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Given a set P = {p1, . . . , pn} of points and a point q in the plane, we define a function

ψ(q) that provides a combinatorial characterization of the multiset of values {|P ∩Hi|},
where for each i ∈ {1, . . . , n}, Hi is the open half-plane determined by q and pi. We

introduce two new natural measures of depth, perihedral depth and eutomic depth,

and we show how to express these and the well-known simplicial and Tukey depths
concisely in terms of ψ(q). The perihedral and eutomic depths of q with respect to P

correspond respectively to the number of subsets of P whose convex hull contains q, and

the number of combinatorially distinct bisections of P determined by a line through q.
We present algorithms to compute the depth of an arbitrary query point in O(n logn)

time and medians (deepest points) with respect to these depth measures in O(n4) and

O(n8/3) time respectively. For comparison, these results match or slightly improve on the
corresponding best-known running times for simplicial depth, whose definition involves

similar combinatorial complexity.

Keywords: depth measure; Tukey depth; simplicial depth

1. Introduction

This paper presents new work on measuring the degree to which a point q is interior

or central relative to a given set P of n points in Rd, i.e., the depth of q with respect

to P . Depth measures are widely studied in statistics and data analysis, and many

depth measures have been defined to quantify the centrality or eccentricity of a

given point q relative to a given data set P . When d = 1 and P is a set of points

in R, natural measures for the depth of q relative to P include the minimum of the

∗A preliminary version of some of these results appeared in the Proceedings of the Canadian
Conference on Computational Geometry (CCCG 2014) [17].
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Simplicial Depth Perihedral Depth Eutomic Depth Tukey Depth

Maximum depth = 134 Maximum depth = 30431 Maximum depth = 9 Maximum depth = 5

Maximum depth = 562 Maximum depth = 16688127 Maximum depth = 18 Maximum depth = 10

Fig. 1: Simplicial, perihedral, eutomic and Tukey depths are shown for two point

sets. The colours progress from blue to red for increasing depth, and regions of

maximum depth are shown in white. Note that in the bottom figures, the region of

maximum depth is unique for each depth measure.

number of points of P to the left and right of q, and the number of subsets of P

whose interval contains q. That subset count is proportional to the probability that

q is contained within the interval, or one-dimensional convex hull, determined by a

randomly selected subset of P . All these are maximized by a median of P .

The one-dimensional median has many possible generalizations to two and

higher dimensions. We focus on the case d = 2 (P is a set of points in the plane R2)

and examine combinatorial measures of depth, specifically, functions of the numbers

of points of P contained in convex regions defined by half-planes through pairs of

points of P , and whether those regions contain q. Such measures of depth include

Tukey depth and simplicial depth. Our examination captures some previous defini-

tions of depth, leads us to define two new depth measures, and provides algorithms

for efficiently computing these measures of depth and the corresponding medians,

defined as points of maximal depth.

In Section 2 we review results related to common notions of depth, includ-

ing Tukey depth, simplicial depth, and half-space counts. Building on the half-

space counts of Rousseeuw and Ruts [33], we introduce the function ψj(q) :

R2 → {0, . . . , n} in Section 3: given any P = {p1, . . . , pn} ⊆ R2, q ∈ R2, and

j ∈ {0, . . . , n − 1}, ψj(q) is the number of open half-planes Hi determined by q

and some pi ∈ P such that |P ∩Hi| = j. The n values ψ(q) = 〈ψ0(q), . . . , ψn−1(q)〉
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summarize pertinent combinatorial properties of the set P , allowing simple compu-

tation of various depth measures as functions of ψ(q). Moreover, ψ(q) is itself easy

to calculate, and it has attractive geometric properties. Specifically, we show how

to express simplicial depth and Tukey depth in terms of ψ(q).

We introduce two new natural measures of depth, perihedral depth in Section 4

and eutomic depth in Section 5, each defined in terms of ψ(q). We present algorithms

to compute eutomic and perihedral medians in O(n4) and O(n8/3) time respectively,

and the depth of an arbitrary query point q in O(n log n) time for both. For com-

parison, these results match or slightly improve on the corresponding best-known

running times for simplicial depth, whose definition involves similar combinatorial

complexity. We show examples of these depth measures in Figure 1. The perihedral

and eutomic depths of q with respect to P correspond respectively to the number

of subsets of P whose convex hull contains q, and the number of distinct bisections

of P determined by lines through q. These have intuitive probabilistic interpreta-

tions: after scaling by a normalizing factor (dependent on n, but independent of q)

the perihedral depth of q with respect to P is equal to the probability that q lies

inside the convex hull of a subset of P selected at random, whereas the eutomic

depth of q with respect to P is equal to the probability that q lies on a halving line

of P . Both of these are reasonable measures of centrality, further motivating their

definitions as depth measures. In Section 6 we briefly compare properties of these

depth measures, discuss generalizations, and suggest directions for future research.

2. Definitions and Related Work

Consider a set of n points P in Rd and a point q in Rd in general position (specifically,

no k+1 points of P and q lie on any (k−1)-flat for any k ≤ d). Let CH (P ) denote the

convex hull of set P . A number of functions of the form f(q, P ) : (Rd× (Rd)n)→ R
that define a measure of the depth of q relative to P have been studied extensively.

We describe these functions in terms of general d, although our main algorithmic

results are for the two-dimensional case.

In particular, Tukey (or half-space) depth [37] and simplicial depth [26] are well

understood and related to the depth measures introduced in this paper. See Sub-

sections 2.2 and 2.3. Other measures of this form are described briefly below. For

additional details on depth measures, see the reviews of Aloupis [1] for a compu-

tational geometry perspective, Small [35] for a statistical perspective, and Zuo and

Serfling [39] for formal expressions of generalized depth measures, including several

discussed in this paper.

In addition to Tukey depth and simplicial depth, several other common depth

measures are primarily combinatorial. Convex hull peeling [5, 34] expresses the

depth of q as the number of times the convex hull of P must be removed before q

appears on the hull. The ray shooting depth [30] is the minimum number of (d−1)-

simplices on P hit by any ray from q. Oja depth [31] computes the sum of the

volumes of the simplices defined by P ′ ∪ {q} for every subset P ′ ⊆ P of cardinality
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d, where P ⊆ Rd. For majority depth [12, 27], any d points in P determine a

hyperplane and its two associated half-spaces; a half-space containing at least half

of the points in P is called a majority side. The majority depth of q is the number

of majority sides of P that contain q.

Many measures seek to determine a point that minimizes the sum of the dis-

tances to the points of the input set. The sum of Euclidean distances (or more gener-

ally, the Lp depth) [39] is a primary example. The concept of expressing the distance

from q to P as the sum of Euclidean distances is over a century old [38]. The geomet-

ric median with respect to this measure (also known as the Fermat-Weber point) is

the point which minimizes the Euclidean distance to all points in P .a Because of the

relationship with the Weber point, this may also be referred to as the Weber depth.

Squaring the distances would yield a sum of squared distances depth, for which

the point of minimum depth is uniquely realized by the average of the points in P

[16]. As a measure of distance, Mahalanobis generalizes Euclidean distance, in that

a (variance-)covariance matrix S is applied: distM (q, P ) =
√

(q − µ)TS−1(x− µ),

where µ is the geometric mean of P (if S is the identity matrix, this reduces to

Euclidean distance) [14]. Occasionally this measure is squared, see e.g. [21].

In a sense, zonoid depth [24] is a generalization of convex hull peeling. First, a

value α ∈ [0, 1] is used to bound the region of the plane into a zonoid α-trimmed

region, where larger values of α constrain the plane more. The zonoid depth mea-

sures the depth of the point in these regions. Ellipsoids have been used for similar

purposes, see e.g. [32, 36]. Other statistical measures of data depth include the

approximate likelihood (APL) depth [20, 21] and the transformation and retrans-

formation estimate of depth [9, 10].

In addition to the algorithmic problem of evaluating a depth measure f(q, P )

for an arbitrary point q, the problem of identifying a point qmax of maximum depth

with respect to a given set P is typically difficult. Such a point qmax is a median of

P with respect to the given depth measure f , where qmax = arg maxq∈Rd f(q, P ).

If, however, qmax is constrained to be selected from a discrete set of Q ∈ Rd, then

qmax is a medoid of P .

2.1. Half-Space Counts

Half-space counts, denoted hi(q), were introduced by Rousseeuw and Ruts [33]

for bivariate depth (d = 2), and are fundamental to previous work in comput-

ing Tukey and simplicial depths. In Section 3 we define a summary statistic of

〈h1(q), . . . , hn(q)〉 which we call the ψ histogram.

Consider a point q whose depth is queried, and for each i ∈ {1, . . . , n}, let αi
denote the angle between the vectors pi − q and (1, 0). Without loss of generality,

assume the points p1, . . . , pn are sorted in angular order such that 0 ≤ α1 < . . . <

aIn general, it is not known how to compute the Fermat-Weber point exactly on sets of cardinality
5 or greater [4, Table 1], but it can be approximated [6, 22].
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αn < 2π. This assumes that the set P ∪ {q} is in general position and therefore the

angles are all unique.

For each i ∈ {1, . . . , n}, the half-space count hi(q) is the largest integer such

that αi < αi+1 ≤ αi+hi(q) < αi + π, where αn+j = αj + 2π for all j. This definition

of hi(q) is equivalent to counting the number of points of P in the right open half-

plane defined by the line through the points (pi, q) and the vector pi− q. Given any

arbitrarily ordered set P of n points in R2 and any q ∈ R2, Rousseeuw and Ruts

[33] also give a method for computing hi(q) in O(n) time for any fixed i, and an

optimal Θ(n log n)-time algorithm for computing 〈h1(q), . . . , hn(q)〉. The optimality

of their algorithm in the real RAM model was proven by Aloupis et al. [2].

2.2. Tukey (Half-Space) Depth

The Tukey depth of a point q, denoted TD(q, P ), is the minimum number of points

of P in any closed half-space containing q on its boundary. Aloupis [1, §2.2] provides

an excellent summary of Tukey depth. A Tukey median of P is a point of maximum

Tukey depth. Rousseeuw and Ruts [33] express the Tukey depth of q ∈ P in terms

of hi(q) as mini{min(hi(q), n − hi(q) − 1)}. Since their algorithm for computing

all n values 〈h1(q), . . . , hn(q)〉 requires only O(n log n) time for any given point q,

the computation of the Tukey depth of q may be determined in the same time,

which is optimal [2]. The best known algorithms for computing a Tukey median

require O(n log3 n) time (deterministic) [25] and O(n log n) time (randomized) [11].

Recently, Chen et al. [13] presented a randomized generalization of the algorithm

of Rousseeuw and Ruts [33] for computing an approximation to the Tukey depth.

Finally, Bremner et al. [7] show that the Tukey depth of a given point q can be

computed in O(n+ k log k) time, where k = TD(q, P ).

2.3. Simplicial Depth

Every subset of P of cardinality d + 1 determines a simplex, where d denotes the

number of dimensions (P ⊆ Rd); the simplicial depth of q, denoted SD(q, P ), is the

number of open simplices determined by points in P that contain q (some definitions

use closed simplices). Aloupis [1, §2.5] again provides a nice overview. A point of

maximum simplicial depth with respect to P is a simplicial median. Aloupis et al.

[2] use half-space counts to define the simplicial depth of a point in R2:

SD(q, P ) =

(
n

3

)
−

n∑
i=1

(
hi(q)

2

)
.

This formulation subtracts the number of simplices that do not strictly contain

q, and again requires O(n log n) time to compute the depth of a point q. If a median

of P is not restricted to the set of input points, then there are Θ(n4) combinatorially

distinct regions to consider for selecting a median; the best known algorithm for

computing a simplical median in this setting requires O(n4) time [3]. The only
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known lower bound related to the simplicial depth is Ω(n log n) time to calculate it

for a single point [2] (matching the upper bound). Elbassioni et al. [19] show that

the simplicial depth of a given point q can be computed in O(n + k) time, where

k = SD(q, P ) ∈ O(n3).

3. ψ Histograms

In this section we introduce a summary statistic that can be used to compute several

combinatorial depth measures. Given a point q and a point set P in R2, we define a

function ψ(q) such that the Tukey depth, the simplicial depth, and the perihedral

and eutomic depths of Sections 4 and 5 can all be calculated easily once ψ(q) is

known. Moreover, ψ(q) is itself easy to calculate, and it has attractive geometric

properties.

Given a set P of points, a point q, and an integer j, ψj(q) counts the number

of points pi in P for which the directed line from q to pi has exactly j points of

P strictly on the right side. Specifically, ψj(q) =
∑n
i=1 I(hi(q), j), where I(hi(q), j)

denotes an indicator function equal to 1 when hi(q) = j and 0 otherwise. Thus,

for any q, ψ(q) = 〈ψ0(q), . . . , ψn−1(q)〉 can be interpreted as a histogram of the

hi(q) values. Depending on the point arrangement, ψj(q) could be non-zero for any

integer value of j ∈ [0, n − 1]; it is zero everywhere else. Given any point q, it is

straightforward to calculate ψ0(q), . . . , ψn−1(q) by computing h1(q), . . . , hn(q) in

O(n log n) time; a histogram could be constructed along the way or in a separate

pass requiring only linear additional time, so the overall time remains O(n log n).

If P ′ is a subset of P chosen uniformly at random from all 2n subsets, the

probability that a given q is interior to CH (P ′) is given by

Pr
(
q is interior to CH (P ′)

)
= 1− 2−n −

n−1∑
j=0

ψj(q)2
−(n−j) . (1)

This is just a sum of ψj(q) values normalized to probabilities. If we generalize it to

the case where each element of P is selected as an element of P ′ independently with

probability ξ ∈ (0, 1), then the probability that pi is selected and that q is exterior

to the selected subset is ξ(1− ξ)n−1−hi(q). It follows that (1) generalizes to

Pr
(
q is interior to CH (P ′); ξ

)
= 1− (1− ξ)n − ξ

n−1∑
j=0

ψj(q)(1− ξ)n−j−1 . (2)

This expression leads to an interesting probabilistic intepretation of perihedral

depth, as well as being useful in proving the following result.

Since ψj(q) counts the n values of hi(q), we have that
∑n−1
j=0 ψj(q) = n. Less

obvious is the symmetry of ψ(q):

Theorem 1. If P and q are in general position, then ψj(q) = ψn−1−j(q).

Proof. Consider the point q for which the histogram ψ(q) = 〈ψ0(q), . . . , ψn−1(q)〉
is to be constructed. Recall that ψ(q) is the histogram of the half-space counts
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hi(q), where each hi(q) is the number of points of P in the right open half-plane

determined by the line through the points pi and q, and the vector pi− q. Without

loss of generality, the points p1, p2, . . . , pn are assumed to be sorted in angular order;

see Subsection 2.1.

Now, let gi(q) denote the number of points of P in the left open half-space defined

by the line through the points pi and q, and the vector pi − q. By construction,

gi(q) = n − hi(q) − 1. We denote the histogram of the left half-space counts as

Ψ(q) = 〈Ψ0(q), . . . ,Ψn−1(q)〉, whose elements satisfy Ψj(q) = ψn−1−j(q) for j =

0, 1, . . . , n− 1. We next prove that Ψj(q) = ψj(q), implying the stated symmetry of

the ψ histogram.

To see this, consider the probability that the query point q is interior to CH (P ′)

when the subset P ′ is constructed by selecting each point of P with probability

ξ ∈ (0, 1) independently of all others. Working from the (right) half-space counts

hi(q), this probability was derived in (2) in terms of the ψ histogram. Working from

the left half-space counts, the symmetry of the problem implies that

Pr
(
q is interior to CH (P ′); ξ

)
= 1− (1− ξ)n − ξ

n−1∑
j=0

Ψj(q)(1− ξ)n−j−1,

is also valid. These two equations together imply, after letting t = 1− ξ, that

n−1∑
j=0

[Ψj(q)− ψj(q)]tn−j−1 = 0,

for all t ∈ (0, 1). The left hand side of this equality is a polynomial in t that is

uniformly equal to zero on the unit interval, implying that its coefficients are all

zero, in turn implying that Ψj(q) = ψj(q) for j = 0, 1, . . . , n − 1. This follows, for

instance, by considering all derivatives of the polynomial.

Another useful property of ψ(q) is that the values j for which ψj(q) is non-zero

are a contiguous interval of integers.

Theorem 2. If P and q are in general position, and a ≤ b ≤ c are integers such

that ψa(q) > 0 and ψc(q) > 0, then ψb(q) > 0.

Proof. Sweeping a ray from q counterclockwise through a circle, pausing when

it reaches each point in P to record the number of elements of P strictly to the

right of the line containing the ray, gives a cyclic sequence of n integers which are

the half-space counts hi. Let h(θ) be the number of points in P strictly to the

right of the line containing the ray as a function of the ray’s angle. This function

increases by one immediately after the ray encounters a point, and decreases by one

immediately after another ray from q in the opposite direction (the other half of

the line) encounters a point. General position implies that no two of these events

coincide. In the complete sweep, the line encounters each point once on each side,
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so that h(θ) returns to its starting value. Only the values immediately after each

increase are recorded in the sequence hi.

If a, b, and c are not all distinct then the theorem is trivially true, so the

interesting case is when a < b < c. Having ψa(q) and ψc(q) both non-zero means

that the number of points to the right of the ray must have assumed both the values

a and c during the sweep. Then because h(θ) can only increase or decrease by one

at a time, it must have also assumed all integer values between a and c, notably

including b. Moreover, if we choose the starting point for the cyclic sweep such that

h(θ) = a is true before h(θ) = b, then there must be a first time it assumes the value

b after a. If we consider the first time it reaches b after reaching a, and the last time

it reaches a before that, then between those points h(θ) must be strictly between a

and b. The move immediately prior to h(θ) = b must be an increase. Therefore on

that occasion b will be included in the hi sequence and counted in the histogram,

and so ψb(q) > 0.

Well-known depth measures, as well as our new ones, can be expressed concisely

in terms of ψj(q). In particular, the Tukey depth of a point q with respect to P is

the least number of points in P strictly on one side of a line through q. That is the

least element in the hi sequence and therefore the minimum index with a non-zero

count in the histogram. This gives the following proposition.

Proposition 1. Given a set of points P ⊆ R2 and a point q ∈ R2, the Tukey depth

of q with respect to P can be expressed as

TD(q, P ) = min{j | ψj(q) > 0} . (3)

The simplicial depth of q in two dimensions with respect to P is the number

of triangles with vertices in P that contain q, which can be found by subtracting

the triangles that do not contain q from the total of
(
n
3

)
triangles. To count exactly

once each triangle that does not contain q, we count it in the unique hi for which

one vertex is the point pi defining the sweep line and the other two vertices are on

the right (and thus counted in hi). Each hi corresponds to
(
hi

2

)
of these triangles,

giving a total of
∑n
i=1

(
hi

2

)
triangles that do not include q. Since ψj(q) is the number

of values of i for which hi = j, we can group terms in the sum and use the ψj(q)

values to count instead, giving the following proposition.

Proposition 2. Given a set of n points P ⊆ R2 and a point q ∈ R2, the simplicial

depth of q with respect to P can be expressed as

SD(q, P ) =

(
n

3

)
−
n−1∑
j=0

(
j

2

)
ψj(q) . (4)

In addition to Tukey depth and simplicial depth, other combinatorial depth

measures might seem like natural candidates for being expressed in terms of ψ(q),

including majority depth [12, 27], convex hull peeling depth [5, 34], zonoid depth

[29, 24], and ray shooting depth [30]. Unlike majority depth whose value varies
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outside CH(P ), ψ(q) remains invariant for all q outside CH(P ). Similarly, for some

point q, the convex hull peeling depth and zonoid depth at q can be altered by

moving points onto the convex hull of P along rays emanating from q without

changing ψ(q). Consequently, none of majority depth, convex hull peeling depth,

or zonoid depth can be expressed in terms of ψ(q). Although it seems unlikely,

it remains to be determined whether ray shooting depth is expressible in terms

of ψ(q). Depth measures whose definitions involve volumes (e.g., Oja depth [31]),

distances (e.g., Mahalanobis depth [14, 39]), or curves (e.g., lens depth [28]) are not

determined exclusively by the arrangement of
(
n
2

)
lines through pairs of points in

P and, consequently, cannot be expressed in terms of ψ(q).

4. Perihedral Depth

Definition 1 (perihedral depth). Given a set of points P ⊆ R2 and a point

q ∈ R2, the perihedral (“around the shape”) depth of q, denoted PD(q, P ), is the

number of subsets of P whose convex hull contains q.

We assume that P and q are in general position. An alternative definition is

given by counting the number of distinct convex subsets of P whose convex hull

contain q; our definition, which is not restricted to convex subsets of P , counts all

distinct subsets of P whose convex hull contains q. When normalized, this has a

natural interpretation as the probability that q is contained in the convex hull of a

subset of P selected uniformly at random.

A simple brute force method for determining PD(q, P ) is to enumerate all sub-

sets of P and count those that contain q in their convex hull. While such an algo-

rithm would require tremendous time (there are 2n subsets of P ), it does give an

idea as to the nature of the computation and the importance of using the geometric

properties of P .

We compute PD(q, P ) without explicit enumeration by finding the number of

subsets of P whose convex hull does not contain q. Consider an arbitrary subset

P ′ of P . Note that q is not interior to CH (P ′) if and only if it is on the boundary

of CH (P ′ ∪ {q}). Let Q = {P ′ ⊆ P | q is on the boundary of CH (P ′ ∪ {q})}. By

construction, PD(q, P ) = 2n−|Q|. Label the points of P according to their angular

ordering from the horizontal line passing through the point q. The empty set ∅
must be in Q, and any other P ′ uniquely determines one element of P which is the

clockwise immediate predecessor of q on the boundary of CH (P ′ ∪ {q}). For each

pi let Qi = {P ′ ⊆ P | pi precedes q on the boundary of CH (P ′ ∪ {q})}. Then Q is

the disjoint union of {∅}, Q1, Q2, . . . , Qn. This partition of Q implies

PD(q, P ) = 2n − 1−
n∑
i=1

|Qi|.

By construction, for 1 ≤ i ≤ n, the sets in Qi contain only points that are to the

right of the line from q to pi. However, the number of points in P to the right of
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this line is just the half-space count hi(q), and so Qi contains exactly 2hi(q) sets,

all containing pi but otherwise formed from those hi(q) other points. This gives the

following theorem:

Theorem 3. Given a set of n points P ⊆ R2 and a point q ∈ R2, the perihedral

depth of q with respect to P can be expressed as

PD(q, P ) = 2n − 1−
n∑
i=1

2hi(q) = 2n − 1−
n−1∑
j=0

ψj(q)2
j . (5)

Calculating hi(q) for all i gives PD(q, P ), which leads to (5) in O(n) additional

time. As discussed in Section 3, the complete list of values 〈h1(q), . . . , hn(q)〉 can

be computed in O(n log n) time and O(n) space.

It is possible to find the maximum attainable depth, given that P contains n

points in general position. This maximal depth, which is not attainable for all sets

P containing n points, is given by following corollary.

Corollary 1. The maximum achievable perihedral depth of a point q ∈ R2 with

respect to a set of n points P ⊆ R2, n being odd, is

max
q, P

PD(q, P ) = 2n − 1− n 2(n−1)/2,

achieved when q and P are such that ψ(n−1)/2(q) = n and ψj(q) = 0 otherwise.

When n is even, the maximum achievable perihedral depth is

max
q, P

PD(q, P ) = 2n − 1− 3n 2n/2−2,

achieved when ψn/2−1(q) = ψn/2(q) = n/2 and ψj(q) = 0 otherwise.

Proof. Let Hn denote the set of possible ψ-histograms for a point q with respect

to a set of n points P ⊆ R2 and consider the case where n is odd.

Define the function Φ : Hn → R such that

Φ(ψ) = 2n − 1−
n−1∑
j=0

ψj2
j .

It should be clear that

max
q, P

PD(q, P ) = max
ψ∈Hn

Φ(ψ).

At this point, let ψ ∈ Hn be such that ψj = k > 0 for some index 0 ≤ j < (n−1)/2.

Assume also that j is the smallest such index. Note that Theorem 1 implies that

ψn−j−1 = k and that it is the last nonzero component of ψ. Theorem 2, on the

other hand, implies that ψi > 0 for j ≤ i ≤ n− j − 1.

Now, let ψ′ be the histogram obtained by perturbing ψ such that

ψ′i =


k − 1 for i = j, n− j − 1,

ψi + 1 for i = j + `, n− j − `− 1,

ψi otherwise,
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for some integer 1 ≤ ` < (n− 1)/2− j, and ψ∗ be given by

ψ∗i =


k − 1 for i = j, n− j − 1,

ψi + 2 for i = (n− 1)/2,

ψi otherwise.

We now show that

Φ(ψ∗) > Φ(ψ′) > Φ(ψ) (6)

for any ` such that 1 ≤ ` < (n− 1)/2− j. To see this, we first note that

Φ(ψ′)− Φ(ψ) = 2n − 1−
n−1∑
i=0

ψ′i2
i −

(
2n − 1−

n−1∑
i=0

ψi2
i

)
= −2j+` − 2n−j−`−1 + 2j + 2n−j−1

≥ 2j + 2n−j−1 − 2
(
2n−j−`−1

)
= 2j + 2n−j−1 − 2n−j−` ≥ 2j > 0,

since j + ` < n− j − `− 1 and ` ≥ 1. Also, using similar arguments, we have that

Φ(ψ∗)− Φ(ψ′) = −2(2(n−1)/2)) + 2n−j−`−1 + 2j+`

= 2j+` + 2n−j−`−1 − 2(n+1)/2 ≥ 2j+` > 0,

since j+ ` ≤ (n−1)/2−1. The conclusion now follows from (6), which implies that

Φ is maximized when ψ(n−1)/2 = n and ψj = 0 otherwise.

The case where n is even is treated in a similar way, the main difference being

in how ψ∗ is defined in that case.

We now examine a different approach for calculating PD(q, P ). Consider the

subsets of P of cardinality k for some k ≤ n and let PDk(q, P ) denote the number

of these subsets whose convex hull contains q. Observe that

PD(q, P ) =

n∑
k=1

PDk(q, P ). (7)

Note that PD3(q, P ) = SD(q, P ), the simplicial depth of q. If PDk(q, P ) =
(
n
k

)
,

then q has Tukey depth less than k because the convex hull of every subset of size

k contains q. Arguments similar to those used to derive (4) allow us to write

PDk(q, P ) =

(
n

k

)
−

n∑
i=1

(
hi(q)

k − 1

)
=

(
n

k

)
−

n−1∑
j=k−1

(
j

k − 1

)
ψj(q) . (8)

Substituting (8) into (7) gives (5), our previous form for PD(q, P ).

Consider that choosing k defines the size of the randomly chosen subset to k,

whereas simplicial depth defines that subsets of exactly size 3 must be chosen. Then

PDk(q, P ), scaled to the number of subsets, is the probability that q is interior

to the convex hull of any random subset P ′ with a cardinality of k. For k = 3

this is simplicial depth. However, for k = n this depth becomes an indicator for
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Fig. 2: An example of nine points that achieves maximum perihedral depth at the

query point (triangle in circle).

being interior to the convex hull of P . More interesting is that PDk(q, P ) returns

a probability of 1 if and only if the point q has a Tukey depth greater than n−k
n

with respect to P , because the convex hull of every subset of size k contains q. This

depth is computed using (8), which is both a generalization of simplicial depth and

a specialization of perihedral depth.

For any fixed point q such that P ∪{q} is in general position, the computation of

the depths presented in this section can be done by first computing ψj(q) for all j in

O(n log n) time and O(n) space by using the computational method for halfcounts

presented by Rousseeuw and Ruts [33].

Computing a perihedral median, i.e., a point arg maxq∈R2 PD(q, P ), is signifi-

cantly more difficult than computing the depth of an arbitrary query point. The

fastest known algorithm for computing a simplicial median (arg maxq∈R2 PD3(q, P ))

requires Θ(n4) time in the worst case [3]. Essentially a similar algorithm can also

compute a perihedral median in O(n4) time. Since the definition of halfspace counts

by Rousseeuw and Ruts [33] is combinatorial in nature and therefore depends only

on the arrangement of all the lines connecting pairs of points in P , the ψ histogram

is also constant within each cell. When we step across an edge l in the arrangement,

the hi sequence changes by (at most) the two elements corresponding to the points

that determine l. That constant-sized change corresponds to changing at most four

elements in the ψ histogram, and then in constant time we can compute the re-

sulting change in the perihedral depth. The arrangement is of size O(n4) because
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it is determined by the pairwise intersections of
(
n
2

)
lines, and we can traverse it in

O(n4) steps while maintaining the hi sequence, the ψ histogram, and the perihedral

depth in constant time at each step.

Theorem 4. Given a set of n points P ⊆ R2 and a point q ∈ R2, the perihedral

depth of q may be computed in O(n log n) time using O(n) space, and a perihedral

median of P can be found in O(n4) time using O(n2) space.

As the information required is identical in content and differs by a constant in

complexity, the median for the PDk(q, P ) depths can also be computed in O(n4)

time and O(n2) space. Note that for values of k > 2n/3, the algorithm of Chan

[11] computes a Tukey median in O(n log n) expected time. The difference in com-

putation of medians for different parameters is remarkable and suggests that some

improvement might be possible. On the other hand, the fastest known algorithm

for computing a simplicial median requires O(n4) time [3].

The expression (1) gives a normalized formulation for perihedral depth, i.e.,

one for which the depth of every point lies in (0, 1). The generalized version (2)

suggests a parameterized family of normalized perihedral depths, and a possible

link to applications in which the question of a point being inside a random convex

hull may be relevant.

5. Eutomic Depth

Given a set P of n points in R2, a line L is a halving line if it partitions P into two

sets whose cardinalities differ by at most one. This definition implies that for any

point q such that P and q are in general position, the line determined by q and any

point pi ∈ P (which we denote Li) is a halving line of P \ {pi} if and only if n is

odd and hr(q) = (n− 1)/2 or n is even and hi(q) ∈ {n/2− 1, n/2}.

Definition 2 (eutomic depth). Given a set of n points P ⊆ R2 and a point

q ∈ R2, the eutomic (“good cutting”) depth of q, denoted ED(q, P ), is the number

of halving lines of P , among L1, . . . , Ln. That is,

ED(q, P ) =

{
ψ(n−1)/2(q) if n is odd

ψn/2−1(q) + ψn/2(q) if n is even.
(9)

Consequently, if the Tukey depth of a point q is bn/2c (implying that q is a Tukey

median), then q is also a eutomic median because the only non-zero ψ values are

used in computing ED(q, P ). Generally, the Tukey median can have Tukey depth

less than bn/2c, and the eutomic and Tukey medians may differ.

Computing ED(q, P ) is achieved by calculating hi(q) for all i, giving (9). There-

fore the eutomic depth of any point q can be computed in O(n log n) time and O(n)

space. Finding a eutomic median, however, is significantly more difficult. First we

briefly examine how eutomic depth is related to simplicial and Tukey depths. If the

maximal Tukey depth for P is bn/2c then a eutomic median is any Tukey median



October 30, 2018 8:32 WSPC/Guidelines durocherIJCGTA2018

14 Durocher, Fraser, Leblanc, Morrison, Skala

and vice versa, because all splitting planes are halving lines. Although an analo-

gous approach to that used for finding simplicial and perihedral medians provides

a O(n4)-time algorithm for finding a eutomic median, we describe a more efficient

algorithm that runs in O(n8/3) time.

First, find the set of all near-halving lines passing through two points of P .

Specifically, find all pairs (pa, pb), a 6= b, such that

ha(pb) ∈

{
{(n− 3)/2, (n− 1)/2} if n is odd,

{n/2− 2, n/2} if n is even.

These pairs can all be identified in O(n2 log n) time and O(Kn) space, where Kn is

the number of such pairs, each corresponding to a near-halving line. From Dey [15]

we know that Kn ∈ O(n4/3). This is equivalent to finding the lines between points

of P that define change in the most central portions of the ψ histogram.

Consider the arrangement of lines defined by points in P . As mentioned in

Section 4 the ψ histogram is constant throughout each cell, i.e., it can only change

when crossing a line. Furthermore, since the eutomic depth of a point q is defined

by the central values of the ψ histogram, only the lines across which the central

values change are relevant. Those are exactly the near-halving lines. Where pa and

pb are the points defining a near-halving line, the half-counts ha and hb both change

by one between query points q and q′ on either side of the segment between pa and

pb, resulting in a change of two in eutomic depth on crossing the segment (if pa
and pb both move into or out of the central bin or bins) or no change (if pa and

pb exchange places between the two central bins, possible only in the case where

n is even). Therefore the arrangement of near-halving lines partitions the plane

into cells, each of which is a locus of points that have the same ψb(n−1)/2c(q) and

ψbn/2c(q) values and hence the same eutomic depth.

The arrangement of O(n4/3) near-halving lines partitions the plane into O(n8/3)

cells, and can be constructed in O(n8/3) time using O(n8/3) space [18]. To check the

depth of any single point q in the arrangement requires O(n log n) time and O(n)

space. To identify a eutomic median of P it suffices to traverse the arrangement to

find a cell of maximum depth. When moving from one cell to a neighbouring cell,

the eutomic depth changes by either −2, 0, or 2, depending on the point at which

the near-halving line is crossed. For each near-halving line we store the two points

of P that define it and the number of points of P on its right side. Thus, a eutomic

median can be computed in time proportional to the size of the arrangement, i.e.,

O(n8/3) time and O(n8/3) space.

Theorem 5. Given a set of n points P ⊆ R2 and a point q ∈ R2, the eutomic

depth of q may be computed in O(n log n) time, and a eutomic median of P can be

found in O(n8/3) time and O(n8/3) space.
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6. Discussion and Directions for Future Research

Corollary 1 describes the special form of the ψ histogram that maximizes the per-

ihedral depth. If a set P of n points in general position allows some query point

(necessarily a perihedral median) to attain that perihedral depth, then that query

point must have the ψ histogram described with all the weight concentrated in the

central one (for odd n) or two (for even n) entries. It follows trivially from the

symmetry and sum properties of ψ histograms that this same histogram uniquely

maximizes the Tukey and eutomic depths. We also know from the properties of

Tukey medians [7] that the set of all Tukey medians is convex. Therefore we have

the following corollary, which links all three depth measures.

Corollary 2. Let P be a set of n points in general position such that one of Tukey,

perihedral, or eutomic depth at some point q is maximized over all q and all sets

P of n points in general position. Then q is also a median of P in the other two

depths; such medians maximize all three depths over sets P of n points in general

position; and the set of medians is convex.

Examples like those of Figure 1 show that the medians are not always the same

among all three depths, but it remains open that there may be useful relationships

among them in other cases beyond the global maximum of Corollary 2.

Table 1 compares properties by which depth measures are commonly evaluated.

These include that a median occurs at the centre of symmetry when P is centrally

symmetric (P1); the depth is invariant under affine transformations (P2); the depth

approaches zero as q moves away from P (P3); the depth is non-increasing along any

ray rooted at a median (P4); the contour lines bounding adjacent regions of different

depth are convex (P5); the depth of q is equal under the k- and d-dimensional

definitions of the depth measure when P lies in a k-flat of Rd for all k < d (P6); and

a depth measure’s breakdown point, i.e., the fraction α of P that must be displaced

before the median moves away from the unperturbed points of P (P7). Note that

P1 is not required to hold under other symmetries, e.g., rotational symmetry.

Although P1–P7 are commonly evaluated for depth measures, these provide only

a limited classification of depth measures (e.g., the trivial function f(q, P ) = 1 if q

is in the convex hull of P and 0 otherwise satisfies properties P1–P6). Furthermore,

convexity and monotonicity arguably limit the ability of a depth measure to express

a refined characterization of the relative position of a query point within a point

set. Thus, while these properties help compare aspects of different depth measures,

this classification alone is insufficient to quantify a given depth measure’s ability to

provide a good high-dimensional median.

By definition of central symmetry about a point q′, every line through q′ and

some point p ∈ P is a halving line. Therefore, P1 holds for eutomic depth. P2

follows immediately from the fact that convex hulls and halving lines are invariant

under affine transformations. P3 is also straightforward (although in the case of

eutomic depth, the minimum depth attainable is 1 instead of 0). Like simplicial
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Properties Simplicial Tukey Perihedral Eutomic

P1 median at centre of symmetry unknown† 3[35] unknown 3

P2 affine invariance 3[39] 3[1] 3 3

P3 vanishing at ∞ 3[39] 3[1] 3 3

P4 monotonicity relative to median 5[39] 3[7] 5 5

P5 convexity of depth contours 5[39] 3[7] 5 5

P6 consistency across dimensions 5 3 3 3

P7 breakdown point unknown 1/3 [1] unknown unknown

Table 1: Comparing Properties of Depth Measures
† Some previous results evaluate P1 for simplicial depth with respect to rotational [8]

or other symmetries [39], instead of central symmetry.

medians, the set of eutomic medians is not necessarily a convex set (and, therefore,

not monotonic). A well-known example [8] is to position a cluster of n/3 points near

each of the vertices of an equilateral triangle. The maximum simplicial, perihedral,

and eutomic depths are typically near the clusters and comprise at least three

disconnected sets. Therefore, neither P4 nor P5 hold for perihedral or eutomic

depths. P6 follows from the generalizations of the definitions of perihedral and

eutomic depths to higher dimensions (see below).

The definitions of perihedral depth and eutomic depth should be straightforward

to generalize to sets of points that are not in general position and to arbitrary data

sets that include collocated points. The generalization of perihedral depth to d

dimensions follows immediately by counting the subsets of P whose d-dimensional

convex hull contains the query point q. Similarly, the generalization of eutomic

depth to d dimensions follows by counting the halving hyperplanes of P through

q. The algorithms described in this paper apply to P ⊆ R2; it remains to examine

how to efficiently compute the depth of an arbitrary query point q, and how to find

a median of a given set P ⊆ Rd with respect to these new depth measures.

Suppose the point set P is known ahead of a sequence of point depth queries for

perihedral or eutomic depth. Instead of computing the depth of each query point

independently, requiring O(n log n) time per query, a query data structure could be

constructed on P to provide more efficient depth queries subsequently. The usual

time-space trade-off applies, where a larger data structure permits faster query time.

Thus, the respective arrangements of all lines determined by pairs of points in P

and all near-halving lines of P can be stored using O(n4) and O(n8/3) space, and

paired with a point-location query data structure (e.g., Kirkpatrick’s planar subdi-

vision algorithm [23]) to support arbitrary depth queries in O(log n) time per query.

The space can be reduced slightly by stopping the recursion in Kirkpatrick’s algo-

rithm when each triangular region contains O(log n) triangles of the arrangement.

A simple table lookup suffices once the query point is located within the arrange-

ment. In particular, O(log n) computation time is available without any increase in
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query time. The space requirements for these data structures are likely prohibitively

large for many applications. Determining structures which use improved space (e.g.,

quadratic or linear in n) is an interesting direction for future research.

As mentioned in Section 3, depth measures whose definitions involve volumes,

distances, or curves cannot be expressed in terms of ψ(q). Furthermore, none of

majority depth, convex hull peeling depth, or zonoid depth can be expressed in terms

of ψ(q). It remains to be determined whether ray shooting depth (a combinatorial

depth measure) is expressible in terms of ψ(q).
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