Computing the k-Crossing Visibility Region of a
Point in a Polygon

Yeganeh Bahoo!, Prosenjit Bose?, Stephane Durocher!, and Thomas Shermer?3
L University of Manitoba, Winnipeg, Canada {bahoo,durocher}@cs.umanitoba.ca
2 Carleton University, Ottawa, Canada jit@scs.carleton.ca
3 Simon Fraser University, Vancouver, Canada shermer@sfu.ca

Abstract. Two points p and ¢ in a simple polygon P are k-crossing vis-
ible when the line segment pq crosses the boundary of P at most k times.
Given a query point g, an integer k, and a polygon P, we propose an al-
gorithm that computes the region of P that is k-crossing visible from ¢ in
O(nk) time, where n denotes the number of vertices of P. This is the first
such algorithm parameterized in terms of k, resulting in asymptotically
faster worst-case running time relative to previous algorithms when k& is
o(logn), and bridging the gap between the O(n)-time algorithm for com-
puting the 0-visibility region of ¢ in P and the O(nlogn)-time algorithm
for computing the k-crossing visibility region of ¢ in P.

Keywords: Computational Geometry - Visibility - Radial Decompo-
sition

1 Introduction

Given a simple n-vertex polygon P, two points p and ¢ inside P are said to be
mutually visible when the line segment pg does not intersect the exterior of P.
Problems related to visibility are motivated by many applications that require
covering a given region using a minimum number of resources, some of which
refer to visual coverage (e.g., guarding with cameras [21,16]) or to providing
wireless connectivity coverage [19,23]. Unlike the visible-light model, in which
a viewer’s line of sight typically terminates upon encountering a wall, radio
transmissions can pass through some walls, suggesting a more general notion of
visibility. Mouad and Shermer [20] introduced a generalized model of visiblity in
polygons; this model was subsequently extended by Dean et al. [11] and Bajuelos
et al. [4] to define k-crossing visibility. When p and ¢ are in general position
relative to the vertices of P (i.e., no vertex of P is collinear with p and q), p
and ¢ are mutually k-crossing visible when the line segment pq intersects the
boundary of P in at most k points. Various applications require computing the
region of P that is visible or k-crossing visible from a given query point ¢ in P
[1]. This region is called the k-crossing visibility polygon of ¢ in P. See Figure 1.

Our goal is to design an algorithm that reduces the time required for com-
puting the k-crossing visibility polygon for a given point ¢ in a given simple
polygon P. O(n)-time algorithms exist for finding the visibility polygon of ¢ in

2 Y. Bahoo et al.

Fig.1. a polygon P, a point g, and the k-crossing visibility polygon of ¢ in P when
k=2

P (i.e., when k = 0) [13,18,17], whereas the best known algorithms for finding
the k-crossing visibility polygon of ¢ in P require @(nlogn) time in the worst
case for any given k [3]. A natural question that remained open is whether the
k-crossing visibility polygon of ¢ in P can be found in o(nlogn) time. In partic-
ular, can the problem be solved faster for small values of k? This paper presents
the first algorithm parameterized in terms of k to compute the k-crossing vis-
ibility polygon of ¢ in P. The proposed algorithm takes O(nk) time, where n
denotes the number of vertices of P, resulting in asymptotically faster worst-case
running time relative to previous algorithms when % is o(log), and bridging the
gap between the O(n)-time algorithm for computing the 0-visibility polygon of
¢ in P and the O(nlogn)-time algorithm for computing the k-crossing visibility
polygon of ¢ in P.

The paper begins with an overview of related work, followed by definitions,
the presentation of the algorithm, and an analysis of its running time.

2 Related Work

Given a polygon P with n vertices and a query point ¢ inside P, a fundemental
problem in visibility is to compute the visibility polygon for g¢: the portion of P
visible from ¢. This problem was first introduced by Davis and Benedikt [10], who
gave an O(n?)-time algorithm. The number of vertices of the visiblity polygon
of ¢ in P is proportional to the number of vertices of P in the worst case, i.e.,
O(n) [13,18]. Algorithms for computing the visibility polygon for any given ¢
and P in O(n) time were given by Gindy and Avis [13], Lee [18], and Joe and
Simpson [17].

This paper focuses on finding the k-crossing visibility polygon of ¢ in P with-
out preprocessing P. A related problem is that of preprocessing a given polygon
P to construct a query data structure that answers one or more subsequent visi-
bility queries for points given at query time. Using an O(n?)-space data structure
precomputed in O(n3logn) time, the visibility polygon of any point ¢ given at

Computing the k-Crossing Visibility Region of a Point in a Polygon 3

query time can be reported in O(logn + m) time, where m denotes the num-
ber of vertices in the output polygon [6]. Finally, an O(n?)-space data structure
precomputed in O(n?logn) time can report the visibility polygon of any point
q given at query time in O(log® n + m) time [2].

Motivated by applications in wireless networks, in which a radio transmission
can pass through some walls before the signal fades, the problem of k-crossing
visibility has attracted recent interest. Mouad and Shermer [20] first introduced
the concept of k-crossing visibility, in what they originally called the Superman
problem: given a simple polygon P, a sub-polygon @ C P, and a point g outside
P, determine the minimum number of edges of P that must be made opaque such
that no point of @ is visible to ¢. Dean et al. [11] studied pseudo-star-shaped
polygons, in which the line of visibility can cross one edge, corresponding to
k-crossing visibility where k& = 1. Bajuelos et al. [4] subsequently explored the
concept of k-crossing visibility for an arbitrary given k, and presented an O(n?)-
time algorithm to construct the k-crossing visible region of g in P for an arbitrary
given point ¢. Recently, Bahoo et al. [3] examined the problem under the limited-
workspace mode, and gave an algorithm that uses O(s) words of memory and
reports the k-visiblity polygon of ¢ in P in O(n?/s+nlog s) time. When memory
is not constrained (i.e., £2(n) words of memory are available) their algorithm
computes the k-visiblity polygon in O(nlogn) time.

Additional results related to k-crossing visibility include generalizations of
the well-known Art Gallery problem to the setting of k-crossing visibility. A
set of points W in a polygon P is said to guard P if every point in P is k-
crossing visible from some point in W. Each point (guard) in W is called a
k-modem. The Art Gallery problem seeks to identify a set of point of mini-
mum cardinality that guards a given polygon P. Aichholzer et al. [1] showed
that |n/2k| k-modems are sometimes necessary and |[n/(2k + 2)] are always
sufficient for guarding monotone polygons. They also proved that a monotone
orthogonal polygon can be guarded by |n/(2k + 4)| k-modems. Duque et al. [12]
showed that at most O(n/k) k-modems are needed to guard a simple polygon
P; however, given a polygon P, determining the minimum number of modems
to guard P is NP-hard [7]. k-crossing visibility can be considered in the plane
with obstacles, where the goal is to guard the plane or the boundary of a given
region. Ballinger et al. [5] developed upper and lower bounds for the number of
k-modems needed to guard a set of orthogonal line segments and other restricted
families of geometric objects. Finally, given a set of line segments and a point
q, Fabila et al. [14] examined the problem of determining the minimum k& such
that the entire plane is k-crossing visible from q.

3 Preliminaries and Definitions

3.1 Crossings and k-Crossing Visibility

Two paths P and Q are disjoint if PN Q = &. To provide a general definition
of visibility requires a comprehensive definition for a crossing between a line

4 Y. Bahoo et al.

segment and a polygon boundary, in particular, for the case when points are not
in general position.

Definition 1 (Weakly disjoint paths [Chang et al. (2014)[8]]) Two paths
P and Q are weakly disjoint if, for all sufficiently small € > 0, there are disjoint
paths P and Q such that dp(P, P) < € and dr(Q, Q) < €.

dr(A, B) denotes the Fréchet distance between A and B.

Definition 2 (Crossing paths [Chang et al. (2014)[8]]) Two paths cross if
they are not weakly disjoint.

Definitions 1 and 2 apply when P and @ are Jordan arcs. We use Definition 2
to help define k-crossing visibility.

Definition 3 (k-crossing visibility) Two Jordan arcs (or polygonal chains)
P and Q cross k times, if there exist partitions Py, ..., P, of P and Q1,...,Q
of Q such that P; and Q; cross, for alli € {1,...,k}. Points p and q in a simple
polygon P are k-crossing visible if the line segment pq and the boundary of P do
not cross k times.

Given a simple polygon P, we refer to the set of points that are k-crossing
visible from a point g as the k-crossing visibility region of q with respect to P,
denoted Vi (P, q). When the polygon P is clear from the context, we simply refer
to set as the k-crossing visibility region of ¢ and denote it as Vi (q). Our goal is
to design an efficient algorithm to compute the k-crossing visibility region of a
point ¢ with respect to a simple polygon P.

To simplify the description of our algorithms, we assume that the query point
g and the vertices of the input polygon P are in general position, i.e., ¢, p; and p;
are not collinear for any vertices p; and p; in P. Under the assumption of general
position, two points p and ¢ are k-crossing visible if and only if the line segment
pq intersects the boundary of P in fewer than k points. That is, Definition 3 is
not necessary under general position. All results presented in this paper can be
extended to input that is not in general position.

3.2 Trapezoidal and Radial Decompositions

A polygonal decomposition of a simple polygon P is a partition of P into a set of
simpler regions, such as triangles, trapezoids, or quadrilaterals. Our algorithm
uses trapezoidal decomposition and radial decomposition. A trapezoidal decom-
position (synonymously, trapezoidation) of P partitions P into trapezoids and
triangles by extending, wherever possible, a vertical line segment from each ver-
tex p of P above and/or below p into the interior of P, until its first intersection
with the boundary of P. A radial decomposition of P is defined relative to a
point ¢ in P. For each vertex p of P, a line segment is extended, wherever possi-
ble, toward/away from p into the interior of P on the line determined by p and
q, until its first intersection with the boundary of P. A radial decomposition

Computing the k-Crossing Visibility Region of a Point in a Polygon 5

partitions P into quadrilateral and triangular regions. The number of vertices
and edges in both decompositions is proportional to the number of vertices in
P (i.e., ©(n)). Note that a trapezoidal decomposition corresponds to a radial
decomposition when the point ¢ has its y-coordinate at +o00 or —oo (outside P).
Chazelle [9] gives an efficient algorithm for computing a trapezoidal decomposi-
tion of a simple n-vertex polygon in O(n) time.

4 k-Crossing Visibility Algorithm

4.1 Overview

Given as input an integer k, an array storing the coordinates of vertices whose
sequence defines a clockwise ordering of the boundary of a simple polygon P,
and a point ¢ in the interior of P, our algorithm for constructing the k-crossing
visibility polygon of ¢ in P executes the following steps, each of which is described
in detail in this section:

1. Partition P into two sets of disjoint polylines, corresponding to the boundary
of P above the horizontal line ¢ through ¢, and the boundary of P below /.

2. Nesting properties of Jordan sequences are used to close each set by con-
necting disjoint components to form two simple polygons, P, above ¢ and
P, below £.

3. The two-dimensional coordinates of the vertices of P, and P, are mapped
to homogeneous coordinates, to which a projective transformation, f,, is
applied, with ¢ as the center of projection.

4. Compute the trapezoidal decompositions of f,(P,) and f,(P,) using Chazelle’s
algorithm [9].

5. Apply the inverse tranformation f,- I on the trapezoidal decompositions to
obtain radial decompositions of P, and Pj.

6. Merge the radial decompositions of P, and P, to obtain a radial decompo-
sition of P with respect to gq.

7. Traverse the radial decomposition of P to identify the visibility of cells in
increasing order from visibility 0 through visibility k£, moving away from ¢
and extending edges on rays from ¢ to refine cells of the decomposition as
necessary.

8. Traverse the refined radial decomposition to reconstruct and output the
boundary of the k-crossing visibility region of ¢ in P.

Steps 1-6 can be completed in O(n) time and Steps 7-8 can be completed in
O(nk) time.
4.2 Partitioning P into Upper and Lower Polygons

We begin by describing how to partition the polygon P in two across the line /£,
where ¢ denotes the horizontal line through ¢. By our general position assump-
tion, no vertices of P lie on ¢. Let € denote the minimum distance between any

6 Y. Bahoo et al.

vertex of P and £. Let the upper polygon, denoted as P, (respectively, the lower
polygon, denoted Py) refer to the closure of the region of the boundary of P
that lies above (respectively, below) ¢; see Figure 2. Let {z1,...,2,,} denote the
sequence of intersection points of £ with the boundary of P, labelled in clockwise
order along the boundary of P, such that x; is the leftmost point in P N ¢. This
sequence is a Jordan sequence [15]. We now describe how to construct P, and
Py.

Between consecutive pairs (zg;—_1, x2;) of the Jordan sequence, for i € {1,...,
m/2}, the polygon boundary of P lies above ¢. Similarly, between pairs (225, 22j41),
for j € {1,...,m/2 — 1}, and between (x,,, o), the boundary of P lies below
£. We call the former upper pairs of the Jordan sequence, and the latter lower
pairs. These pairs possess the nested parenthesis property [22]: every two pairs
(x2i—1,%2;) and (zg;j—1,x2;) must either nest or be disjoint. That is, xo;_1 lies
between x2;—1 and x; in the sequence if and only if xo; lies between 29;_1 and
T2;.

As shown by Hoffmann et al. [15], the nested parenthesis property for the up-
per pairs determines a rooted tree, called the upper tree, whose nodes correspond
to pairs of the sequence. The nodes in the subtree rooted at the pair (zg;_1, z2;)
consist of all nodes corresponding to pairs that are nested betweeen xo; 1 and
Z9; in the Jordan sequence order. The leaves of the tree correspond to pairs that
are consecutive in the sorted order. If a node (scgj,l,xgj) is a descendant of a
node (z2;—1,%2;) in the tree, then the points x9;_1 and xy; are nested between
Zo;—1 and xo;. The lower tree is defined analogously.

If the boundary of P intersects ¢ in more than two points, the resulting dis-
connected components must be joined appropriately to form the simple polygons
P, and P,. To build the lower polygon P,, we replace each portion of the bound-
ary of P above £ from x9; 1 to xo; with the following 3-edge path: zo;_1, u, v, ;.
The first edge (x2;—1,u) is a vertical line segment of length €/2d;, where d; de-
notes the depth of the node (xg;_1,29;) in the tree. The next edge (u,v) is a
horizontal line segment whose length is ||x;—1 — x2;||. The third edge (v, z9;) is
a vertical line segment of length ¢/2d;. See Figure 2.

The nesting property of the Jordan sequence ensures that all of the 3-edge
paths cross are similarly nested and that none of them intersect. Consider two
pairs (z2;—1,22;) and (z2;_1, z2;). Either they are disjoint or nested. If they are
disjoint, then without loss of generality, assume that xo;—1 < T2; < T2j—1 < X2 .
Their corresponding 3-edge paths cannot cross since the intervals they cover
are disjoint. If they are nested, then without loss of generality, assume that
Toi—1 < T2j—1 < T2; < T2;. The only way that the two paths can cross is if the
horizontal edge for the pair (z2;_1,22;) is higher than for the pair (z2;,-1,z2;).
However, since (x2;_1,2;) is deeper in the tree than (z2;_1, z2;), the two paths
do not cross. Thus, we form the simple polygon P, by replacing the portions of
the boundary above ¢ with these three edge paths. Sorting the Jordan sequence,
building the upper tree, computing the depths of all the pairs and adding the
3-edge paths can all be achieved in O(n) time using the Jordan sorting algo-

Computing the k-Crossing Visibility Region of a Point in a Polygon 7

rithm outlined by Hoffmann et al. [15]. The upper polygon P, is constructed
analogously. We conclude with the following lemma.

Lemma 1. Given a simple n-vertex polygon P and a horizontal line ¢ that
intersects the interior of P such that no vertices of P lie on {, the upper and
lower polygons of P with respect to { can be computed in O(n) time.

4.3 Computing the Radial Decomposition

The two-dimensional coordinates of the vertices of each polygon P, and P, are
mapped to homogeneous coordinates, to which a projective transformation, fj,
is applied with ¢ as the center of projection. These transformations take constant
time per vertex, or @(n) total time. Chazelle’s algorithm [9] constructs trape-
zoidal decompositions of f,(P,) and f,(P,) in ©(n) time, on which the inverse
transformation, f,~ 1 is applied to obtain radial decompositions of P, and P,.
Merging the radial decompositions of P, and P, gives a radial decomposition
of the original polygon P without requiring any additional edges. All vertices
z1,-...,Tm, of the Jordan sequence, all vertices of the three-edge paths, and their
adjacent edges are removed. The remaining edges are either on the boundary
of P, between two points on the boundary on a ray through ¢, or between the
boundary and ¢. The entire process for constructing the radial trapezoidation
takes @(n) time. This gives the following lemma.

Lemma 2. The radial decomposition of a simple n-vertex polygon P around a
query point q can be computed in O(n) time.

P P, P,

T

(2) (b) (c)

Fig. 2. (a) a polygon P, a point g, and the horizontal line £ through ¢; (b)—(c) the upper
polygon P, and lower polygon P, of P with the additional 3-edge paths highlighted.

4.4 Reporting the k-Crossing Visible Region

The 0-visibility region of ¢ in P, denoted Vy(q), is a star-shaped polygon with
q in its kernel. A vertex of Vy(q) is either a vertex v of P or a point x on the

8 Y. Bahoo et al.

boundary of P that is the intersection of an edge of P with a ray emanating from
q through a reflex vertex r of P. In the latter case, (r,z) is an edge of Vy(q) that
is collinear with ¢, called a window or lid, because it separates a region in the
interior of P that is 0-visible from ¢ and an interior region that is not 0-visible.
The reflex vertex r is the base of the lid and x is its tip. There are two types of
base reflex vertices. The reflex vertex r is called a left base (respectively, right
base) if the polygon edges incident on r are to the left (respectively, right) of the
ray emanating from ¢ through r.

We now describe the algorithm to compute the k-crossing visible region of ¢ in
P, denoted Vi (q). The algorithm proceeds incrementally by computing V;11(q)
after computing V;(q). We begin by computing Vy(q) in O(n) time using one of
the existing linear-time algorithms, e.g. [13, 18, 17]. Label the vertices of Vy(q) in
clockwise order around the boundary as xg, z1, ..., z,,. Triangulate the visibility
polygon by adding the edge (g, x;) for ¢ € {0, ..., m}; this corresponds to a radial
decomposition of Vy(g) around q.

If z; is a left base vertex, then notice that the triangle A(qz;x;11)* degen-
erates to a segment. Similarly, if x; is a right base vertex, then A(qx;x;—1) is
degenerate. If we ignore all degenerate triangles, then every triangle has the form
A(qrixiy1), where (z;,2,41) is on the boundary of P. The union of these trian-
gles is Vy(q). To compute V;(q), we show how to compute a superset of triangles
whose union is V1 (q).

We start with an arbitrary triangle A(qx;2,41) of Vo(q), where (z;,2;41) is
on the boundary of P. Note that (x;,z;+1) is either an edge of P or a segment
within the interior of an edge of P. It is this segment (z;, z;11) of the boundary
that blocks visibility. We show how to compute the intersection of V;(q) with the
cone that has apex ¢ and bounding rays gx; and qz;y1, denoted C(q, z;, x;11).
We call this process extending the visibility of a triangle. We have two cases to
consider. Either at least one of x; or x;41 is a base vertex or neither is a base
vertex. We start with the latter case where neither is a base vertex.

Let Y be the set of vertices of the radial decomposition that lie on the edge
(i, xi41). If Y is empty, then (x;,x;41) lies on one face of the decomposition
in addition to A(gx;x;41) since neither x; nor z;41 is a base vertex. We show
how to proceed in the case when Y is empty, then we show what to do when Y
is not empty. Let f be the face of the decomposition on the boundary of which
(24, x;41) lies. By construction, this face is either a quadrilateral or a triangle. In
constant time, we find the intersection of the boundary of f excluding the edge
containing (z;, x;+1) with gx; and gx; 1. Label these two intersection points as
x; and xj, ;. Extending the visibility of A(gz;x;11) results in A(qzjx;, ;). Note
that A(qxjz;,) is the 1-visible region of ¢ in C(q, z, zi41) and (2}, 2],) is on
the boundary of P.

We now show how to extend the visibility of A(gz;z;+1) when Y is not empty.
Label the points of Y as y; for j > 1 in the order that they appear on the edge
(@i, i41) from x; to x;41; see Figure 3. Each y; is an endpoint of an edge of

4 All indices are computed modulo the size of the corresponding vertex set: m + 1 in
this case.

Computing the k-Crossing Visibility Region of a Point in a Polygon 9

v q

Fig. 3. Edges of the radial decomposition are extended where critical vertices cast a
shadow. Portions of the polygon in the blue region that were processed in previous
iterations are omitted from the figure.

the radial decomposition. Since y; is a point on the boundary of P, there are 2
faces of the radial decomposition with y; on the boundary. Let y; be the other
endpoint of the face on the left of y; and y}’ be the endpoint for the face on the
right. Either y’ = y7 or y} # y. In the former case, we simply ignore y7. In the
latter case, we note that either y’ is a left base of Vy(y;) or yj is a right base.
See Figure 3 where v} is a left base and y is a right base.

Thus, the edges of the radial composition that intersect segment (z;,z;1+1)
are of the form (y;,y}) or (y;,y}). Note that y; is either z; or the point closest
to x; on the edge. For notational convenience, if y; # x;, relabel x; as yg. Let
f be the face of the radial decompostion on the boundary of which (yo,y1) lies.
Let y, be the intersection of gy with the boundary of f excluding the edge of f
containing (yo,y1). We call this operation extending x;. Similarly, if y; # 11,
relabel ;11 as y;41 and compute the edge (y;+1,¥j1), i-e. extend ;1.

We are now in a position to describe the extension of the visibility of triangle
A(gr;x;y1) when neither x; nor x;4; is a base vertex. The set of triangles are
AN qYeYir1) and A(qyyygy,) (when y;! exists). The union of these triangles is

the 1-visible region of ¢ in C(q, z;, x;+1). Furthermore, notice that each triangle
",/

A(qYyYjy1) (respectively, A(qy;y,,1)) has the property that (v, 1) (respec-
tively, (¥, ¥s41)) is on the boundary of P. This is what allows us to continue
incrementally since at each stage we extend the visibility of a triangle A(gab)
where (a,b) is on the boundary of P.

Now, if x; is a base vertex, then it must be a right base. Of the two edges
of P incident on x;, let e be the one further from ¢. The procedure to extend
A(qrixiyq) is identical except that we only extend x; when x; 41 € e. Similarly,
if ;41 is a base vertex, then it must be a left base. Of the two edges of P
incident on x;41, let e be the one further from ¢g. Again, the procedure to extend
A(qr;xi41) is identical except that we only extend z;11 when z; € e.

The general algorithm proceeds as follows. At iteration 4, the visibility region
Vi(q) is represented as a collection of triangles around ¢ with the property that

10 Y. Bahoo et al.

(d) (F)

Fig.4. (a) a simple polygon P and a query point g¢; (b) the radial decomposition
of P; (c) the 0-visibility polygon, Vo(q), of ¢ in P computed in the first iteration;
(d) the 1-visibility polygon, Vi(q), of ¢ in P computed in the second iteration, with
extended edges highlighted in light blue; (e) the refined radial decomposition, with
extended edges highlighted in light blue; (f) the 4-visibility polygon, Vi(q), of ¢ in P
computed in the fourth iteration, with the algorithm’s output highlighted in black (two
components of the boundary of V4(¢) N P), and cells of the decomposition with depth
< 4 coloured by depth, as computed by the algorithm.

Computing the k-Crossing Visibility Region of a Point in a Polygon 11

the edge of the triangle opposite g is on the boundary of P and it is the edge
blocking visibility. We wish to extend past this edge to compute V;11(q) from
Vi(q). To do this, we extend each triangle in V;(q). There are at most O(n)
triangles at each level. Therefore, the total time to extend all the triangles in
Vi(q) is linear. Thus, we can compute V;11(q) from V;(¢) in O(n) time and
computing Vi (q) takes O(nk) time since we repeat this process k times.

The algorithm can report either only the subregion of P that is k-crossing
visible from g, i.e., Vi (q) N P, or the entire region of the plane that is k-crossing
visible from ¢, including parts outside P. To obtain the region inside P, it suffices
to traverse the boundary of P once to reconstruct and report portions of bound-
ary edges that are k-crossing visible. The endpoints of these sequences of edges
on the boundary of P meet an edge of the refined radial decomposition through
the interior of P that bridges to the start of the next sequence on the boundary
of P. The entire boundary of P must be traversed since the k-crossing visible
region in P can have multiple connected components (unlike the k-crossing vis-
ible region in the plane that is a single connected region). See Figure 4 for an
example. We conclude with the following theorem.

Theorem 4. Given a simple polygon P with n vertices and a query point q in
P, the region of P that is k-crossing visible from q can be computed in O(kn)
time without preprocessing.

5 Discussion

This paper presents the first algorithm parameterized in terms of k for computing
the k-crossing visible region for a given point ¢ in a given polygon P, resulting
in asymptotically faster worst-case running time relative to previous algorithms
when k is o(logn), and bridging the gap between the O(n)-time algorithm for
computing the 0-visibility region of ¢ in P [13,18,17], and the O(nlogn)-time
algorithm for computing the k-crossing visibility region of ¢ in P [3]. It remains
open whether the problem can be solved faster. In particular, an O(n log k)-time
algorithm would provide a natural parameterization for all k. Alternatively, can
a lower bound of 2(nlogn) be shown on the worst-case time when k is w(logn)?

References

1. Aichholzer, O., Fabila-Monroy, R., Flores-Pefialoza, D., Hackl, T., Huemer, C.,
Urrutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. Compu-
tational Geometry 68, 101-118 (2018)

2. Aronov, B., Guibas, L.J., Teichmann, M., Zhang, L.: Visibility queries and main-
tenance in simple polygons. Discrete & Computational Geometry 27(4), 461-483
(2002)

3. Bahoo, Y., Banyassady, B., Bose, P., Durocher, S., Mulzer, W.: A time-space trade-
off for computing the k-visibility region of a point in a polygon. Theoretical Com-
puter Science (2018)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Y. Bahoo et al.

Bajuelos, A.L., Canales, S., Hernandez, G., Martins, M.: A hybrid metaheuristic
strategy for covering with wireless devices. Journal of Universal Computer Science
18(14), 1906-1932 (2012)

Ballinger, B., Benbernou, N., Bose, P., Damian, M., Demaine, E., Dujmovi¢,
V., Flatland, R., Hurtado, F., Tacono, J., Lubiw, A., et al.: Coverage with k-
transmitters in the presence of obstacles. Journal of Combinatorial Optimization
25(2), 208-233 (2013)

Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons.
Computational Geometry 23(3), 313-335 (2002)

Cannon, S., Fai, T., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and com-
plexity of guarding polygons with edge and point 2-transmitters. arXiv preprint
arXiv:1503.05681 (2015)

Chang, H.C., Erickson, J., Xu, C.: Detecting weakly simple polygons. In: Proc.
26th ACM-STAM Symposium on Discrete Algorithms (SODA 2014). pp. 1655-1670
2014

éhaze)lle, B.: Triangulating a simple polygon in linear time. Discrete & Computa-
tional Geometry 6(3), 485-524 (1991)

Davis, L.S., Benedikt, M.L.: Computational models of space: Isovists and isovist
fields. Computer Graphics and Image Processing 11(1), 49-72 (1979)

Dean, J.A., Lingas, A., Sack, J.R.: Recognizing polygons, or how to spy. The Visual
Computer 3(6), 344-355 (1988)

Duque, F., Hidalgo-Toscano, C.: An upper bound on the k-modem illumination
problem. arXiv preprint arXiv:1410.4099 (2014)

El Gindy, H., Avis, D.: A linear algorithm for computing the visibility polygon
from a point. Journal of Algorithms 2(2), 186-197 (1981)

Fabila-Monroy, R., Vargas, A., Urrutia, J.: On modem illumination problems. Proc.
XIII Encuentros de Geometria Computacional (EGC 2009) (2009)

Hoffmann, K., Mehlhorn, K., Rosenstiehl, P., Tarjan, R.E.: Sorting Jordan se-
quences in linear time using level-linked search trees. Information and Control
68(1-3), 170184 (1986)

Huang, H., Ni, C.C., Ban, X., Gao, J., Schneider, A.T., Lin, S.: Connected
wireless camera network deployment with visibility coverage. In: Proc. IEEE
International Conference on Computer Communications (INFOCOM 2014). pp.
1204-1212 (2014)

Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics 27(4), 458-473 (1987)

Lee, D.T.: Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing 22(2), 207-221 (1983)

Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M.: Exposure in wireless
ad-hoc sensor networks. In: Proc. 7th ACM International Conference on Mobile
Computing and Networking (MOBICOM 2001). pp. 139-150. ACM (2001)
Mouawad, N., Shermer, T.C.: The Superman problem. The Visual Computer
10(8), 459-473 (1994)

Murray, A.T., Kim, K., Davis, J.W., Machiraju, R., Parent, R.: Coverage optimiza-
tion to support security monitoring. Computers, Environment and Urban Systems
31(2), 133-147 (2007)

Rosenstiehl, P.: Planar permutations defined by two intersecting Jordan curves.
Graph Theory and Combinatorics pp. 259-271 (1984)

Wang, Y.C., Hu, C.C., Tseng, Y.C.: Efficient deployment algorithms for ensuring
coverage and connectivity of wireless sensor networks. In: Proc. 1st IEEE Confer-
ence on Wireless Internet (WICON 2005). pp. 114-121 (2005)

