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Abstract

A sliding camera in an orthogonal polygon P—that is, a polygon all of whose

edges are axis-parallel—is a point guard g that travels back and forth along an

axis-parallel line segment s inside P . A point p in P is guarded by g if and

only if there exists a point q on s such that line segment pq is normal to s and

contained in P . In the minimum sliding cameras (MSC) problem, the objective

is to guard P with the minimum number of sliding cameras.

We give a dynamic programming algorithm that solves the MSC prob-

lem exactly on monotone orthogonal polygons in O(n) time, improving the

2-approximation algorithm of Katz and Morgenstern (2011). More generally,

our algorithm can be used to solve the MSC problem in O(n) time on sim-

ple orthogonal polygons P for which the dual graph induced by the vertical

decomposition of P is a path. Our results provide the first polynomial-time

exact algorithms for the MSC problem on a non-trivial subclass of orthogonal

polygons.
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1. Introduction

Art gallery problems, introduced by Klee in 1973 [2], are some of the most

widely studied problems in computational geometry. In the original formulation

of the problem, an input polygon P is given, for which a set of point guards

must be assigned, using as few guards as possible. Thus, the objective is to find5

a set of point guards such that every point in P is seen by at least one of the

guards, where a guard g sees a point p if and only if the segment gp is contained

in P . Chvátal [3] proved that bn/3c point guards are always su�cient and

sometimes necessary to guard a simple polygon with n vertices. Lee and Lin [4]

showed that finding the minimum number of point guards needed to guard an10

arbitrary polygon is NP-hard for arbitrary polygons. The art gallery problem

is also NP-hard for orthogonal polygons [5] and it even remains NP-hard for

monotone polygons [6]. Moreover, Eidenbenz [7] proved that the problem is

APX-hard on simple polygons.

Ghosh [8] gave an O(log n)-approximation algorithm that runs in O(n4)15

time on simple polygons. King and Kirkpatrick [9] gave an O(log logOPT)-

approximation algorithm for the vertex guards (and in fact when the guards

can be anywhere on the boundary of the polygon), where OPT is the size of

an optimal solution. Their algorithm is based on the fact that there is an

✏-net of size O( 1
✏

log log 1
✏

) for the corresponding hitting set problem. Notice20

that the existence of such an ✏-net along with the technique of Bronnimann

and Goodrich [10] provides the desired approximation factor. King [11] im-

proved the running time of this algorithm to O(n3) for simple polygons. Krohn

and Nilsson [6] gave a constant-factor approximation algorithm on monotone

polygons. They also gave a polynomial-time algorithm for the orthogonal art25

gallery problem that computes a solution of size O(OPT2), where OPT is the

cardinality of an optimal solution. In terms of parameterized complexity of the
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art gallery problem, Bonnet and Miltzow [12] recently showed that the prob-

lem is W[1]-hard parameterized by the number of guards. See the surveys by

O’Rourke [2] or Urrutia [13] for a history of the art gallery problem.30

Many variants of the art gallery problem have been studied [14, 15, 16, 17,

18]. The version in which we are interested was introduced recently by Katz

and Morgenstern [19], and it concerns sliding cameras in orthogonal polygons.

A sliding camera in an orthogonal polygon P is a point guard that travels back

and forth along an axis-parallel line segment s ⇢ P . The point guard can see a35

point p 2 P if and only if there is a point q 2 s such that the line segment pq is

normal to s and contained in P . The minimum sliding cameras (MSC) problem

is to guard P with the minimum number of sliding cameras.

Related Work. Katz and Morgenstern [19] first considered a restricted version

of the MSC problem in which only vertically sliding cameras are allowed; that40

is, point guards that travel back and forth along a segment s that is parallel

to the y-axis. They solved this restricted version in polynomial time for simple

orthogonal polygons. For the unrestricted version, where both vertically and

horizontal sliding cameras are allowed, they gave a 2-approximation algorithm

for x-monotone orthogonal polygons. An orthogonal polygon P is x-monotone45

if the intersection of P with any every vertical line is connected. Durocher and

Mehrabi [20] showed that the MSC problem is NP-hard when the polygon P is

allowed to have holes. They also considered a variant of the problem, called the

MLSC problem, in which the objective is to minimize the sum of the lengths of

line segments along which cameras travel, and proved that the MLSC problem is50

polynomial-time solvable even on orthogonal polygons with holes (see also [21]).

For orthogonal polygons with holes, Biedl et al. [22] showed that the problem

is still NP-hard if only horizontal sliding cameras are allowed. They also gave

an O(1)-approximation algorithm for the MSC problem based on ✏-nets, and

showed that the problem becomes polynomial-time solvable if the dual graph of55

a so-called pixelation of the polygon has bounded treewidth.

Biedl et al. [23] studied the MSC problem under k-visibility; that is, the line
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of sight of a camera can intersect the boundary of the polygon at most k times

(note that when k = 0, we have the standard MSC problem studied in this

paper). The k-visibility has been already studied under the classical art gallery60

problem [18, 17, 24]. Biedl et al. [23] showed that the MSC problem under

k-visibility is NP-hard on simple orthogonal polygons for any k > 0, even if the

polygon is monotone. They also gave an O(1)-approximation algorithm for any

fixed k > 0. Seddighin [25] proved that the MLSC problem (i.e., minimizing

the total length of cameras) is NP-hard under k-visibility for any fixed k > 0.65

Our main interest is in the standard MSC problem, where the objective is

to minimize the number of cameras. As discussed above, the complexity of the

MSC problem on simple orthogonal polygons remains unknown. Indeed, even for

x-monotone orthogonal polygons there is only an approximation algorithm for

the problem. Recall that the classical art gallery problem is NP-hard on simple70

orthogonal polygons [5], simple monotone polygons [6] and even on terrains [26].

Our Results. In this paper, we give a linear-time dynamic programming algo-

rithm for the MSC problem on orthogonal x-monotone polygons P . This not

only improves the 2-approximation algorithm of Katz and Morgenstern [19], but

also provides, to the best of our knowledge, the first polynomial-time algorithm75

for the MSC problem on a non-trivial subclass of orthogonal polygons. We also

show how to extend this result to so-called orthogonal path polygons. These are

orthogonal polygons for which the dual graph induced by the vertical decom-

position of P is a path. (The vertical decomposition of an orthogonal polygon

P is the decomposition of P into rectangles obtained by extending the vertical80

edge incident to every reflex vertex of P inward until it hits the boundary of

P . The dual graph of the vertical decomposition is the graph that has a node

for each rectangle in the decomposition and an edge between two nodes if and

only if their corresponding rectangles are adjacent.) Observe that the class of

orthogonal monotone polygons is a subclass of orthogonal path polygons.85

4



2. Preliminaries

A polygon is orthogonal if all of its edges are axis-parallel. A simple orthog-

onal polygon P is x-monotone if the intersection of P with any vertical line is at

most one single line segment. For a simple orthogonal and x-monotone polygon

P , the leftmost and rightmost vertical edges of P are unique and we denote90

them by leftEdge(P ) and rightEdge(P ), respectively. For a sliding camera s in

P , we define the visibility polygon of s as the maximal subpolygon P (s) of P

such that every point in P (s) is guarded by s.

Let V
P

= {e1 = leftEdge(P ), e2, . . . , em = rightEdge(P )}, for some m > 0,

be the set of vertical edges of P ordered from left to right. For simplicity we95

assume that every two vertical edges in V
P

have distinct x-coordinates, but it

is easy to adapt the algorithm to handle degenerate cases. Let P+
i

(resp., P�
i

),

for some 1  i  m, denote the subpolygon of P that lies to the right (resp., to

the left) of the vertical line through e
i

.

For an axis-parallel line segment s in P , we denote the left endpoint and the100

right endpoint of s by left(s) and right(s), respectively. If s is vertical, we define

its left and right endpoints to be its upper and lower endpoints, respectively.

We denote the x-coordinate of a point p by x(p). Let s
i

and s
j

be two horizontal

line segments in P . We define the overlap region of s
i

and s
j

as the set of points

in P that are visible to both s
i

and s
j

; if P (s
i

)\P (s
j

) is a line or a point (i.e.,105

it has measure zero), then we consider the overlap region of s
i

and s
j

to be

empty. We first show that we can restrict our attention to solutions that are in

some suitable canonical form.

Canonical Form.

A feasible solution to the MSC problem is a set M of sliding cameras that110

guards the entire polygon P . We say that a feasible solution M is in canonical

form if and only if the following properties hold:

(i) Every vertically sliding camera in M is vertically maximal, meaning that

it extends as far upwards and downwards as possible.
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(ii) No vertically sliding camera in M intersects the interior or passes through115

the right endpoint of any horizontal sliding camera in M .

(iii) The overlap region of s
i

and s
j

is empty, for every two horizontal sliding

cameras s
i

, s
j

2 M such that s
i

6= s
j

.

(iv) Every horizontal sliding camera s 2 M is rightward maximal, meaning that

s extends at least as far to the right as any horizontal sliding camera s0 ⇢ P120

starting at the same x-coordinate; that is, with x(left(s)) = x(left(s0)).

(v) Let s1, . . . , sk be the sequence of line segments (corresponding to sliding

cameras) in M ordered from left to right according to their left endpoint,

where in case of ties vertical line segments come before horizontal line

segments, and let M
i

:= {s1, . . . , si}. Then, M
i

guards every point of P125

that is to the left of the vertical line x = x(right(s
i

)).

Lemma 1. For any x-monotone orthogonal polygon P , there exists an optimal

solution M for the MSC problem on P that is in canonical form.

Proof. Consider the sequence s1, . . . , sk of line segments in M ordered from

left to right according to their left endpoint, where in case of ties vertical line130

segments come before horizontal line segments. This ordering is well defined,

because an optimal solution will never have two vertical line segments with the

same x-coordinates or two horizontal line segments whose left endpoints have

the same x-coordinates. We now show how to modify the line segments in M

to get an optimal solution in canonical form. Without loss of generality, we135

assume that all vertical line segments in M are already vertically maximal.

We first modifyM so that if s1 is horizontal, then left(s1) lies on leftEdge(P ),

the leftmost vertical edge of P . Assume this is not the case. Then, leftEdge(P )

is seen by a vertical line segment s
j

, for some j > 1. We now replace s1 and s
j

by two horizontal line segments, as follows. The first line segment is a rightward140

maximal line segment s starting on leftEdge(P )—note that smust intersect s
j

—

and the second horizontal line segment is a rightward maximal line segment s0
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with x(left(s0)) = x(right(s)). Clearly replacing s1, sj by s, s0 gives another

optimal solution. With a slight abuse of notation we let M denote this new

optimal solution, and we let s1, . . . , sk denote the ordered set of line segments145

in the new solution. Note that we now have that if s1 is horizontal, then it

starts at leftEdge(P ) and it is rightward maximal.

Next we turn M into an optimal solution in canonical form. To this end

we go over the line segments in order. When we handle line segment s
i

we will

replace s
i

by a line segment s0
i

, but we will not modify any other line segment.150

Let M
i

:= {s01, . . . , s0
i

}. We maintain the following invariant:

Invariant: After handling s
i

, the modified set M is still an optimal

solution. Moreover, M
i

has all the required properties: (i) all verti-

cal line segments in M
i

are vertically maximal, (ii) no vertical line

segment in M
i

intersects the interior or passes through the right end-155

point of any horizontal line segment in M
i

, (iii) the overlap region

of any two horizontal line segments in M
i

is empty, (iv) every hori-

zontal line segment in M
i

is rightward maximal, and (v) M
i

guards

everything to the left of the vertical line x = x(right(s
i

)).

Handling s1 is trivial: we simply set s01 := s1. If s1 is vertical then this clearly160

establishes the invariant—note that no line segment s
j

with j > 1 can see

anything to the left of s1 that is not also seen by s1 (since s1 is vertically

maximal), which implies that s1 must see everything to its left. If s1 is horizontal

then the invariant holds as well, since we already made sure that s1 is rightward

maximal if it is horizontal. Now suppose the invariant holds after we have165

handled s
i�1, and consider s

i

. There are two cases.

• If s
i

is vertical, then we proceed as follows. Observe that M
i

must guard

everything to the left of s
i

, since M is feasible and no line segment s
j

with j > i can see a point to the left of s
i

that is not seen by s
i

. Since s
i

is vertical, the fact that M
i�1 satisfies the invariant immediately implies170

that M
i

has properties (iii) and (iv). So the only problem is that s
i

may intersect the interior or may pass through the right endpoint of some
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line segment s0
j

with j < i. If this is not the case we simply set s0
i

:=

s
i

, otherwise we replace s
i

by a rightward maximal line segment s0
i

with

x(left(s0
i

)) = x(right(s0
j

)).175

After the replacement, M is still a feasible (and, hence, optimal) solu-

tion. Indeed, everything to the left of the vertical line x = x(right(s0
j

))

is guarded by M
j

and to the right of the vertical line x = x(right(s0
j

)),

the new line segment s0
i

sees at least as much as s
i

. By the same argu-

ment, M
i

guards everything to the left of the vertical line x = x(right(s0
i

))180

and, therefore, the property (v) holds. Finally, M
i

has properties (i) and

(ii) because M
i�1 had those properties and the new line segment s0

i

is

horizontal, and M
i

has properties (iii) and (iv) by construction.

There is one subtlety that we must address. Namely, we have to show that

after replacing s
i

by s0
i

the order of the line segments does not change. In185

other words, we must show that s0
i

is still the i-th line segment in the order.

(Otherwise we would have to argue about a di↵erent set M
i

.) Obviously

left(s0
i

) lies to the right of left(s0
j

) for all j < i. Moreover, there cannot be

any line segment s
k

with k > i such that left(s
k

) lies in between s
i

and

left(s0
i

). Indeed, such a line segment could be omitted due to monotonicity190

of P , contradicting the optimality of M .

• If s
i

is horizontal, we proceed as follows. Obviously, the only properties

that may be violated are properties (iii) and (iv). It might be the case that

a vertical line segment s
j

2 M intersects the interior or passes through

the right endpoint of s
i

(thus violating the property (ii)), but this may195

happen only if j > i and, therefore, the invariant is still maintained for

M
i

; if such line segment s
j

exists, then the set M will be modified when

we later handle s
j

. If M
i

only violates property (iv), then we replace s
i

by

a rightward maximal line segment s0
i

with x(left(s0
i

)) = x(left(s
i

)). If s
i

violates property (iii), then let s0
j

2 M
i�1 be the horizontal line segment200

that has an overlap with s
i

. We now replace s
i

by a rightward maximal

line segment s0
i

with x(left(s0
i

)) = x(right(s0
j

)).
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Since s0
i

sees at least as much as s
i

(except possibly for points that were

already seen by s0
j

), the new solution is still feasible. Moreover, M
i

sees

everything to the left of the vertical line x = x(right(s0
i

)). Therefore, since205

M
i�1 satisfies the invariant and because of the way s0

i

is constructed, M
i

has all the properties (i)–(v). Finally, the new line segment s0
i

is still the

i-th line segment in the order, as can be verified in the same way as before.

After handling the last line segment s
k

in M , the set M
k

is an optimal solution

in canonical form, thus proving the lemma. ⇤210

3. A Dynamic Programming Algorithm

In this section, we present the linear-time exact algorithm for the MSC

problem on orthogonal x-monotone polygons. Our algorithm is based on a

dynamic programming approach [27].

3.1. The Recursive Structure215

Let P be an orthogonal x-monotone polygon with n vertices. Below we

discuss the recursive structure of the MSC problem on P and we define the

subproblems we use in our dynamic programming algorithm.

Let MOPT = {s1, . . . , sk} be an optimal solution for the MSC problem on P

that is in canonical form, where the segments are numbered from left to right.220

Consider a segment s
j

2 MOPT. By property (v) of the canonical form, no

segment s
j

0 2 MOPT with j0 > j is needed to guard anything to the left of

right(s
j

). Hence, after having selected s1, . . . , sj , the subproblem we are left

with is to guard P+
i

, where i is such that right(s
j

) lies on the line containing

the vertical edge e
i

. Note that when s
j

is vertical, we already guarded a part of225

P+
i

, and we have to take this into account in our subproblem. Hence, we define

two types of subproblems.

Type A. Given 1  i  k, guard P+
i

with the minimum number of sliding

cameras.
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Type B. Given 1  i  k, guard P+
i

with the minimum number of sliding230

cameras, under the assumption that the subregion of P+
i

that is visible

from leftEdge(P+
i

) has already been guarded.

We denote the number of guards needed in an optimal solution of Type A on the

polygon P+
i

by A[i] and the number of guards needed in an optimal solution of

Type B on the polygon P+
i

by B[i]. Note that the minimum number of cameras235

needed to guard the entire polygon P is A[1]. In the sequel we show how to

compute the values A[i] and B[i]; computing the actual solution can then be

done in a standard manner.

3.2. Solving the Subproblems

We now give the recursive formulas for our dynamic programming algorithm.240

Recall that the vertical edges of P are number e1, . . . , ek from left to right. We

denote the vertical line containing e
i

by `(e
i

). The following lemma gives the

recursive formula for solving the subproblem of Type A on P+
i

.

Lemma 2. Let s be a rightward maximal line segment whose left endpoint lies

on `(e
i

), and let e
i1 be the vertical edge of P on which right(s) lies. Furthermore,

let e
i2 be the rightmost vertical edge of P such that s0, the vertically maximal

segment aligned with e
i2 , guards everything of P+

i

lying to the left of e
i2 . See

Figure 1 for an illustration. Then,

A[i] =

8
<

:
0 if i = k

min (A[i1], B[i2]) + 1 if i < k

Proof. Trivially A[i] = 0 for i = k, so assume i < k.

Consider the first segment s⇤ of an optimal solution for P+
i

that is in canon-245

ical form. By property (v), we know that s⇤ must guard leftEdge(P+
i

). Hence,

if it is horizontal, it must start at leftEdge(P+
i

). By property (iv), segment s⇤ is

rightward maximal. Hence, if the first segment is horizontal then the segment s

is the correct choice. After choosing s, we have to guard everything to the right

of s. Note that properties (ii) and (iii) imply that the next segment to be250
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s

s0ei

ei2

ei1

`(ei)

Figure 1: An illustration of the two cases in solving subproblem of Type A on P

+
i .

chosen lies in P+
i1

(see Figure 1). Hence, if we decide to pick segment s then we

are indeed left with solving the subproblem of Type A on P+
i1
. Thus in this case

A[i] = A[i1] + 1.

The other option is that the first segment s⇤ is vertical. Again, by prop-

erty (v) we know that s⇤ must guard everything between leftEdge(P+
i

) and s⇤.255

But then it is obviously best to choose s⇤ as far to the right as possible. Hence,

s0 is the correct choice. Now the subproblem we are left with is of Type B and

on P+
i2

(see Figure 1), so we have A[i] = B[i2] + 1.

The best way to solve subproblem of Type A on P+
i

is the best of these two

options, which proves the lemma. ⇤260

For the subproblems of Type B we have a similar lemma.

Lemma 3. Let e
i

0 be the leftmost vertical edge in P+
i

that is not seen by

leftEdge(P+
i

), let s be a rightward maximal line segment whose left endpoint

lies on `(e
i

0), and let e
i1 be the vertical edge of P on which right(s) lies. Fur-

thermore, let e
i2 be the rightmost vertical edge of P such that s0, the vertically

maximal segment aligned with e
i2 , together with leftEdge(P+

i

) guards everything

of P+
i

lying to the left of e
i2 . See Figure 2 for an illustration. Then,

B[i] =

8
<

:
0 if i = k

min (A[i1], B[i2]) + 1 if i < k

Proof. Trivially B[i] = 0 for i = k, so assume i < k.

Consider the first segment s⇤ of an optimal solution for P+
i

that is in canon-

ical form. First, suppose that s⇤ is horizontal. Obviously it is best to make s⇤

11



s

s0

ei ei2

ei1ei0

`(ei) `(ei0)

Figure 2: An illustration of the two cases in solving subproblem of Type B on P

+
i .

extend to the right as much as possible, which means left(s⇤) should be to the265

right as far as possible. However, left(s⇤) cannot go beyond e
i

0 by property (v).

By property (iv), segment s⇤ is rightward maximal. Hence, if the first segment

is horizontal then the segment s is the correct choice. After choosing s, we have

to guard everything to the right of s. Note that properties (ii) and (iii) imply

that the next segment to be chosen lies in P+
i1
. Moreover, since s is rightward270

maximal and starts to the right of leftEdge(P+
i

), the edge leftEdge(P+
i

) cannot

see anything to the right of right(s). Hence, if we decide to pick segment s then

we are indeed left with solving the subproblem of Type A on P+
i1

(see Figure 2).

Thus, in this case A[i] = A[i1] + 1.

The other option is that the first segment s⇤ is vertical. Again, by prop-275

erty (v) we know that s⇤, together with leftEdge(P+
i

), must guard everything

between leftEdge(P+
i

) and s⇤. But then it is best to choose s⇤ as far to the

right as possible. Hence, s0 is the correct choice. Now the subproblem we are

left with is of Type B and on P+
i2

(see Figure 2), so we have A[i] = B[i2] + 1.

The best way to solve subproblem of Type A on P+
i

is the best of these two280

options, which proves the lemma. ⇤

3.3. Algorithmic Details

In this section, we analyze the algorithm and describe how it can be imple-

mented in linear time. To compute the optimal solution for guarding P+
i

, we

need to solve two subproblems; that is, we need to solve a subproblem of Type285

A and a subproblem of Type B for P+
i

. To solve the subproblem of Type A for

12



P+
i

, we need to solve two subproblems: one is of Type A for which we need to

find the vertical edge e
i1 described in Lemma 2, and the other one is of Type B

for which we need to find the vertical edge e
i2 described in Lemma 2. Similarly,

to solve the subproblem of Type B for P+
i

, we need to solve two subproblems:290

one is of Type A for which we need to find the vertical edge e
i1 described in

Lemma 3, and the other one is of Type B for which we need to find the vertical

edge e
i2 described in Lemma 3. Therefore, each vertical edge e

i

2 V
P

is asso-

ciated with at most four other vertical edges of P ; we call these four edges the

associated edges of e
i

. In the following, we show how the associated edges can295

be computed in O(n) time for all the vertical edges in V
P

.

We first give some definitions. A reflex vertex v of P is called right reflex

(resp. left reflex) if the interior of P lies to the right (resp., to the left) of the

vertical edge incident to v. Moreover, for a reflex vertex v
i

of P , we denote the

vertical edge incident to v
i

by e
i

and the maximal vertical line segment in P300

aligned with e
i

by L
i

.

Lemma 4. The associated edges of all the vertical edges in V
P

can be computed

in O(n) time.

Proof. We show that each of the four types of associated edges can be com-

puted in linear time for all the vertical edges in V
P

. In the following, we assume305

that the sequence of the reflex vertices of P ordered from right to left is given.

(1) First, we compute the associated edge e
i1 described in Lemma 2. To this

end, we use a vertical line sweeping P from right to left; the sweep line halts at

each reflex vertex of P . Let UQ and LQ be two double-ended queues that store

the reflex vertices, respectively, on the upper chain and lower chain of P . By310

one exception, we assume that UQ (resp., LQ) contains initially the upper vertex

(resp., the lower vertex) of rightEdge(P ). Reflex vertices are added to the end

of the queues, but they might be removed from either the front or the end of

the queues. The vertices are removed from a queue depending on whether the

vertex v
i

at which the sweep line is currently halted lies on the upper chain or315

on the lower chain of P and also depending on where v
i

lies on the chain relative

13



2

3

5

6

4

1

ab

c
d

(a)

UQ 2, 3, 4, 5

LQ c

front

end

UQ 5

LQ d

front

end

(c)

(b)

Figure 3: An illustration of the sweep line algorithm. (a) An orthogonal x-monotone polygon P

with its reflex vertices on the upper and lower chains labeled from right to left. (b) The status

of queues UQ and LQ when the sweep line halts at vertex d and the invariant is maintained:

the associated edge ei1 for the vertical edge incident to d is set to the vertical edge incident

to vertex c and vertex d is then added to LQ. (c) The status of queues UQ and LQ when the

sweep line halts at vertex 6 and the invariant is maintained: the associated edge ei1 for the

vertical edge incident to 6 is set to the vertical edge incident to vertex 5 and vertex 6 is then

added to UQ.

to the previously visited vertices. We maintain the following invariant:

Invariant: When the sweep line halts at the reflex vertex v
i

, (i) the

queue UQ stores a reflex vertex v
j

of the upper chain if and only if

v
j

lies to the right of L
i

and L
i

can see at least one point on L
j

; the320

part of L
j

that is visible to L
i

is also stored. The vertices in UQ are

sorted from right to left by their x-coordinate, and (ii) the queue LQ

stores a reflex vertex v
j

0 of the lower chain if and only if v
j

0 lies to

the right of L
i

and L
i

can see at least one point on L
j

0 ; the part of

L
j

that is visible to L
i

is also stored. The vertices in LQ are sorted325

from right to left by their x-coordinate.

Consider v
i

, the vertex at which the sweep line is currently halted, and suppose

that v
x

and v
y

are the vertices at the front of the two queues. First, we maintain

the invariant. To this end, if the part of L
j

that is visible to L
i

is empty, then

we remove v
j

from UQ for all v
j

in UQ. Similarly, if the part of L
j

0 that is visible330

to L
i

is empty, then we remove v
j

0 from LQ for all v
j

0 in LQ. Next, we set the

14



associated edge for e
i

to e
x

or e
y

whichever is further to the right from e
i

. The

vertex v
i

is then added to the appropriate queue. See Figure 3 for an example.

Since every reflex vertex of P is added to a queue at most once, this step can

be completed in O(n) time.335

(2) To find the associated edge e
i2 described in Lemma 2 for a vertical edge e

i

,

we note that e
i2 is in fact the edge in V

P

for which the reflex vertex v incident

to it is the leftmost left reflex vertex of P such that x(v) > x(v
i

); such vertex v

and, therefore, its incident vertical edge e
i2 can be computed in linear time for

all the vertical edges in V
P

.340

(3) To compute the associated edge e
i1 described in Lemma 3 for an edge e

i

2

V
P

, we first need to compute the vertical edge e
i

0 of P . The edge e
i

0 for e
i

is

the edge e 2 V
P

such that the reflex vertex v incident to e is the leftmost right

reflex vertex of P such that x(v) > x(v
i

). Then, the edge e
i1 for e

i

is exactly

the associated edge that we have already computed for e
i

0 in (1).345

(4) Finally, to find the associated edge e
i2 described in Lemma 3 for a vertical

edge e
i

, we first find the leftmost right reflex vertex v
j

such that x(v
j

) > x(v
i

);

observe that every point of P that lies between L
i

and L
j

(i.e., the maximal

vertical line segments in P aligned with e
i

and e
j

, respectively) is guarded by

leftEdge(P+
i

). Therefore, the associated edge e
i2 for e

i

is in fact the vertical350

edge that is furthest to the right from L
j

such that every point between L
j

and

L
i2 is guarded by L

i2 . But, Li2 is aligned with exactly the associated edge that

we have already computed for e
j

in (2). Therefore, to compute the associated

edge e
i2 for e

i

, we first find the leftmost right reflex vertex v
j

to the right of e
i

and then return the associated edge computed in Step 2 for e
j

.355

Therefore, we can compute all the four associated edges in O(n) time for all

the vertical edges in V
P

. This completes the proof of the lemma. ⇤

By Lemma 4, we first compute the associated edges of all the vertical edges

of P in O(n) time. Then, we consider the vertical edges of P in order from

right to left and compute the optimal solution for guarding P+
i

in O(1) time by360

computing A[i] and B[i] as described, respectively, in Lemma 2 and Lemma 3.
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Finally, A[1] is returned as the optimal solution for the MSC problem on P .

Therefore, we have the main result of this section:

Theorem 5. There exists an algorithm that solves the MSC problem on any

simple orthogonal and x-monotone polygon with n vertices in O(n) time.365

4. Orthogonal Path Polygons

P
1

P
4

R
3

P
3

R
2

P
2

R
1

L
1

L
2 L

3

Figure 4: An example of an or-

thogonal path polygon P that is

not x-monotone along with an il-

lustration of partitioning P into

x-monotone subpolygons.

In this section, we show that the dynamic pro-

gramming algorithm given in Section 3 can be

used to solve the MSC problem on any orthogonal

path polygon P with n vertices in O(n) time; that370

is, we show that the MSC problem can be solved

in O(n) time on any simple orthogonal polygon

P for which the dual graph G(P ) is a path. To

this end, we first describe the structure of P and

then will show that P can be converted into an375

x-monotone polygon by unfolding.

Let P be an orthogonal path polygon with n

vertices. If P is x-monotone, then we solve the

MSC problem on P in linear time by Theorem 5.

If polygon P is not x-monotone, then we first par-380

tition P into x-monotone subpolygons as follows.

Since polygon P is not x-monotone, it must have

a vertical edge e whose both endpoints are reflex vertices of P . Partition P into

three subregions by the maximal vertical line segment L that is aligned with e.

The subregions induced by L are a rectangle R and two subregions P
L

and P
U

385

that are connected to lower and upper parts of one of the sides of R, respectively.

Partition P
L

and P
R

recursively until the subregions induced by the partitions

become x-monotone; see Figure 4 for an illustration. Let P1, P2, . . . , Pk

be the

set of x-monotone subpolygons of P from bottom to top. Moreover, let L
i

, for

all 1  i < k, be the maximal line segment by which we perform the partition390
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R
1

L
1

L
2

R
2

Figure 5: An illustration of transforming a non-x-monotone polygon into an x-monotone

polygon by unfolding the polygon.

and let R
i

, for all 1  i < k, be the corresponding rectangle. Now, for each

rectangle R
i

in order, we unfold P by flipping the subregion P
i+1[Pi+2[· · ·[Pk

across the line through L
i

such that R
i+1 lies to the same side of L

i

as R
i

lies.

The ith flip ensures that the subregion P1[P2[ · · ·[P
i+1 of P is an x-monotone

polygon. Therefore, polygon P is converted to an x-monotone polygon after the395

last flip. See Figure 5 for an illustration.

To summarize, we first convert P into an x-monotone polygon using at most

k < n flip operations as described above and then solve the MSC problem on the

resulting x-monotone polygon using the dynamic programming algorithm given

in Section 3. We can compute the set of line segments L
i

, for all 1  i < k,400

in O(n) time by detecting each vertical edge of P whose both endpoints are

reflex vertices of P . Next, by keeping track of the lower and upper chains of P

starting from L1, we can compute the flipped polygon in O(n) time. Therefore,

we have the following theorem:

Theorem 6. There exists an algorithm that solves the MSC problem on any405

orthogonal path polygon with n vertices in O(n) time.

5. Conclusion

In this paper, we gave a linear-time exact dynamic programming algorithm

for the problem of guarding a simple orthogonal and x-monotone polygon with

the minimum number of sliding cameras (i.e., the MSC problem). This im-410
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proves the 2-approximation algorithm of Katz and Morgenstern [19]. Moreover,

we showed that our dynamic program can be used to solve the MSC prob-

lem on orthogonal polygons for which the dual graph induced by the vertical

decomposition of P is a path (i.e., orthogonal path polygons).

As the main open problem, the complexity of the MSC problem on simple415

orthogonal polygons remains open. Biedl et al. [22] gave an O(1)-approximation

algorithm for the MSC problem, but the constant is likely large due to the use

of ✏-nets [10]. Can we get an improved approximation algorithm? In particular,

does the problem admit a PTAS or it is APX-hard?

Another direction for future work is to consider the MSC problem under420

k-visibility; i.e., the sliding k-transmitters problem [23]. Biedl et al. [23] proved

that the problem is NP-hard (even on simple and monotone polygons) for any

k > 0, and gave an O(1)-approximation algorithm for this problem on any

orthogonal polygon; could our algorithm be used or adapted to improve the

approximation factor on orthogonal and monotone polygons? Finally, what are425

the other nontrivial classes of orthogonal polygons for which our algorithm could

be used to solve the MSC problem in polynomial or better in linear time?
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