
Computing the k-Crossing Visibility Region of a
Point in a Polygon

Yeganeh Bahoo1, Prosenjit Bose2, Stephane Durocher1, and Thomas Shermer3

1 University of Manitoba, Winnipeg, Canada {bahoo,durocher}@cs.umanitoba.ca
2 Carleton University, Ottawa, Canada jit@scs.carleton.ca

3 Simon Fraser University, Vancouver, Canada shermer@sfu.ca

Abstract. Two points p and q in a simple polygon P are k-crossing vis-
ible when the line segment pq crosses the boundary of P at most k times.
Given a query point q, an integer k, and a polygon P , we propose an al-
gorithm that computes the region of P that is k-crossing visible from q in
O(nk) time, where n denotes the number of vertices of P . This is the first
such algorithm parameterized in terms of k, resulting in asymptotically
faster worst-case running time relative to previous algorithms when k is
o(logn), and bridging the gap between the O(n)-time algorithm for com-
puting the 0-visibility region of q in P and the O(n logn)-time algorithm
for computing the k-crossing visibility region of q in P .

Keywords: Computational Geometry · Visibility · Radial Decompo-
sition

1 Introduction

Given a simple n-vertex polygon P , two points p and q inside P are said to be
mutually visible when the line segment pq does not intersect the exterior of P .
Problems related to visibility are motivated by many applications that require
covering a given region using a minimum number of resources, some of which
refer to visual coverage (e.g., guarding with cameras [21, 16]) or to providing
wireless connectivity coverage [19, 23]. Unlike the visible-light model, in which
a viewer’s line of sight typically terminates upon encountering a wall, radio
transmissions can pass through some walls, suggesting a more general notion of
visibility. Mouad and Shermer [20] introduced a generalized model of visiblity in
polygons; this model was subsequently extended by Dean et al. [11] and Bajuelos
et al. [4] to define k-crossing visibility. When p and q are in general position
relative to the vertices of P (i.e., no vertex of P is collinear with p and q), p
and q are mutually k-crossing visible when the line segment pq intersects the
boundary of P in at most k points. Various applications require computing the
region of P that is visible or k-crossing visible from a given query point q in P
[1]. This region is called the k-crossing visibility polygon of q in P . See Figure 1.

Our goal is to design an algorithm that reduces the time required for com-
puting the k-crossing visibility polygon for a given point q in a given simple
polygon P . O(n)-time algorithms exist for finding the visibility polygon of q in

2 Y. Bahoo et al.

P

q

Fig. 1. a polygon P , a point q, and the k-crossing visibility polygon of q in P when
k = 2

P (i.e., when k = 0) [13, 18, 17], whereas the best known algorithms for finding
the k-crossing visibility polygon of q in P require Θ(n log n) time in the worst
case for any given k [3]. A natural question that remained open is whether the
k-crossing visibility polygon of q in P can be found in o(n log n) time. In partic-
ular, can the problem be solved faster for small values of k? This paper presents
the first algorithm parameterized in terms of k to compute the k-crossing vis-
ibility polygon of q in P . The proposed algorithm takes O(nk) time, where n
denotes the number of vertices of P , resulting in asymptotically faster worst-case
running time relative to previous algorithms when k is o(log n), and bridging the
gap between the O(n)-time algorithm for computing the 0-visibility polygon of
q in P and the O(n log n)-time algorithm for computing the k-crossing visibility
polygon of q in P .

The paper begins with an overview of related work, followed by definitions,
the presentation of the algorithm, and an analysis of its running time.

2 Related Work

Given a polygon P with n vertices and a query point q inside P , a fundemental
problem in visibility is to compute the visibility polygon for q: the portion of P
visible from q. This problem was first introduced by Davis and Benedikt [10], who
gave an O(n2)-time algorithm. The number of vertices of the visiblity polygon
of q in P is proportional to the number of vertices of P in the worst case, i.e.,
Θ(n) [13, 18]. Algorithms for computing the visibility polygon for any given q
and P in O(n) time were given by Gindy and Avis [13], Lee [18], and Joe and
Simpson [17].

This paper focuses on finding the k-crossing visibility polygon of q in P with-
out preprocessing P . A related problem is that of preprocessing a given polygon
P to construct a query data structure that answers one or more subsequent visi-
bility queries for points given at query time. Using an O(n3)-space data structure
precomputed in O(n3 log n) time, the visibility polygon of any point q given at

Computing the k-Crossing Visibility Region of a Point in a Polygon 3

query time can be reported in O(log n + m) time, where m denotes the num-
ber of vertices in the output polygon [6]. Finally, an O(n2)-space data structure
precomputed in O(n2 log n) time can report the visibility polygon of any point
q given at query time in O(log2 n+m) time [2].

Motivated by applications in wireless networks, in which a radio transmission
can pass through some walls before the signal fades, the problem of k-crossing
visibility has attracted recent interest. Mouad and Shermer [20] first introduced
the concept of k-crossing visibility, in what they originally called the Superman
problem: given a simple polygon P , a sub-polygon Q ⊆ P , and a point q outside
P , determine the minimum number of edges of P that must be made opaque such
that no point of Q is visible to q. Dean et al. [11] studied pseudo-star-shaped
polygons, in which the line of visibility can cross one edge, corresponding to
k-crossing visibility where k = 1. Bajuelos et al. [4] subsequently explored the
concept of k-crossing visibility for an arbitrary given k, and presented an O(n2)-
time algorithm to construct the k-crossing visible region of q in P for an arbitrary
given point q. Recently, Bahoo et al. [3] examined the problem under the limited-
workspace mode, and gave an algorithm that uses O(s) words of memory and
reports the k-visiblity polygon of q in P in O(n2/s+n log s) time. When memory
is not constrained (i.e., Ω(n) words of memory are available) their algorithm
computes the k-visiblity polygon in O(n log n) time.

Additional results related to k-crossing visibility include generalizations of
the well-known Art Gallery problem to the setting of k-crossing visibility. A
set of points W in a polygon P is said to guard P if every point in P is k-
crossing visible from some point in W . Each point (guard) in W is called a
k-modem. The Art Gallery problem seeks to identify a set of point of mini-
mum cardinality that guards a given polygon P . Aichholzer et al. [1] showed
that bn/2kc k-modems are sometimes necessary and bn/(2k + 2)c are always
sufficient for guarding monotone polygons. They also proved that a monotone
orthogonal polygon can be guarded by bn/(2k + 4)c k-modems. Duque et al. [12]
showed that at most O(n/k) k-modems are needed to guard a simple polygon
P ; however, given a polygon P , determining the minimum number of modems
to guard P is NP -hard [7]. k-crossing visibility can be considered in the plane
with obstacles, where the goal is to guard the plane or the boundary of a given
region. Ballinger et al. [5] developed upper and lower bounds for the number of
k-modems needed to guard a set of orthogonal line segments and other restricted
families of geometric objects. Finally, given a set of line segments and a point
q, Fabila et al. [14] examined the problem of determining the minimum k such
that the entire plane is k-crossing visible from q.

3 Preliminaries and Definitions

3.1 Crossings and k-Crossing Visibility

Two paths P and Q are disjoint if P ∩ Q = ∅. To provide a general definition
of visibility requires a comprehensive definition for a crossing between a line

4 Y. Bahoo et al.

segment and a polygon boundary, in particular, for the case when points are not
in general position.

Definition 1 (Weakly disjoint paths [Chang et al. (2014)[8]]) Two paths
P and Q are weakly disjoint if, for all sufficiently small ε > 0, there are disjoint
paths P̃ and Q̃ such that dF (P, P̃) < ε and dF (Q, Q̃) < ε.

dF (A,B) denotes the Fréchet distance between A and B.

Definition 2 (Crossing paths [Chang et al. (2014)[8]]) Two paths cross if
they are not weakly disjoint.

Definitions 1 and 2 apply when P and Q are Jordan arcs. We use Definition 2
to help define k-crossing visibility.

Definition 3 (k-crossing visibility) Two Jordan arcs (or polygonal chains)
P and Q cross k times, if there exist partitions P1, . . . , Pk of P and Q1, . . . , Qk

of Q such that Pi and Qi cross, for all i ∈ {1, . . . , k}. Points p and q in a simple
polygon P are k-crossing visible if the line segment pq and the boundary of P do
not cross k times.

Given a simple polygon P , we refer to the set of points that are k-crossing
visible from a point q as the k-crossing visibility region of q with respect to P ,
denoted Vk(P, q). When the polygon P is clear from the context, we simply refer
to set as the k-crossing visibility region of q and denote it as Vk(q). Our goal is
to design an efficient algorithm to compute the k-crossing visibility region of a
point q with respect to a simple polygon P .

To simplify the description of our algorithms, we assume that the query point
q and the vertices of the input polygon P are in general position, i.e., q, pi and pj
are not collinear for any vertices pi and pj in P . Under the assumption of general
position, two points p and q are k-crossing visible if and only if the line segment
pq intersects the boundary of P in fewer than k points. That is, Definition 3 is
not necessary under general position. All results presented in this paper can be
extended to input that is not in general position.

3.2 Trapezoidal and Radial Decompositions

A polygonal decomposition of a simple polygon P is a partition of P into a set of
simpler regions, such as triangles, trapezoids, or quadrilaterals. Our algorithm
uses trapezoidal decomposition and radial decomposition. A trapezoidal decom-
position (synonymously, trapezoidation) of P partitions P into trapezoids and
triangles by extending, wherever possible, a vertical line segment from each ver-
tex p of P above and/or below p into the interior of P , until its first intersection
with the boundary of P . A radial decomposition of P is defined relative to a
point q in P . For each vertex p of P , a line segment is extended, wherever possi-
ble, toward/away from p into the interior of P on the line determined by p and
q, until its first intersection with the boundary of P . A radial decomposition

Computing the k-Crossing Visibility Region of a Point in a Polygon 5

partitions P into quadrilateral and triangular regions. The number of vertices
and edges in both decompositions is proportional to the number of vertices in
P (i.e., Θ(n)). Note that a trapezoidal decomposition corresponds to a radial
decomposition when the point q has its y-coordinate at +∞ or −∞ (outside P).
Chazelle [9] gives an efficient algorithm for computing a trapezoidal decomposi-
tion of a simple n-vertex polygon in O(n) time.

4 k-Crossing Visibility Algorithm

4.1 Overview

Given as input an integer k, an array storing the coordinates of vertices whose
sequence defines a clockwise ordering of the boundary of a simple polygon P ,
and a point q in the interior of P , our algorithm for constructing the k-crossing
visibility polygon of q in P executes the following steps, each of which is described
in detail in this section:

1. Partition P into two sets of disjoint polylines, corresponding to the boundary
of P above the horizontal line ` through q, and the boundary of P below `.

2. Nesting properties of Jordan sequences are used to close each set by con-
necting disjoint components to form two simple polygons, Pa above ` and
Pb below `.

3. The two-dimensional coordinates of the vertices of Pa and Pb are mapped
to homogeneous coordinates, to which a projective transformation, fq, is
applied, with q as the center of projection.

4. Compute the trapezoidal decompositions of fq(Pa) and fq(Pb) using Chazelle’s
algorithm [9].

5. Apply the inverse tranformation f−1
q on the trapezoidal decompositions to

obtain radial decompositions of Pa and Pb.
6. Merge the radial decompositions of Pa and Pb to obtain a radial decompo-

sition of P with respect to q.
7. Traverse the radial decomposition of P to identify the visibility of cells in

increasing order from visibility 0 through visibility k, moving away from q
and extending edges on rays from q to refine cells of the decomposition as
necessary.

8. Traverse the refined radial decomposition to reconstruct and output the
boundary of the k-crossing visibility region of q in P .

Steps 1–6 can be completed in O(n) time and Steps 7–8 can be completed in
O(nk) time.

4.2 Partitioning P into Upper and Lower Polygons

We begin by describing how to partition the polygon P in two across the line `,
where ` denotes the horizontal line through q. By our general position assump-
tion, no vertices of P lie on `. Let ε denote the minimum distance between any

6 Y. Bahoo et al.

vertex of P and `. Let the upper polygon, denoted as Pa (respectively, the lower
polygon, denoted Pb) refer to the closure of the region of the boundary of P
that lies above (respectively, below) `; see Figure 2. Let {x1, . . . , xm} denote the
sequence of intersection points of ` with the boundary of P , labelled in clockwise
order along the boundary of P , such that x1 is the leftmost point in P ∩ `. This
sequence is a Jordan sequence [15]. We now describe how to construct Pa and
Pb.

Between consecutive pairs (x2i−1, x2i) of the Jordan sequence, for i ∈ {1, . . . ,
m/2}, the polygon boundary of P lies above `. Similarly, between pairs (x2j , x2j+1),
for j ∈ {1, . . . ,m/2 − 1}, and between (xm, x0), the boundary of P lies below
`. We call the former upper pairs of the Jordan sequence, and the latter lower
pairs. These pairs possess the nested parenthesis property [22]: every two pairs
(x2i−1, x2i) and (x2j−1, x2j) must either nest or be disjoint. That is, x2j−1 lies
between x2i−1 and x2i in the sequence if and only if x2j lies between x2i−1 and
x2i.

As shown by Hoffmann et al. [15], the nested parenthesis property for the up-
per pairs determines a rooted tree, called the upper tree, whose nodes correspond
to pairs of the sequence. The nodes in the subtree rooted at the pair (x2i−1, x2i)
consist of all nodes corresponding to pairs that are nested betweeen x2i−1 and
x2i in the Jordan sequence order. The leaves of the tree correspond to pairs that
are consecutive in the sorted order. If a node (x2j−1, x2j) is a descendant of a
node (x2i−1, x2i) in the tree, then the points x2j−1 and x2j are nested between
x2i−1 and x2i. The lower tree is defined analogously.

If the boundary of P intersects ` in more than two points, the resulting dis-
connected components must be joined appropriately to form the simple polygons
Pa and Pb. To build the lower polygon Pb, we replace each portion of the bound-
ary of P above ` from x2i−1 to x2i with the following 3-edge path: x2i−1, u, v, x2i.
The first edge (x2i−1, u) is a vertical line segment of length ε/2di, where di de-
notes the depth of the node (x2i−1, x2i) in the tree. The next edge (u, v) is a
horizontal line segment whose length is ||x2i−1 − x2i||. The third edge (v, x2i) is
a vertical line segment of length ε/2di. See Figure 2.

The nesting property of the Jordan sequence ensures that all of the 3-edge
paths cross are similarly nested and that none of them intersect. Consider two
pairs (x2i−1, x2i) and (x2j−1, x2j). Either they are disjoint or nested. If they are
disjoint, then without loss of generality, assume that x2i−1 < x2i < x2j−1 < x2j .
Their corresponding 3-edge paths cannot cross since the intervals they cover
are disjoint. If they are nested, then without loss of generality, assume that
x2i−1 < x2j−1 < x2j < x2i. The only way that the two paths can cross is if the
horizontal edge for the pair (x2j−1, x2j) is higher than for the pair (x2i−1, x2i).
However, since (x2j−1, x2j) is deeper in the tree than (x2i−1, x2i), the two paths
do not cross. Thus, we form the simple polygon Pb by replacing the portions of
the boundary above ` with these three edge paths. Sorting the Jordan sequence,
building the upper tree, computing the depths of all the pairs and adding the
3-edge paths can all be achieved in O(n) time using the Jordan sorting algo-

Computing the k-Crossing Visibility Region of a Point in a Polygon 7

rithm outlined by Hoffmann et al. [15]. The upper polygon Pa is constructed
analogously. We conclude with the following lemma.

Lemma 1. Given a simple n-vertex polygon P and a horizontal line ` that
intersects the interior of P such that no vertices of P lie on `, the upper and
lower polygons of P with respect to ` can be computed in O(n) time.

4.3 Computing the Radial Decomposition

The two-dimensional coordinates of the vertices of each polygon Pa and Pb are
mapped to homogeneous coordinates, to which a projective transformation, fq,
is applied with q as the center of projection. These transformations take constant
time per vertex, or Θ(n) total time. Chazelle’s algorithm [9] constructs trape-
zoidal decompositions of fq(Pa) and fq(Pb) in Θ(n) time, on which the inverse
transformation, f−1

q is applied to obtain radial decompositions of Pa and Pb.
Merging the radial decompositions of Pa and Pb gives a radial decomposition
of the original polygon P without requiring any additional edges. All vertices
x1, . . . , xm of the Jordan sequence, all vertices of the three-edge paths, and their
adjacent edges are removed. The remaining edges are either on the boundary
of P , between two points on the boundary on a ray through q, or between the
boundary and q. The entire process for constructing the radial trapezoidation
takes Θ(n) time. This gives the following lemma.

Lemma 2. The radial decomposition of a simple n-vertex polygon P around a
query point q can be computed in Θ(n) time.

(c)

Pa

(b)

P Pb

(a)

qq

q

Fig. 2. (a) a polygon P , a point q, and the horizontal line ` through q; (b)–(c) the upper
polygon Pa and lower polygon Pb of P with the additional 3-edge paths highlighted.

4.4 Reporting the k-Crossing Visible Region

The 0-visibility region of q in P , denoted V0(q), is a star-shaped polygon with
q in its kernel. A vertex of V0(q) is either a vertex v of P or a point x on the

8 Y. Bahoo et al.

boundary of P that is the intersection of an edge of P with a ray emanating from
q through a reflex vertex r of P . In the latter case, (r, x) is an edge of V0(q) that
is collinear with q, called a window or lid, because it separates a region in the
interior of P that is 0-visible from q and an interior region that is not 0-visible.
The reflex vertex r is the base of the lid and x is its tip. There are two types of
base reflex vertices. The reflex vertex r is called a left base (respectively, right
base) if the polygon edges incident on r are to the left (respectively, right) of the
ray emanating from q through r.

We now describe the algorithm to compute the k-crossing visible region of q in
P , denoted Vk(q). The algorithm proceeds incrementally by computing Vi+1(q)
after computing Vi(q). We begin by computing V0(q) in O(n) time using one of
the existing linear-time algorithms, e.g. [13, 18, 17]. Label the vertices of V0(q) in
clockwise order around the boundary as x0, x1, . . . , xm. Triangulate the visibility
polygon by adding the edge (q, xi) for i ∈ {0, . . . ,m}; this corresponds to a radial
decomposition of V0(q) around q.

If xi is a left base vertex, then notice that the triangle 4(qxixi+1)
4 degen-

erates to a segment. Similarly, if xi is a right base vertex, then 4(qxixi−1) is
degenerate. If we ignore all degenerate triangles, then every triangle has the form
4(qxixi+1), where (xi, xi+1) is on the boundary of P . The union of these trian-
gles is V0(q). To compute V1(q), we show how to compute a superset of triangles
whose union is V1(q).

We start with an arbitrary triangle 4(qxixi+1) of V0(q), where (xi, xi+1) is
on the boundary of P . Note that (xi, xi+1) is either an edge of P or a segment
within the interior of an edge of P . It is this segment (xi, xi+1) of the boundary
that blocks visibility. We show how to compute the intersection of V1(q) with the
cone that has apex q and bounding rays qxi and qxi+1, denoted C(q, xi, xi+1).
We call this process extending the visibility of a triangle. We have two cases to
consider. Either at least one of xi or xi+1 is a base vertex or neither is a base
vertex. We start with the latter case where neither is a base vertex.

Let Y be the set of vertices of the radial decomposition that lie on the edge
(xi, xi+1). If Y is empty, then (xi, xi+1) lies on one face of the decomposition
in addition to 4(qxixi+1) since neither xi nor xi+1 is a base vertex. We show
how to proceed in the case when Y is empty, then we show what to do when Y
is not empty. Let f be the face of the decomposition on the boundary of which
(xi, xi+1) lies. By construction, this face is either a quadrilateral or a triangle. In
constant time, we find the intersection of the boundary of f excluding the edge
containing (xi, xi+1) with qxi and qxi+1. Label these two intersection points as
x′
i and x′

i+1. Extending the visibility of 4(qxixi+1) results in 4(qx′
ix

′
i+1). Note

that 4(qx′
ix

′
i+1) is the 1-visible region of q in C(q, xi, xi+1) and (x′

i, x
′
i+1) is on

the boundary of P .
We now show how to extend the visibility of 4(qxixi+1) when Y is not empty.

Label the points of Y as yj for j ≥ 1 in the order that they appear on the edge
(xi, xi+1) from xi to xi+1; see Figure 3. Each yj is an endpoint of an edge of

4 All indices are computed modulo the size of the corresponding vertex set: m+ 1 in
this case.

Computing the k-Crossing Visibility Region of a Point in a Polygon 9

q

xi, y1

xi+1, y8

y′2

y′3

y′4
y′5 y′6 y′7

y2
y3

y4 y5
y6

y7
y′1

y′8y′′2
y′′5

Fig. 3. Edges of the radial decomposition are extended where critical vertices cast a
shadow. Portions of the polygon in the blue region that were processed in previous
iterations are omitted from the figure.

the radial decomposition. Since yj is a point on the boundary of P , there are 2
faces of the radial decomposition with yj on the boundary. Let y′j be the other
endpoint of the face on the left of yj and y′′j be the endpoint for the face on the
right. Either y′j = y′′j or y′j 6= y′′j . In the former case, we simply ignore y′′j . In the
latter case, we note that either y′j is a left base of V0(yj) or y′′j is a right base.
See Figure 3 where y′2 is a left base and y′′5 is a right base.

Thus, the edges of the radial composition that intersect segment (xi, xi+1)
are of the form (yj , y

′
j) or (yj , y

′′
j). Note that y1 is either xi or the point closest

to xi on the edge. For notational convenience, if y1 6= xi, relabel xi as y0. Let
f be the face of the radial decompostion on the boundary of which (y0, y1) lies.
Let y′0 be the intersection of qy0 with the boundary of f excluding the edge of f
containing (y0, y1). We call this operation extending xi. Similarly, if yj 6= xi+1,
relabel xi+1 as yj+1 and compute the edge (yj+1, y

′
j+1), i.e. extend xi+1.

We are now in a position to describe the extension of the visibility of triangle
4(qxixi+1) when neither xi nor xi+1 is a base vertex. The set of triangles are
4(qy′ky

′
k+1) and 4(qy′′ky

′
k+1) (when y′′k exists). The union of these triangles is

the 1-visible region of q in C(q, xi, xi+1). Furthermore, notice that each triangle
4(qy′ky

′
k+1) (respectively, 4(qy′′ky

′
k+1)) has the property that (y′k, y′k+1) (respec-

tively, (y′′k , y′k+1)) is on the boundary of P . This is what allows us to continue
incrementally since at each stage we extend the visibility of a triangle 4(qab)
where (a, b) is on the boundary of P .

Now, if xi is a base vertex, then it must be a right base. Of the two edges
of P incident on xi, let e be the one further from q. The procedure to extend
4(qxixi+1) is identical except that we only extend xi when xi+1 ∈ e. Similarly,
if xi+1 is a base vertex, then it must be a left base. Of the two edges of P
incident on xi+1, let e be the one further from q. Again, the procedure to extend
4(qxixi+1) is identical except that we only extend xi+1 when xi ∈ e.

The general algorithm proceeds as follows. At iteration i, the visibility region
Vi(q) is represented as a collection of triangles around q with the property that

10 Y. Bahoo et al.

(a) (b)

(f)

(c)

(d) (e)

Fig. 4. (a) a simple polygon P and a query point q; (b) the radial decomposition
of P ; (c) the 0-visibility polygon, V0(q), of q in P computed in the first iteration;
(d) the 1-visibility polygon, V1(q), of q in P computed in the second iteration, with
extended edges highlighted in light blue; (e) the refined radial decomposition, with
extended edges highlighted in light blue; (f) the 4-visibility polygon, V4(q), of q in P
computed in the fourth iteration, with the algorithm’s output highlighted in black (two
components of the boundary of V4(q) ∩ P), and cells of the decomposition with depth
≤ 4 coloured by depth, as computed by the algorithm.

Computing the k-Crossing Visibility Region of a Point in a Polygon 11

the edge of the triangle opposite q is on the boundary of P and it is the edge
blocking visibility. We wish to extend past this edge to compute Vi+1(q) from
Vi(q). To do this, we extend each triangle in Vi(q). There are at most O(n)
triangles at each level. Therefore, the total time to extend all the triangles in
Vi(q) is linear. Thus, we can compute Vi+1(q) from Vi(q) in O(n) time and
computing Vk(q) takes O(nk) time since we repeat this process k times.

The algorithm can report either only the subregion of P that is k-crossing
visible from q, i.e., Vk(q)∩P , or the entire region of the plane that is k-crossing
visible from q, including parts outside P . To obtain the region inside P , it suffices
to traverse the boundary of P once to reconstruct and report portions of bound-
ary edges that are k-crossing visible. The endpoints of these sequences of edges
on the boundary of P meet an edge of the refined radial decomposition through
the interior of P that bridges to the start of the next sequence on the boundary
of P . The entire boundary of P must be traversed since the k-crossing visible
region in P can have multiple connected components (unlike the k-crossing vis-
ible region in the plane that is a single connected region). See Figure 4 for an
example. We conclude with the following theorem.

Theorem 4. Given a simple polygon P with n vertices and a query point q in
P , the region of P that is k-crossing visible from q can be computed in O(kn)
time without preprocessing.

5 Discussion

This paper presents the first algorithm parameterized in terms of k for computing
the k-crossing visible region for a given point q in a given polygon P , resulting
in asymptotically faster worst-case running time relative to previous algorithms
when k is o(log n), and bridging the gap between the O(n)-time algorithm for
computing the 0-visibility region of q in P [13, 18, 17], and the O(n log n)-time
algorithm for computing the k-crossing visibility region of q in P [3]. It remains
open whether the problem can be solved faster. In particular, an O(n log k)-time
algorithm would provide a natural parameterization for all k. Alternatively, can
a lower bound of Ω(n log n) be shown on the worst-case time when k is ω(log n)?

References

1. Aichholzer, O., Fabila-Monroy, R., Flores-Peñaloza, D., Hackl, T., Huemer, C.,
Urrutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. Compu-
tational Geometry 68, 101–118 (2018)

2. Aronov, B., Guibas, L.J., Teichmann, M., Zhang, L.: Visibility queries and main-
tenance in simple polygons. Discrete & Computational Geometry 27(4), 461–483
(2002)

3. Bahoo, Y., Banyassady, B., Bose, P., Durocher, S., Mulzer, W.: A time-space trade-
off for computing the k-visibility region of a point in a polygon. Theoretical Com-
puter Science (2018)

12 Y. Bahoo et al.

4. Bajuelos, A.L., Canales, S., Hernández, G., Martins, M.: A hybrid metaheuristic
strategy for covering with wireless devices. Journal of Universal Computer Science
18(14), 1906–1932 (2012)

5. Ballinger, B., Benbernou, N., Bose, P., Damian, M., Demaine, E., Dujmović,
V., Flatland, R., Hurtado, F., Iacono, J., Lubiw, A., et al.: Coverage with k-
transmitters in the presence of obstacles. Journal of Combinatorial Optimization
25(2), 208–233 (2013)

6. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons.
Computational Geometry 23(3), 313–335 (2002)

7. Cannon, S., Fai, T., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and com-
plexity of guarding polygons with edge and point 2-transmitters. arXiv preprint
arXiv:1503.05681 (2015)

8. Chang, H.C., Erickson, J., Xu, C.: Detecting weakly simple polygons. In: Proc.
26th ACM-SIAM Symposium on Discrete Algorithms (SODA 2014). pp. 1655–1670
(2014)

9. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete & Computa-
tional Geometry 6(3), 485–524 (1991)

10. Davis, L.S., Benedikt, M.L.: Computational models of space: Isovists and isovist
fields. Computer Graphics and Image Processing 11(1), 49–72 (1979)

11. Dean, J.A., Lingas, A., Sack, J.R.: Recognizing polygons, or how to spy. The Visual
Computer 3(6), 344–355 (1988)

12. Duque, F., Hidalgo-Toscano, C.: An upper bound on the k-modem illumination
problem. arXiv preprint arXiv:1410.4099 (2014)

13. El Gindy, H., Avis, D.: A linear algorithm for computing the visibility polygon
from a point. Journal of Algorithms 2(2), 186–197 (1981)

14. Fabila-Monroy, R., Vargas, A., Urrutia, J.: On modem illumination problems. Proc.
XIII Encuentros de Geometria Computacional (EGC 2009) (2009)

15. Hoffmann, K., Mehlhorn, K., Rosenstiehl, P., Tarjan, R.E.: Sorting Jordan se-
quences in linear time using level-linked search trees. Information and Control
68(1-3), 170–184 (1986)

16. Huang, H., Ni, C.C., Ban, X., Gao, J., Schneider, A.T., Lin, S.: Connected
wireless camera network deployment with visibility coverage. In: Proc. IEEE
International Conference on Computer Communications (INFOCOM 2014). pp.
1204–1212 (2014)

17. Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics 27(4), 458–473 (1987)

18. Lee, D.T.: Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing 22(2), 207–221 (1983)

19. Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M.: Exposure in wireless
ad-hoc sensor networks. In: Proc. 7th ACM International Conference on Mobile
Computing and Networking (MOBICOM 2001). pp. 139–150. ACM (2001)

20. Mouawad, N., Shermer, T.C.: The Superman problem. The Visual Computer
10(8), 459–473 (1994)

21. Murray, A.T., Kim, K., Davis, J.W., Machiraju, R., Parent, R.: Coverage optimiza-
tion to support security monitoring. Computers, Environment and Urban Systems
31(2), 133–147 (2007)

22. Rosenstiehl, P.: Planar permutations defined by two intersecting Jordan curves.
Graph Theory and Combinatorics pp. 259–271 (1984)

23. Wang, Y.C., Hu, C.C., Tseng, Y.C.: Efficient deployment algorithms for ensuring
coverage and connectivity of wireless sensor networks. In: Proc. 1st IEEE Confer-
ence on Wireless Internet (WICON 2005). pp. 114–121 (2005)

