; is 7-stable, but not
(% + €)-stable for any € > 0.

6. Applications to Mobile Facility Location

The Steiner centre’s success at defining a point of low eccentricity and high stability
is not limited to the setting of static sets of points. Recent developments within
facility location examine problems related to the mobile centre of a set of mobile
points. The qualities of the Steiner centre transfer quite naturally to define the
position of a mobile facility that provides a close approximation to the Euclidean
centre while maintaining a low upper bound on velocity. In this section we examine
properties of the mobile Steiner centre.



362 8. Durocher & D. Kirkpatrick

6.1. Related work in mobile facility location

The traditional problems of facility location are set in a static setting; client po-
sitions are fixed and a single location is selected for each facility. The problems
of static facility location have been studied extensively. Within the last few years,
partly motivated by the applicability of mobile computing to the wireless telecom-
munication industries involving cellular and radio ethernet, these questions have
been posed in the mobile setting.?3:%5:9:10:17:20 Given a set of clients whose posi-
tions change continuously over time with bounded velocity, the location of a mobile
facility is specified by some given centre function T4 of the client positions. The
fitness of the mobile facility is determined not only by the quality of its optimiza-
tion of the objective function (captured by the eccentricity of T4) but also by the
maximum velocity and continuity of its motion (inversely related to the stability of
T4). These additional factors usually require the optimal location to be approxi-
mated, leading to new approximation strategies quite different from previous static
approximations.

Until recently, only discrete changes to the location of clients had been con-
sidered. Such problems, termed dynamic facility location,>?33 either attempt to
optimize the objective function summed over a finite set of discrete time slots,
T = {t1,...,ts}, or they restrict locations for facilities to a discrete set (often the
set of client positions).!* These models do not incorporate continuity or bounded-
velocity constraints in the motion of the facility. Thus, the techniques employed
to solve static facility location problems do not necessarily extend to their mobile
counterparts.

Within the setting of continuous motion of clients and facilities, Agarwal and
Har-Peled® maintain the approximate mobile Euclidean centre in R? under /{o
and £5. Their approximations do not require continuity or bounded velocity in the
motion of the centre function; their objective, rather, is to minimize the number
of events processed and the update cost per event using a kinetic data structure
(KDS) to maintain a (1 + ¢)-approximation on the extent of the point set. Agarwal
et al.? use a KDS to maintain a kd-tree of the points and a é-approximate mobile
median in R. Similarly, Agarwal et al.? use a KDS to maintain the exact (expensive)
and e-approximate (less expensive) mobile medians in R and R?. Bespamyatnikh et
al.!® maintain approximations to the mobile Euclidean centre and mobile median
in R? under £y, and f;. These include an extreme point of the convex hull, the
rectilinear centre, the centre of mass, and linear combinations of these.

6.2. Defining a mobile centre

Given a set of mobile clients whose positions are defined by bounded continuous
functions, any continuous centre function T4 can be used to define the position of
a mobile facility.

Definition 10. Let T' = [0,¢f] be a time interval. Let P = {pi1,...,pn} be a
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nonempty finite set of mobile clients such that for every i, p; : T — R? is a
bounded continuous function that defines the position of client i in R? at every
instant t € T'.

For every t € T, let P(t) = {pi(t) | pi € P} denote the set of points correspond-
ing to the positions of clients in P at time t. Following Bespamyatnikh et al.,!°
we define the mobile Euclidean centre as a direct extension of its static definition:
E4(P(t)). Similarly, the definition of the mobile Steiner centre is simply 'z (P(t)).

Since eccentricity is defined in terms of a worst-case configuration, it is indepen-
dent of motion of points. Thus, the eccentricity of a mobile facility whose position
is defined by centre function Y, is simply the eccentricity of Y.

6.3. The velocity of a mobile facility

In mobile facility location, velocity constraints restrict the behaviour of both clients
and facilities. In addition to requiring that the motion of clients be continuous, we
assume that the magnitude of velocity is bounded by a constant o > 0. That is,

Vp; € P, Vit1,t € T, [lpi(tl) —-pi(tz)” <0o- |t1 - tg‘. (41)

When p; is differentiable, then Vt € T, ||p}(t)]| < 0. We assume a constant upper
bound ¢ =1 on the velocity® of clients (since there is no unit of reference, we may
choose any o without loss of generality).

Since many applications impose some upper bound on the velocity of facilities,
we formally define the maximum relative velocity of a mobile facility.

Definition 11. Let P be a set of mobile clients, each moving with at most unit
velocity. Let Tq : Z(R?) — R? be a centre function. The maximum relative
velocity of a mobile facility whose location is determined by Y4 is bounded by
Umax if

Vi, t2 €T, ||[Ta(P(t1)) — Ta(P(2))]] < vmax|ts — t2. (42)

For some mobile facilities no finite velocity bound may exist.

The similarity of Definitions 5 and 11 is perhaps not surprising; the maximum
relative velocity, vmax, and the stability, k, of a mobile centre are inversely related.
Within the context of mobile facility location, maximum velocity and eccentricity
describe the fitness of a mobile facility’s approximation of the mobile Euclidean
centre just as stability and eccentricity described the fitness of a centre function’s
approximation of the static Euclidean centre.

Theorem 3. If T, : ﬁ(]Rd) — R? is a k-stable centre function, then a mobile
facility whose position is determined by T4 has mazimum relative velocity at most

1
Umax = —- (43)
K

2We use the terms “bounded velocity” to mean “bounded magnitude of velocity”.
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Proof. Let P be a set of mobile clients defined over time interval T' = [0, ¢y].
Choose any ¢ > 0 and any 0 < t; < t2 < t; such that € = |t; — t2]. Let set
Q = P(t1). If clients move with velocity at most one, then for every p; € P,
[lpi(t1) — pi(t2)|| < |t1 — t2| = €. Therefore, there exists an e-perturbation of @,
denoted f, such that f(Q) = P(t2). The equivalence follows:

Vi, ta € T, ||Ta(P(t1)) — Ya(P(E2))|] < Umax|t1 — ta|
L ra@) - YaF @)l <. o

vm ax

&

An immediate consequence of Theorem 3 is that the mobile Euclidean centre
has no finite velocity bound.'® The result provides further motivation for the iden-
tification of a centre function that achieves both high stability and low eccentricity.

Thus, the Steiner centre has a natural extension to the mobile setting whose
behaviour makes it a good approximation to the mobile Euclidean centre, both in
terms of its maximum velocity and approximation factor. Theorems 2 and 3 imply
that the maximum relative velocity of the mobile Steiner centre is at most 4 /7.

7. Kinetic Maintenance of the Steiner Centre

We examine implementation issues involving kinetic data structures for the main-
tenance of both exact and approximate mobile Steiner centres of a set of mobile
points. We describe a simple algorithm to maintain an arbitrarily-close approxi-
mation of the Steiner centre of a set of mobile points by using a Kinetic Data
Structure to maintain the k-hull of the points (see Definition 12). We show the
motion of the Steiner centre of the k-hull follows a piecewise-linear trajectory. Al-
though the Steiner centre has two equivalent definitions, in this context maintaining
the Steiner centre of the k-hull is simplified by its formulation by Gaussian weights.

7.1. Maintaining the mobile Steiner centre with a kinetic data
structure

Kinetic data structures (KDS)® allow for efficient implementation and maintenance
of various attributes of a finite set of mobile points under linear (or bounded-degree
algebraic) motion. Those related to the mobile Steiner centre include the bounding
box,? the convex hull,®!® a (1 + £)-approximate Euclidean centre,® and the extent
of a set of mobile points*®® in R. The constraint on the degree of the motion allows
for the occurrence of events related to the trajectories of points to be calculated
exactly.

The Gaussian weight wa(p(t)) of an extreme point p at time ¢ is defined in terms
of p and its two neighbouring points, a and b, on the convex hull boundary:

() = @) + o) = BOIP ~ lIbr)  a(e)|
wa(p(t) = “c"s( 2@ ~ a1 lp(®) —bOI] ) (49
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Fig. 7. The Gaussian weight of p is defined in terms of the positions of p, a, and b.

See Fig. 7. Even if the motion of points is linear, function w2 (p(t)) remains trigono-
metric. As a consequence, the position of the Steiner centre is not expressible as
a polynomial and its description requires a number of terms proportional to the
size of the convex hull, ©(|P|). Similarly, even under linear motion of points, the
trajectory of the Euclidean centre Z; cannot be expressed algebraically. At any
given time, the position of Z; is defined by at most three points and, unlike I'y, the
trajectory of Z, is expressible by a constant number of terms (while the same three
points define Z3).

Given this constraint on the complexity of a description of the Steiner centre’s
trajectory, the position of I'y may be maintained by any KDS that maintains the
convex hull of a set of mobile points. For any mobile point p, the description of
its Gaussian weight w2 (p(t)) changes only when the neighbours of p change along
the convex hull boundary or when p joins or leaves the convex hull boundary. Each
such update requires only constant time. Therefore, the number of KDS events
processed remains unchanged and the complexity of the new KDS is not increased.
Thus, a KDS may be used to maintain the Steiner centre with responsiveness,
efficiency, locality, and compactness identical to that for maintaining the convex
hull. However, the expression for the position of the Steiner centre requires ©(n)
terms.

7.2. The Steiner centre of the k-hull

The definition of many centre functions (like the Euclidean centre and the Steiner
centre) depends only on extreme points of the set P. Of course, the convex hull
of any (possibly infinite) bounded set of points P can be closely approximated by
some finite set of points P'. We formalize this notion by defining the k-hull of a set
of points. We then show that when any set of points P € £ (R?) is approximated
by its k-hull, Qx(P), the relative distance between I';(P) and T'2(Qx(P)) is O(F).

—

Definition 12. Let P € #(R?) and let k € Z,k > 4, be fixed. The k-hull of
P, denoted Qx(P), is defined by the intersection of all half-planes Ht such that
P C H* and the outer normal to the boundary line of H* is us = (cos ¢, sin ¢) for
some ¢ = 0 mod 2Z.

See the example in Fig. 8 for k¥ = 8. The boundary of Qx(P) is a polygon with
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Fig. 8. The convex hull and the 8-hull of P.

at most k sides whose edges have normals parallel to (cos(z—:i), sin(z—;c'i)) for some
J € Z. As k increases, the k-hull of P approaches the convex hull of P.

We show that when a point set P is approximated by its k-hull, Qx(P), the
relative distance between I'y(P) and T'2(Qx(P)) is O(F).

Lemma 3. Let P € P(R?) and let k € Z+ be fized, k > 4. Let Q(P) denote the
k-hull of P and let r be the Fuclidean radius of P. The distance between T'2(P) and

I'2(Qr(P)) satisfies

I2(Qu(P)) = T2(P)]| < —. (45)

Proof. Since I';(P) = I'y(CH(P)) and the k-hull of P is equal to the k-hull of
CH(P), assume without loss of generality that P = CH(P). Choose any k € Z,
k > 4. Let Qx(P) denote the k-hull of P. Let r be the Euclidean radius of P. Let
f be an e-perturbation of Q(P) such that for every q € Qi (P), f(q) is a nearest
point in P to ¢ (the value of ¢ is chosen below). For every edge [ of the boundary
of Qi(P), there is a point p € P tangent to I. Let a and b be extreme points in P
defining adjacent boundary edges I; and Il on the boundary of Q4 (P). Let point
¢ € Qx(P) denote the intersection of I; and l5. See Fig. 9B. If ¢ € P then locally
[|f(c)=c|| = 0. Therefore assume ¢ ¢ P. The distance from ¢ to line ab is maximized
when ||la—c|| = ||b—¢||. Since ¢ € P, angle Zacb = m — 27 /k. Consequently, Zcab =

E: \\‘.\
CH(P) b

Fig. 9. Illustration in support of Lemma
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Zcha = 7 /k. Since a,b € P, ||a — b|| < 2r. Let e be the midpoint of ab. Therefore,
|la—e|| < r and |le—c|| < rtan(m/k). Thus, no point in @Qx(P) may lie farther than
rtan(m/k) from the convex hull of P. Therefore, the maximum distance between
Qx(P) and the convex hull of P is at most max, =—py llg = f(@)|] £ rtan(n/k).
Thus, f is an r tan(w /k)-perturbation of Q(P). By Definition 5 and Theorem 2,

ZIIT2(Qu(P) — Ta(F(Q(P))Il <. (46)

Since P C @ (P) and by the definition of f, observe that I (f(Qr(P))) = I'a(P).
Also note that if § < 7/4, then tan 8 < 46/n. Therefore,

|IT2(P) = T2(Qi(P))[| = |[T2(Q«(P)) — T2 (F(Qe(P))I]

< —-€

7.3. Mobile implementation using the k-hull

For implementation it may be desirable to define a mobile centre that carries the
benefits of the Steiner centre but has a simple polynomial description. Under linear
motion of points, we describe a simple discretization using the k-hull that allows
the motion of the Steiner centre to be closely approximated by a piecewise-linear
function.

Let Qx(P) denote the k-hull of a set P € ﬁ(Rz). See the example in Fig. 8
for k = 8. The boundary of Qx(P) is a polygon with at most k sides with turn
angles that are multiples of 27” between 0 and 7. These correspond to Gaussian
weights. Therefore, the Gaussian weight of ¢ € Qi (P) is wa(g(t)) = j 2L for some
Jj €{0,...,]1k/2]}. Furthermore, while the adjacencies between edges of Qx(P) to
points on the convex hull boundary of P remains unchanged, the Gaussian weight of
any extreme point ¢ € Qy (P) remains constant. Since the weights are constant, the
Steiner centre I's(Q(P)) is simply a linear combination of the vertices of Qr(P).
Therefore, under linear motion of points of P, between events along the convex hull
boundary of Qx(P), the motion of I'y(Qx(P)) is also linear (and continuous). In
general, the motion of ['y(Q (P)) is piecewise-linear.

Maintaining the mobile k-hull of P in a KDS is simple. Associated with the k-hull
are k normal vectors, uy = (cos ¢, sin ¢), where ¢ is drawn from the set of k angles
& = {jZ | 0 < j < k—1}. For each ¢ € &, let Py = {ug(p,uq) | p € P} be the
projection of P onto the line through the origin that lies parallel to ug. We maintain
the maximum point in each of the k sets Py. As described by Guibas,!® a KDS that
maintains the maximum of a set of points in R, each moving with linear motion, is
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responsive, efficient, compact, and local. Under linear motion the maximum point
of each set P4 changes at most n = |P| times. We require maintaining k instances
of this KDS. Therefore, the total number of times a maximum point changes is at
most k - n.

The set of k maximum points defines the k-hull, Qx(P), and ultimately the
Steiner centre of Qx(P), I'y(Qr(P)). Associated with each maximum point is a
tangent line with normal ug. These lines are ordered and we maintain the % inter-
section points that define the boundary of the k-hull (intersection points may be
collocated resulting in fewer than k points). Since the points of P move linearly, the
motion of the intersection points is also linear. Furthermore, an intersection point
only requires updating whenever the maximum point of one of its defining lines is
updated. For each such event, the Gaussian weight of a point on the boundary of
Qk(P) requires a constant-time update. Between events, weights of points in Qx(P)
remain constant.

Although Richardson?* provides an approximation of the convex hull of P to
within O(1/k?) while requiring at most k vertices, the k-hull has the advantage
that interior angles at the vertices of Q(P) are multiples of 27 /k. Consequently,
maintaining the kinetic k-hull is straightforward and only requires maintaining the
k supporting planes with outer normals j - 27 /k, for j =0...k— 1.

In summary, given a set of mobile points P each moving in linear trajectories,
the Steiner centre of P does not move with algebraic motion. However, the k-hull
allows the maintenance of an approximation to the mobile Steiner centre of P that
moves with piecewise-linear motion. Furthermore, k can be selected independently
of |P| to ensure the approximate Steiner centre is made arbitrarily close to the
Steiner centre of P. Finally, maintaining the k-hull and approximate Steiner centre
of a set of mobile points P using a KDS is responsive, efficient, compact, and local.

Remark. As suggested by an anonymous referee, the size of the KDS can be
reduced from O(kn) to ©(nlogk) by using a natural generalization of a kinetic
tournament.®!® The size bound exploits the fact that the k-hull of a set P can be
efficiently represented in ©(min{k, |P|}) space. The total number of change events
remains O(kn).

8. Comparing the Steiner Centre to Other Centre Functions

We briefly discuss other common centre functions, and compare their eccentricity
and stability against the Steiner centre®.

As discussed by Bespamyatnikh et al.,!® the centre of mass is stable (x = 1) but
very eccentric (A = 2). The worst case eccentricity occurs when |P| — 1 clients are

b A graphical implementation of the Steiner centre of a set of mobile points is available as a Java
applet on the web at http://www.cs.ubc.ca/"durocher/gaussianDemo.html. The demonstration
provides visual intuition of the stability and eccentricity of the Steiner centre as compared with
the Euclidean centre, the rectilinear centre, and the centre of mass of a set of mobile points.
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collocated and one client lies elsewhere. As n — oo, the eccentricity X\ approaches 2.

Since the centre of mass is an average, the average magnitude of velocity is bounded
by the magnitude of each component. Thus, vmax = 1 (by Theorem 3, £ = 1).

Table 2. Comparing centre functions in R2.

centre function A-eccentricity x-stability = (vmax)~1
Euclidean centre Z4 1 0

single point 2 1

centre of mass 2 1

rectilinear centre 142 12071 J5 ~ 07071
Steiner centre I'g =~ 1.1153 % =~ 0.7854

The rectilinear centre (£, centre) of a set P € 1 (R?) is the unique point Y5 (P)

that minimizes both
max [T2(P), — ps| and max|Ya(P)y — pyl. (47)
peP peP

The rectilinear centre is orientation dependent. Unlike the Euclidean and Steiner
centres that are invariant under rotation, Yo (f(P)) # f(Y2(P)) for some rotations
f : B2 — R2. As shown by Bespamyatnikh et al.,'0 the rectilinear centre is is
(1++/2) /2-eccentric with maximum velocity vmax = v/2 (by Theorem 3, & = 1/1/2).

Finally, as discussed in Sec. 3.1, any arbitrary point p € P defines a 2-eccentric,
1-stable centre function of P. Several other common notions of centre exist that
exhibit either low stability, high eccentricity, or both. Often the motion of the
centre function is discontinuous or its velocity is unbounded. These include the
median'® (minimizes the sum of distances to p € P) and the Lemoine point2!:30
(minimizes the sum of squared distances to edges of the convex hull). Each of these
has eccentricity A = 2 and stability £ = 0 (Umax = ). Also, any two (or more)
different centre functions can be combined linearly!? to obtain some combination
of the eccentricity and stability factors of each. Finally, observe that the bound
k < 8/A — 1 given by Bereg et al.® only impacts centre functions whose eccentricity
lies in the range 1 < A < 65/64 ~ 1.0156; for A > 65/64,8v/X — 1 > 1 and we bound
k from above by k < 1.

As displayed is Table 2, the high stability and low eccentricity of the Steiner
centre compares well with those of other centre functions. All eccentricity and
stability bounds listed in Table 2 are tight.

9. Future Work

Both definitions of the Steiner centre have natural extensions into three dimensions.
In three dimensions, the maximum velocity and, therefore, the stability of I's can
be shown to be 3/2 and 2/3, respectively, by a method analogous to the proof of
Theorem 2. Again, this is related to the work of Alt et al.® on the quality of the
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Steiner centre in R3. As for eccentricity in R3, although Lemma 2 easily extends to
R3, the generalization of Theorem 1 appears to be non-trivial, although examples
exist to imply that the eccentricity of I's in R3 is greater than 1.1153. Several
questions (including applications to mobile facility location) remain to be answered
in three dimensions, opening the possibility for future applications of the Steiner
centre in three and higher dimensions.

Furthermore, the techniques developed in this paper have applications toward
defining a stable median function!® as well as extensions to the k-centre problem.
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