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THE HAUSDORFF CORE PROBLEM ON SIMPLE POLYGONS ∗
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Abstract. We present a study of the Hausdorff Core problem on simple polygons. A
polygon Q is a k-bounded Hausdorff Core of a polygon P if P contains Q, Q is convex, and
the Hausdorff distance between P and Q is at most k. A Hausdorff Core of P is a k-bounded
Hausdorff Core of P with the minimum possible value of k, which we denote kmin. Given
any k and any ε > 0, we describe an algorithm for computing a k′-bounded Hausdorff Core
(if one exists) in O(n3 + n2ε−4(log n+ ε−2)) time, where k′ < k + drad · ε and drad is the
radius of the smallest disc that encloses P and whose center is in P . We use this solution
to provide an approximation algorithm for the optimization Hausdorff Core problem which
results in a solution of size kmin + drad · ε in O(log(ε−1)(n3 + n2ε−4(log n+ ε−2))) time.
Finally, we describe an approximation scheme for the k-bounded Hausdorff Core problem
which, given a polygon P , a distance k, and any ε > 0, answers true if there is a ((1 + ε)k)-
bounded Hausdorff Core and false if there is no k-bounded Hausdorff Core. The running
time of the approximation scheme is in O(n3 + n2ε−4(log n+ ε−2)).
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1 Introduction

Given two polygons P and Q, the Hausdorff distance1 between P and Q may be expressed
formally as

H(P,Q) = max

{
sup
p∈P

inf
q∈Q

dist(p, q), sup
q∈Q

inf
p∈P

dist(p, q)

}
, (1)

where dist(p, q) is the Euclidean distance from p to q.

Definition 1. The Hausdorff Core Problem: Given a simple polygon P , find a convex
polygonQ such thatQ ⊆ P andH(P,Q) is minimized, whereH(P,Q) denotes the Hausdorff
distance between P and Q. We call Q a Hausdorff Core of P .

The Hausdorff Core problem is equivalent to a disc piercing problem: suppose we
place discs of radius k centered on all vertices on the convex hull of a polygon P , so that
each disc Di ∈ D has center point pi, where D denotes the set of discs. We wish to pierce
all discs in D with a convex polygon Q; if Q ∩Di 6= ∅ for each Di ∈ D, then we say that Q
pierces D. If we additionally require that Q ⊆ P , then Q is a k-bounded Hausdorff Core of
P . We establish this relationship formally in Lemmas 1 and 3.

This work was initially motivated by the problem of path planning in the context of
navigation at sea2. In this application, a plotted course must be tested against bathymetric
soundings to ensure that the ship will not run aground. We suppose the soundings have
been interpolated into contour lines and the plotted course is given as a polygonal line.
Although contour lines can be arbitrarily complicated, typical shipping routes run far from
potential obstacles for the majority of their trajectories, and only short segments require
more careful route planning. As a result, most tests for intersection between a path and
a contour line should be easy: we could subdivide the map into polygonal regions so that
most intersection tests are against regions with properties that permit fast tests (e.g., see
[SW87]), ideally reserving more expensive tests for the rare cases where the path comes
close to intersecting the terrain.

The search for easily testable areas motivates the study of the simplification of a
contour line into a simpler object which is either entirely contained within the contour line
or else fully contains it. For example, it is sensible to consider the convex hull of contours
corresponding to regions that are too shallow. In this work we consider the case in which
the simplified polygon must be convex and contained by the contour line.

We restrict the discussion to simple polygons, where we define a polygon P as a
closed region of the plane, whose boundary ∂P is represented as a polygonal chain on n
distinct vertices P = {p0, . . . , pn−1} and n edges ei = (pi, pi′), where i′ = (i + 1) mod n.
A polygon is simple if edges only intersect at vertices, and all vertices are incident upon
exactly two edges. Finally, a polygon P is convex if for all points p and p′ in P , the line
segment pp′ is contained in P .

1The Hausdorff distance is equivalent to Blaschke’s Nachbarschaftsmaß [Gru83].
2This research was part of the NSERC Optimal Data Structures for Organization and Retrieval of Spatial

Data project. CARIS, the corporate partner on the project, develops marine GIS software.
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Figure 1: The optimal solutions for approximating polygons may vary significantly for dif-
ferent error metrics. In this example, we show optimal solutions for the Hausdorff distance
and the maximum area convex subset (MACS), also known as the “potato” [CY86]). No-
tice that the two Hausdorff Core solutions have the same Hausdorff distance between the
polygons, which corresponds to the radius of the circular arcs centered on vertices of the
initial polygon.

The Hausdorff Core problem is intended to capture a sense of “closeness” between
the input and approximating polygons. While there are a number of measures that may be
used (we discuss several metrics in Section 2.1), the Hausdorff Core is perhaps most intuitive
in that it is optimized when the maximum distance between the polygons is minimized. See
Figure 1 for an illustration of convex approximating polygons: the first two minimize the
Hausdorff distance between the polygons, while the third minimizes the difference in area
between the polygons.

2 Related Work

Suppose that we have a contour line represented as a piecewise linear curve or polygon with
n points. For our application, this corresponds to a contour of the ocean floor at a depth
of x meters. We wish to approximate the contour line with a simpler curve or polygon.
The simplification should be similar to the original, or close according to some measure
of distance, and it should have as few points as possible. The two goals of closeness and
having few points will in general conflict with each other.

If we specify a bound on the distance between the simplification and the original
curve or polygon, then minimize the number of points subject to the bound on distance,
that is called a min-# problem. Conversely, if we specify a bound on the number of points
in the simplification and minimize the distance to the original subject to the bound on
points, that is called a min-ε problem. In either kind of problem, many different measures
of distance may be used. Both kinds are well-studied, with many different choices for the
measure of distance. The problem we consider here is a version of the min-ε problem in
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which distance is measured by the Hausdorff metric and we have an additional constraint
that the simplification must be contained within the original polygon.

The containment constraint comes from our application. When approximating a
contour of depth x, we must ensure that for every point contained on the deeper side of the
approximating contour, the actual depth is at least x. Without such a constraint, a ship
following our approximated contour instead of the original could run aground expecting the
ocean at a given point to be deeper than it actually is. This constraint forces us to err
on the side of safety. It implies that an approximating polygon cannot cross the original
contour polygon.

Without the containment constraint, approximation of piecewise linear curves with
simpler piecewise linear curves is well studied [DP73, RW74, II86, PV94, KF03, DLMS12].
We review some of that work first, then discuss previous work on problems with containment
constraints.

2.1 Error Metrics

The two-strip solution presented by Reumann and Witkam [RW74] was one of the first ap-
proaches to min-ε curve simplification. It uses a modified version of the Hausdorff metric, in
which each vertex of the original curve is imagined to have a disc of radius ε centered on it
and the approximating path must pass through each of these discs in order. Points from the
original curve are then deleted subject to the constraints, leaving an approximating curve
defined by a subset of the input points. Much subsequent work has presented polynomial
time results for similar concepts [Peu76, Rob85, LY90, Hob93, Dae03]. In particular, Bal-
lard [Bal81] described a hierarchical approximating scheme called strip trees. Our problem
is more complex due to the convexity and containment constraints, but the idea of centering
a disc on each vertex of the input is similar to how our algorithm works.

In general, the points defining the optimal simplified chain may not be points from
the input. Guibas et al. [GHMS93] studied the version where simplified points need not be
selected from the input for polygonal chains, and their solution entails finding a minimum
link path which intersects each disc. They use a linear time ordered stabbing technique
[EW91] to find a path which satisfies the ε approximation of the original curve under the
Hausdorff metric, unless the path is required to be simple, in which case the problem is
NP-hard [GHMS93].

The Fréchet metric describes the maximum distance between two points that follow
continuous monotonic trajectories along the two curves being compared. It is much more
difficult to work with than the Hausdorff metric, but may better express a useful concept
of similarity for curves in some contexts. For instance, in Figure 2, P and P ′ have small
Hausdorff distance but large Fréchet distance, and indeed they intuitively seem to be quite
different curves.

However, the Fréchet metric is not intended for closed curves, and a modified
version must be used for closed curves [AG92]. The Hausdorff distance is standard for
polygons [Gru83, ABB95, FMR+92, Rot92, CC05, LR05], and we use the Hausdorff dis-
tance here. Other metrics of possible interest include geodesic width [EGHP+01]; link
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P ′

P

Figure 2: Two curves with small Hausdorff distance but large Fréchet distance, adapted
from Alt and Godau [AG92].

width [EGHP+01]; Eggleston measure [Gru83]; and the difference in area between two
polygons [CY86].

2.2 Constrained Approximation and Cores

Zhang and Tian [ZT97] add the containment constraint to polygon approximation, in an
application closely related to our own. They selectively remove points using the Douglas-
Peucker approach [DP73], but only when the new approximation lies to the deep side of the
contour line being approximated. Their technique establishes precedent, but the amount of
data reduction achieved relative to the original curve is unclear from their examples [ZT97,
Figures 3–5], and they provide no formal analysis.

Some previous work has placed constraints on the approximating curve in relation
to other properties of the data. Estkowski and Mitchell [EM01] study an approximation
problem in which adjacent polygonal curves must maintain their relative positions, in a
Geographic Information System (GIS) context. They show their problem to be in a difficult
complexity class (MIN PB-complete), and so propose a heuristic approximation with some
experimental results showing its efficacy. Li gives a more thorough review of constrained
approximation techniques for polygonal curves [Li07, Section 5.6].

Polygon approximation with a containment constraint can be divided into two broad
classes of problems: inclusion problems seek an approximation contained in the original
polygon, and enclosure problems determine an approximation that contains the original
polygon. Formally, let P and Q be classes of polygons and let µ be a function on polygons
such that for polygons P and Q, Q ⊆ P ⇒ µ(Q) ≤ µ(P ). Chang and Yap [CY86] define
the inclusion and enclosure problems as follows:

• Inc(P,Q, µ): Given a polygon P ∈ P, find a polygon Q ∈ Q included in P , maximiz-
ing µ(Q).

• Enc(P,Q, µ): Given a polygon P ∈ P, find a polygon Q ∈ Q enclosing P , minimizing
µ(Q).

We illustrate a number of enclosure and inclusion problems in Figure 3. The best
known enclosure problem is the convex hull, Enc(Psimple,Pcon, area), where Psimple is the
family of simple polygons and Pcon is the family of convex polygons. Given a convex poly-
gon P as input, many problems are tractable in linear time: Enc(Pcon,P3, area) [OAMB86],
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(a) Enc(Psimple,Pcon, area), a.k.a.
convex hull.

(b) Enc(Psimple,P3, area).

(c) Inc(Psimple,Pcon, area),
a.k.a. potato peeling problem/MACS.

(d) Inc(Psimple,P3, area).

(e) Inc(Psimple,Pcon,Hausdorff),
a.k.a. Hausdorff Core.

(f) Inc(Pcon,P3, area).

Figure 3: Some inclusion and enclosure problems for approximating polygons.

where P3 is the set of triangles, Enc(Pcon,P3, perimeter) [BM02], and Enc(Pcon,Ppar, area)
[STV+95], where Ppar is the family of parallelograms. For general k-gons, Enc(Pcon,Pk, area)
can be solved in O(kn+ n log n) time [AP88].

Perhaps the best known inclusion problem is the potato-peeling problem of Chang
and Yap [CY86], defined as Inc(Psimple,Pcon, area). The “potato” of the potato peeling
problem is formally known as the maximum area convex subset (MACS) [CC05], which is
the largest area convex polygon contained in P . There is an O(n7) time algorithm for this
problem, where n is the number of vertices of P , and an O(n6) time algorithm when the
measure is the perimeter, i.e. Inc(Psimple,Pcon, perimeter) [CY86]. The problem of finding
the triangle of maximal area included in a convex polygon, Inc(Pcon,P3, area), can be
solved in linear time [DS79]. The generalization of this problem to any k-gon can be solved
in time O(kn + n log n) [AKM+87]. If the input polygon is not restricted to be convex,
Inc(Psimple,P3, area) can be found in time O(n4) [MS90].

The inclusion and enclosure problems can also be formulated as minimizing or max-
imizing a measure d(P,Q) to find what we call a d-Core of P .

Definition 2 (The d-Core Problem). Given a simple polygon P , determine a convex poly-
gon Q such that Q ⊆ P and d(P,Q) is minimized, where d(P,Q) is a measure of the
difference between P and Q. We call Q a d-Core of P .

http://jocg.org/
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(a) The input polygon P . (b) “Shrinking” the poly-
gon.

(c) Shrink until the convex
hull is contained in P .

(d) The solution returned
by the Chassery and Coeur-
jolly algorithm [CC05].

(e) An optimal solution.

Figure 4: Chassery and Coeurjolly algorithm counterexample.

Note that in the case when µ(Q) is the area, maximizing or minimizing µ(Q) for the
inclusion and enclosure problems respectively is equivalent to minimizing the difference in
areas (d(P,Q) = |µ(P )− µ(Q)|).

Both the inclusion and enclosure problems using the Hausdorff distance as a measure
were studied by Lopez and Reisner [LR05]. Given a convex polygon and the number of
points permitted in the solution, polynomial-time algorithms were described that minimize
the Hausdorff distance (i.e. the min-ε version of the problem). They also studied the min-
# version of the problem. In that setting, they show that the inclusion and enclosure
problems can be approximated to within one vertex of optimal in O(n log n) time and O(n)
time, respectively.

In the present paper we address the inclusion problem where the objective is to min-
imize the Hausdorff distance to a convex approximating polygon given a simple (not neces-
sarily convex) polygon as input, i.e. Inc(Psimple,Pcon,Hausdorff). Chassery and Coeurjolly
[CC05] addressed this problem first. Their result is conditional on the Euclidean 1-center.
For a polygon P the Euclidean 1-center is the point c that minimizes the maximum distance
from c to any point in P . When the Euclidean 1-center of the input polygon P is contained
in P , the algorithm of Chassery and Coeurjolly [CC05] finds the Hausdorff core of P . It
works by shrinking P until its convex hull is contained in the original P . If the shrunken
polygon P ′ is not convex, then the convex hull of P ′ contains a vertex of P which lies on
an edge e of P ′. The edge e is used as a cutting line upon P to obtain a new polygon P1 to
be shrunk. The procedure is repeated to obtain P ′i from Pi until P ′i is convex.

If the Euclidean 1-center of P is not contained in P , it is possible to construct ex-
amples where that algorithm would not return a Hausdorff Core of P , as shown in Figure 4.
Fraser and Nicholson [FN10] provided an O(n3) time algorithm to find an exact Hausdorff
Core solution if the input polygon is simple and contains at most one reflex vertex. Their
solution is non-trivial, and it does not immediately extend to polygons with two or more
reflex vertices.
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P

1-centre

constrained
1-centres

Figure 5: An example where the constrained Euclidean 1-centers (the solid points) are not
unique, and are distinct from the unconstrained Euclidean 1-center (the hollow point).

2.3 LP-type Problems and the Constrained 1-Center

Certain settings for optimization problems using the Hausdorff distance metric belong to
the class of problems known as LP-type problems. LP-type problems were formalized by
Sharir and Welzl [SW92] to provide a general framework for linear programming problems
with n constraints and d variables so that they may be solved in expected O(d22dn) time,
which translates into a linear time algorithm for many of the problems we are interested in.

Recall that the Euclidean 1-center c of a polygon P minimizes the maximum distance
from c to any point of P . If we required our core to be a single point, but did not require
it to be contained in P , then c would be an exact solution; finding such a c is an LP-type
problem and amenable to the techniques of Sharir and Welzl.

However, even with the restriction to a single point, the Hausdorff Core is not
an LP-type problem because of the requirement that the solution Q be contained within
P . The constrained Euclidean 1-center is a point p1c contained in P that minimizes the
maximum distance from p1c to any point in P . The unconstrained 1-center is unique, but
the constrained 1-center might not be, as shown in Figure 5. If P is not convex, then the
search space for p1c cannot be described by a set of linear constraints. If P is convex, the
constraints are linear, but the Hausdorff Core problem is also trivial because Q = P . The
constrained Euclidean 1-center problem was solved by Bose and Toussaint [BT96, Algorithm
1], with an algorithm to compute a constrained Euclidean 1-center of a polygon P with n
vertices in O(n log n + k) time, where k is the number of intersections between P and the
furthest point Voronoi diagram of the vertices of P (for simple polygons k ∈ O(n2)).

Throughout the rest of this work, when we refer to a 1-center, we specifically mean a
constrained Euclidean 1-center. We write p1c to represent a constrained Euclidean 1-center
of P .

3 The Hausdor� Core

We begin our analysis by formalizing the Hausdorff Core problem, and establishing some
fundamental properties of the problem.

http://jocg.org/
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pi pi′

qj
qj′

Figure 6: Illustration of Lemma 1. The dashed lines indicate a possible set of boundaries
for P and Q between these vertices.

3.1 De�nitions

A polygon P can have multiple distinct Hausdorff Cores; our objective is to determine any
optimal solution. We consider both the minimization and decision versions of the Hausdorff
Core problem for a given simple polygon P . Recall from Definition 1 that the minimization
version of the Hausdorff Core problem is to determine a Hausdorff Core of P , i.e. a polygon
Q covered by P where H(P,Q) is minimized. The decision version is formalized below:

Definition 3. The k-bounded Hausdorff Core Problem: Given a simple polygon P and a
non-negative real k, identify whether there exists a convex polygon Q contained in P such
that H(P,Q) ≤ k. Such a polygon Q, if it exists, is referred to as a k-bounded Hausdorff
Core of P .

3.2 Hausdor� Core Properties

Given a polygon P and a convex polygon Q inside P , it suffices to measure the maximum
distance from the vertices on the convex hull of P to polygon Q to obtain H(P,Q). The
distance from points q ∈ Q to P need not be considered, by the following lemma. Let
CH(P ) denote the convex hull of P , and PV denote the set of vertices of P . We write ←→qiqj
(resp. qiqj) to denote a line (resp. minimal line segment) containing points qi and qj .

Lemma 1. Given any simple polygon P and any convex polygon Q contained in P ,

max
p∈P

min
q∈Q

dist(p, q) ≥ max
q∈Q

min
p∈P

dist(q, p) .

Therefore,
H(P,Q) = max

p∈P
min
q∈Q

dist(p, q).

Furthermore, the Hausdorff distance between P and Q is defined by the distance from vertices
on the convex hull of P to Q:

H(P,Q) = H(CH(P )V , Q).

Proof. Suppose H(P,Q) = k, and take the convex hull of P to obtain CH(P ). Now identify
two consecutive vertices of CH(P ), and call them pi and pi′ (Figure 6). By the definition
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of the convex hull, we know that all vertices of P lie in one of the two half-planes defined
by the line incident to pi and pi′ ; call this half-plane hP . For ease of discussion, rotate
everything so that hP is equivalent to the y ≤ 0 half-plane. Since P contains Q, hP also
contains Q.

Now consider two points qj and qj′ on the upper hull of Q, each inside a disc of
radius k centered at pi and pi′ , respectively. Since Q is convex, the edges of Q between qj
and qj′ must lie on or above the line ←−→qjqj′ , and also remain below the boundary of P since
P contains Q. Therefore, for any point on Q in this range, there is a point in P at most
distance k above it. If ←−→qjqj′ is parallel to the x-axis, then it is possible that the maximum
distances are equal: maxp∈P minq∈Q dist(p, q) = maxq∈Q minp∈P dist(p, q). If ←−→qjqj′ is not
horizontal, then the distance maxp∈P minq∈Q dist(p, q) is maximized at one of the vertices
of P , and so on this interval H(P,Q) = maxp∈CH(P ) minq∈Q dist(p, q).

The lemma follows, because this argument may be applied to any consecutive pair
of vertices of the convex hull of P , and points of Q may be chosen so that the entire polygon
is considered.

The distance H(P,Q) is determined by the vertices of P that lie on the convex
hull of P , but all vertices and edges of P must be considered to determine whether Q is
contained in P . Therefore, the k-bounded Hausdorff Core problem may be redefined as
follows: we consider discs of radius k centered at vertices CH(P )V and ask whether there
exists a convex polygon Q such that it is covered by P and intersects all such discs. Let
C(p, k) denote a disc of radius k centered at p. We refine the k-Hausdorff Core problem
with the following corollary:

Corollary 2. Given a simple polygon P and a convex polygon Q contained in P ,

H(P,Q) ≤ k ⇔ ∀p ∈ CH(P )V , C(p, k) ∩Q 6= ∅.

Finally, for finding a Hausdorff Core we wish to identify a point (any point) q
contained in Q. For any disc C(p, k) covering q, p is within distance k of Q, and so the
search for a k-bounded Hausdorff Core is simplified by ignoring all such discs and searching
for a solution which touches the boundaries of all remaining discs.

Lemma 3. Given a simple polygon P and a convex polygon Q that is a Hausdorff Core of
P , it is always possible to expand Q so that it contains at least one point in the set PV (the
set of vertices of P ) while remaining a Hausdorff Core of P .

Proof. It is possible for a solution to be optimal and not contain a point from the set PV ,
but we show that any such solution may be expanded to include a vertex of P . An example
of such a scenario is shown in Figure 7.

Suppose there exists a polygon Q which has H(P,Q) = k where PV ∩Q = ∅. We can
always expand Q to create a new polygon Q′, where Q ⊂ Q′, and so H(P,Q′) ≤ H(P,Q).
Note that since we assumed Q is an optimal solution, in fact H(P,Q′) = H(P,Q). One
such algorithm is as follows:

http://jocg.org/
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p1c

Figure 7: The thick dashed line shows an optimal Hausdorff Core for this polygon. This
line may grow in a number of ways into a convex polygon which remains contained inside
the original polygon, while including a vertex of P on the boundary. The shaded polygon
is one such possibility. Interestingly, in this polygon the Euclidean 1-center p1c is contained
in the polygon even though it is not contained in any Hausdorff Core solution.

1. Choose an arbitrary edge eQ = (vi, vj) of Q.

2. Choose one of the vertices of eQ arbitrarily. Say without loss of generality that vi is
chosen. Let e′Q = (vi, vj′) be the other edge of Q incident to vi (it is possible that
eQ = e′Q). Expand eQ by moving vi away from vj along the unique line defined by eQ
until either:

(a) one of the edges of Q touches a vertex of P (Figure 8a);

(b) moving vi further would cause Q to lose convexity (Figure 8b); or

(c) vi encounters an edge of P , which we call eP (Figure 8c).

3. If case 2(a) occurs, we are done. If case 2(b) occurs, we merge e′Q with the other
edge incident to vj′ , and then return to step 2. Note that this case may occur O(|Q|)
times before the algorithm terminates. If we arrive at case 2(c), we introduce a new
vertex v′ on Q at vi, and edges e1 = (v′, vi) and e2 = (v′, v′j) (Figure 8d). Note that
eP and e1 are collinear and e1 initially has zero length. We move v′ along eP (in a
direction which keeps Q simple), again according to the rules in the previous step.
When condition 2(a) is met, one of the vertices of P must be incident to Q, and the
algorithm terminates.

3.3 Algorithmic Challenges of the Hausdor� Core Problem

The k-bounded Hausdorff Core problem consists of determining whether we can draw a
polygon Q with one vertex in or on each disc such that the vertices in each successive pair
are able to see each other around the obstructions formed by the input polygon P . For any
fixed choice of the obstructing vertices, this consists of a system of quadratic constraints

http://jocg.org/
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?

eQ vjvi

e′Q

v′j

Q

P

(a) In this example (case 2(a)), moving vi
away from vj has resulted in e′Q becoming
incident upon a vertex of P .

eQ vjvi

e′Q

v′j
Q

P

?

(b) In this example (case 2(b)), vi was moved
until two edges of Q became collinear.

eQvj vi

e′Q

v′j

Q

P

?

eP

(c) In case 3(b), vi encounters an edge of P
but Q is not yet incident upon a vertex of
PV .

eQvj vi

e2v′j

Q

P

eP?

v′

(d) The new vertex v′ is added to Q, and
the algorithm proceeds until arriving at case
2(a).

Figure 8: The cases of Lemma 3 are illustrated with examples. The stars indicate locations
where interesting events have taken place.

of the form “variable point in circle” and “two variable points collinear with one constant
point (an obstructing vertex).” For the optimization version we need only make the circle
radius a variable and minimize that.

Solving systems that include quadratic constraints is in general NP-hard; we can
easily reduce from 0–1 programming by means of constraints of the form x(x − 1) = 0.
Nonetheless, some kinds of quadratic constraints can be addressed by known efficient algo-
rithms. Lobo et al. [LVBL98] describe many applications for second-order cone program-
ming, a special case of semidefinite programming. The “point in circle” constraints of our
problem can be easily expressed as second-order cone constraints, so we might hope that
our problem could be expressed as a second-order cone program and solved by their efficient
interior point method.

However, the “two variable points collinear with one constant point” constraints
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q7

p6 q5

p4

q3p2
q1

q′1
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p1 p3

p5

p7

Figure 9: There can be two disconnected solution intervals for the Hausdorff Core problem.
The points pi are vertices of the polygon P , and the points qj are points that are being
selected on discs as the vertices of the solution polygon Q. The fat arcs trace the position
of q′1 at the intersection point of the lines ←−→q1p2 and ←−→q7p8 as q1 is moved along the boundary
of the disc centered on p1.

are not so easy to handle. With (x1, y1) and (x2, y2) the variable points and (xC, yC) the
constant point, we have the following:

y1 − yC
x1 − xC

=
y2 − yC
x2 − xC

(2)

x2y1 − x2yC − xCy1 = x1y2 − x1yC − xCy2 (3)

This constraint is hyperbolic because of its cross-product terms. The techniques of Lobo et
al. [LVBL98] can be applied to some hyperbolic constraints, subject to limitations whose
basic purpose is to keep the optimization region convex.

But as shown in Figure 9, it is possible for our problem to have two disconnected
sets of solutions, even with as few as four discs. For a point q1 on the first disc, we can
trace the polygon through the constant point p2 to the intersection point of that edge with
the second disc at q3, then through the constant point p4 and so on around to p8. The lines
←−→q1p2 and ←−→q7p8 intersect at q′1, which is our choice for one vertex of the solution polygon, the
others being q3, q5, and q7. If q′1 is on the disc, we have a feasible solution (note that q1 is not
needed as a vertex for any solution, since if q′1 is in a feasible position then q1 lies on the edge
between q′1 and q3). The heavy curves in Figure 9 show the locus of q′1 for different choices
of q1. The set of solutions to the problem as shown is disjoint, corresponding to a slice (for a
constant value of the circle-radius variable) through a non-convex optimization region. As a
result, neither second-order cone programming nor any other convex optimization technique
is immediately applicable.

4 Hausdor� Core Algorithms

In this section we outline approximation algorithms for solving the general Hausdorff Core
problem by manipulating discs centered on selected vertices of P . We begin by describing
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approximate decision and optimization algorithms, and then we describe how the approx-
imate k-bounded Hausdorff Core algorithm may be modified to obtain an approximation
scheme for the decision problem.

Let drad be the distance from the constrained 1-center p1c to the most distant vertex
in P : drad = maxp∈P dist(p1c, p). To simplify the discussion, we will scale the problem
so that drad = 1, and so the algorithm finds a (k + ε)-bounded Hausdorff Core for some
constant ε. By Corollary 2 (page 10), Invariant 1 (below) implies that there exists a k-
bounded Hausdorff Core for P , i.e., given P there exists a convex polygon Q contained in
P with H(P,Q) = k:

Invariant 1. Given a simple polygon P with convex hull CH(P ) and a value k ∈ R, there
exists a set of points {q1, . . . , qn′} ⊂ Q, where n′ is the number vertices of CH(P ), such that
∀i, qi ∈ C(pi, k) (recall that C(pi, k) is a disc of radius k centered at pi) and ∀i, j, i 6= j, qiqj
does not cross outside P .

To find an approximate solution to the Hausdorff Core problem, we repeatedly apply
the k-bounded Hausdorff Core solution to selected values of k. To provide insight into the
ideas used in our solution, we sketch a simplified version in Algorithm 1, and we illustrate an
example of the operation of the algorithm in Figure 10. In this algorithm, we use Lemma 3,
which states that an optimal Hausdorff Core Q of P may always cover at least one vertex of
P . We call this vertex of P covered by Q the point qp, and we try all possible values of qp in
the algorithm. The algorithm operates by placing disc centers on the vertices of the convex
hull of P and shrinking their radii uniformly as long as there exists a k-bounded Hausdorff
Core which pierces all discs. We simplify this test by considering only those discs that do
not cover qp and checking for intersection between Q and the boundary of each disc. It is
safe to ignore discs that cover qp because qp is covered by Q, and so any such disc must
intersect Q.

Inside the for loop of Algorithm 1, a convex polygon Q is maintained where Q is
a k-bounded Hausdorff Core and k is the radius of the discs. If C(pi, k) touches Q, then
d(pi, Q) ≤ k. In line 6, we ensure that if a vertex v ∈ CH(P )V (recall that CH(P )V is the
set of vertices on the convex hull of P ) does not have a disc, then dist(v, qp) ≤ k. Since
qp ∈ Q, it follows that dist(v,Q) ≤ k for all such vertices. It remains to be shown that there
does not exist a convex polygon Q′ such that dist(p,Q′) ≤ k′, where k′ < k. This cannot be
the case, for if the discs were shrunk any further, no convex polygon could intersect some
pair of the discs by Invariant 1. Therefore, the polygon would necessarily be of distance
dist(p, q′) > k′ for some vertex p and any point q′ ∈ Q. Each iteration of the for loop
considers a point qp, and the body of the loop computes a k-bounded Hausdorff Core Q so
that k is minimized under the constraint that qp ∈ Q.

The optimality of the algorithm is guaranteed since the for loop exhaustively explores
all possibilities for the point qp which is known to be contained in a solution Q. By Lemma 3,
we know that at least one such point qp is contained in an optimal solution. By trying all
possibilities, we ensure that a globally optimal solution is obtained, and so Q is a Hausdorff
Core of P .

Our formal approximation algorithm, described in Section 4.2, operates in a sim-
ilar way to Algorithm 1 except that we use a binary search on the values of possible k-
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Algorithm 1 HCORE(P )

1: Input: A simple polygon P .
2: Output: Q, a Hausdorff Core of P .
3: Q = ∅, kmin =∞
4: for each qp ∈ PV do
5: Begin with discs of radius k0 centered on the vertices v ∈ CH(P )V , where k0 = 1

(recall that drad = 1).
6: Any disc centered at a vertex v where dist(qp, v) < k0 covers qp; such discs are ignored

for now.
7: Reduce the radii such that at time ti ∈ [0, 1], each disc has radius k(ti) = 1− ti. Let

Q(ti) be a k(ti)-bounded Hausdorff Core covering qp at time ti, if it exists (we discuss
how this may be done approximately in Section 4.1). The radius is reduced until one
of the following two events occurs:

1. k(ti) = dist(qp, vn), where vn is the farthest vertex from qp that is not the center
of a disc. Add a disc centered at vn with radius k(ti), and continue reducing k.

2. A further reduction of k(ti) would prevent visibility in P between two discs.
We stop reducing k, and if k(ti) < kmin, then set Q = Q(ti) and kmin = k(ti).

8: end for
9: return Q

bounded Hausdorff Core solutions to obtain the approximation, rather than reducing the
value continuously. We find the Euclidean 1-center p1c using the technique of Bose and
Toussaint [BT96] described in Section 2.3; there may be multiple such vertices, but we can
choose one arbitrarily.

4.1 Discretization of the Problem

In this section, we discuss an approximate k-bounded Hausdorff Core problem, where we
are given a distance k, some ε > 0, and a polygon P and we wish to determine whether
there exists a polygon Q′ contained in P so that H(P,Q′) ≤ k+ε. We extend the algorithm
to provide a polygon as a certificate in the case of a positive result. The approach seeks
to enlarge discs by an additive factor ε/2, and to determine whether there exists a solution
for these expanded discs. Here ε is the fraction of drad that we wish to use as a bound on
the approximation, where drad is the distance from the constrained 1-center p1c to the most
distant vertex in P . We grow discs by ε/2 rather than ε because there is some additional
error that comes into the algorithm, and we wish to have a final additive approximation
factor of ε. We scale the input so that drad = 1 to simplify the analysis. Note that this
method of approximation maintains a scale-invariant approximation factor, and the size of
the approximation factor for a given P is an additive constant independent of Q and the
magnitude of k. We still require that the approximate solution Q′ must not cross outside
P , and that Invariant 1 holds.
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(a) Two discs are centered on p1 and p5, which
are the critical points for determining the po-
sition of the 1-center p1c. Let qp = p8.

p1
p5

p3

q1
q3

q5

p8

(b) We have shrunk the discs to have radius
k′, and dist(p3, p8) = k′, so we add a new
disc C(p3, k

′) to the set. The fat lines indicate
a set of lines of strong visibility between the
discs, and so there exists a k′-bounded Haus-
dorff Core (i.e. H(P,Q) = k′).

p1

p3

p5

p7

q1

p8 = q7

q5q3

(c) Another disc is added centered at point p7,
so now we have four discs C(pi,dist(p7, p8)),
for each i ∈ {1, 3, 5, 7}.

p1

p3

p5

p7

q1

q7

q5

q3

p8

(d) We cannot shrink the discs any further, or
Invariant 1 would be violated. Therefore, a
solution Q can be composed from the fat line
segments such that H(P,Q) = k, where k is
the radius of the discs. Note that all vertices
of P are within distance k of Q, and vice versa.

Figure 10: Finding a Hausdorff Core by shrinking discs centered on the vertices of P , as
discussed in Algorithm 1. We are using qp = p8 in this example.

We study two possible cases for a k-bounded Hausdorff Core Q: either Q may be
approximated by a line segment, or the minimum angle in Q is at least ε/4.

4.1.1 A Line Segment Solution

We first determine whether any k-bounded Hausdorff Core Q can be approximated by a
single line segment. We consider an arc segment of radius 2 (i.e. the maximum diameter of
P ) and arc length ε/2, as shown in Figure 11. The interior angle of the circular segment
Cϕ formed by this arc is ϕ = ε/4. If an interior angle of Q is less than or equal to ϕ, then
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ε/2

ϕ = ε/4 2

Cϕ

Figure 11: Determining whether there exists a straight line segment that would serve as a
Hausdorff Core solution. Consider a circular segment Cϕ of radius 2, arc length ε/2, and
with an interior angle of ϕ = ε/4. If Q can be covered by Cϕ, then a straight line segment
Q` exists such that H(Q,Q`) < ε/2.

Q may be fully covered by Cϕ since Q is convex. In this case, there exists a line segment
Q` which approximates Q where H(Q,Q`) < ε/2.

We now describe how to determine such a line segment Q`, assuming there exists
some Cϕ that covers Q. First, we enlarge all relevant discs (i.e. those not covering qp) by
ε/2, so that they have radius kg = k + ε/2. Since Q is convex, this operation means that
any line segment which approximates Q will now intersect at least one arc from each disc
if a solution exists where H(P,Q) ≤ k. By Lemma 3, we know that qp ∈ PV is contained
in Q. Therefore, we attempt to find a line intersecting a point qp and a point on each disc
of radius kg for each qp. For a selected qp, we build an interval graph in the range [0 . . . π].
For each disc C(pi, kg), if a line at angle θ mod π from an arbitrary reference line intersects
a segment of C(pi, kg) contained in P before intersecting P itself, then C(pi, kg) covers θ
in the interval graph. Note that since P may intersect a disc, any disc may have O(n)
intervals in the interval graph. If there is a non-zero intersection between all discs in the
interval graph at θ?, then the solution is a line segment Q` at angle θ? to the reference
line, intersecting qp with endpoints on the last discs intersected by Q`. Therefore, if there
exists a solution H(P,Q) ≤ k where Q can be approximated by a line segment Q` with
H(Q,Q`) < ε/2, then we will find Q`.

4.1.2 A Polygonal Solution

If we have not found a line segment solution Q`, we know that all interior angles of some
k-bounded Hausdorff Core Q are greater than ϕ(= ε/4) if a solution exists. If we divide
the boundaries of the expanded discs of radius kg = k + ε/2 into 16π2(k + ε/2)/ε2 equal
intervals, then at least one such interval on each disc is fully contained in an optimal solution
Q regardless of where the intervals are placed on the discs. In this section, we describe a
dynamic programming approach for approximating the k-bounded Hausdorff Core problem.

Lemma 4. If there exists a k-bounded Hausdorff Core Q for P , then by Invariant 1, Q
pierces all discs of radius k centered on the vertices of the convex hull of P . If discs of
radius k + ε/2 are placed on all the same vertices and the minimum angle of Q is at least
ϕ, then the expanded discs may be divided into O(ε−2) disjoint intervals so that at least one
interval on every expanded disc is on the interior of Q.

Proof. The smallest arc length of an expanded disc that may be covered by Q is realized
when the bisector of the angle at a vertex q1 is collinear with the line formed by q1 and the
center of the disc p1 (see Figure 12ba). The minimum angle at a vertex in Q is at least
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Q

p1

C(p1, k)

C(p1, kg)

q1

(a)

p1 kg

ϕ′

CP

p1 kg

ϕ′

CQ

ε/2

ε/8

ε2/16

qc1

qc2

qc2

qc1

(b)

Figure 12: To find the minimum-length interval for the discretization of the expanded
discs, we need to ensure that at least one full interval is always covered by Q. We know the
minimum angle at any vertex of Q is at least ϕ, since there was no single line segment that
could approximate Q. (a) The minimum arc length of C(p1, kg) spanned by Q is realized
when the bisector of the edges incident to q1 is collinear with the line ←−→p1q1. (b) Using the
arc segments CP and CQ to determine a lower bound on the angle ϕ′.

ϕ = ε/4, and we want to determine an angle ϕ′ for a circular segment CP of radius kg
centered at p1 (see Figure 12b b) so that two interior disjoint such circular segments may
always be covered by Q. A circular segment CQ of radius ε/2 and angle ε/8 (i.e. ϕ/2) has
arc length ε2/16, and two interior disjoint such segments may be covered by Q ∩C(p1, kg).
Therefore, given points qc1 and qc2 as the endpoints of the arc on CQ, we may place these
points on CP to determine a lower bound on ϕ′. The arc length of CP between qc1 and qc2
is at least 2/π times that of CQ on these points. Since the arc length of CQ is ε2/16, the
arc length of CP is at least ε2/8π. The interior angle ϕ′ of CP is given by ϕ′ = ε2/8πkg.
The number of such circular segments in C(p1, kg) is 16π2kg/ε

2. Since kg is at most 1, the
number of segments is in O(ε−2).

Each disc is divided in O(ε−2) intervals. Consider the following observations per-
taining to Q and Q′, where Q′ is a polygon approximating a k-bounded Hausdorff Core
Q:

• ∃Q⇒ ∃Q′, ¬∃Q′ ⇒ ¬∃Q. The intervals are defined so that at least one interval from
each disc will be contained in Q′ if Q exists.

• ∃Q′ ; ∃Q. The existence of Q′ does not imply the existence of Q because the optimal
Hausdorff Core solution may have distance H(P,Q) = k + ν, where ν < ε/2.

We choose a representative point in each interval for every relevant disc on P ; any
arbitrary such point suffices. We write qi,j to represent a point chosen in the jth interval
on disc ci. As with Algorithm 1, we will explore every choice of qp ∈ PV and we need only
consider discs not covering qp (qp ∈ PV is a vertex of P that we are assuming is part of
the solution, see Lemma 3); for any iteration say there are n′ ≤ n such discs. Relabel the
set of discs C = {c1, . . . , cn′} so that the discs are numbered in clockwise order relative
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qp

q1,4

q3,4

q2,5

q4,7q5,7
q6,4

q7,2

P

Figure 13: The convex polygon that includes points q5,7 and q6,4 (for example) is built by
combining the shaded triangle defined by these points and qp with a polygon containing
qp, q5,7 and a point on c4, q4,7 in this case. A solution is a convex polygon composed of
triangles arranged as a fan, with qp as the vertex shared by all triangles.

to the vertex qp. Note that the ordering is unique and Q′ intersects the discs in order
since all discs are centered on vertices of the convex hull of P . A solution has the form
Q′ = {qp, q1,j , . . . , qn′,j′}, where qi,j is the point that was chosen on the jth interval of
C(pi, kg).

Any convex polygon may be triangulated as a fan so that every triangle shares one
vertex; consider a triangulation of Q′ where every triangle shares vertex qp and triangle Ti
is defined by the vertices qp, qi,a and qi+1,b. The dynamic programming solution proceeds
by adding triangles T1, . . . , Tn′−1 to the fan iteratively. The two essential properties that
Q′ must possess are that it is contained in P and that it is convex. Suppose we have a
valid partial solution Qi (containing triangles T1, . . . , Ti) to which we wish to add one more
triangle to create a new polygon Qi+1. To check that Qi+1 is contained in P , we perform ray
shooting queries with −−−−→qi+1,bqp and −−−−−→qi+1,bqi,a on P to determine whether the corresponding
edges would intersect P . To check for convexity, we compare the vertex qi+1,b with the
lines qpq1,c and qi−1,dqi,a, for some points q1,c and qi−1,d (convexity may be determined by
checking whether a point is to the left or right of a line in O(1) time, e.g. [O’R98, p.28 &
§3.5]).

We write an index value as a pair 〈i, a〉 to preserve the information that this is a point
in the ath interval of disc ci, with the intention that this notation simplifies the discussion.
In practice, this pair could be replaced with an integer. We keep partial solutions in a table
A, in which an entry A[〈j, b〉, 〈j + 1, c〉] represents a convex polygon that touches points qp,
qj,b, and qj+1,c, for some j ≥ 1, and includes points on all discs c1, ..., cj+1. If there exists
such a polygon, then the table entry A[〈j, b〉, 〈j + 1, c〉] stores:

1. the pair (〈j − 1, d〉, 〈j, b〉), which is the index of A[〈j − 1, d〉, 〈j, b〉], where the polygon
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θ4
qp

q1,4
q3,4

q2,5

q1,8c7

Figure 14: Consider the partial solution composed of the point qp and points on discs
c1, c2, c3, and let θa be the angle ∠q1,aqpq3,d for a ∈ {1, . . . , 8}. Point q1,4 minimizes the
angle θa, which consequently maximizes the area of the shaded region. No solution exists
using point q1,8 and a point in the shaded region.

represented by A[〈j, b〉, 〈j + 1, c〉] is equal to the union of a polygon represented by
A[〈j − 1, d〉, 〈j, b〉] and the triangle with vertices qp, qj,b, qj+1,c (see Figure 13); and

2. the point q1,a(∈ c1) used in the polygon, where the angle ∠q1,aqpqj+1,c is minimized
over all choices of a that are feasible for this entry. Note that choosing a point q1,a
to minimize this angle is equivalent to minimizing ∠q1,aqpqj for any choice of qj since
the solution must be convex (see Figure 14).

The base cases consist of the entries A[〈1, a〉, 〈2, b〉] for all values of a and b. We set
A[〈1, a〉, 〈2, b〉] = {(), q1,a} if there is visibility in P between each pair of points in {qp, q1,a, q2,b},
and if these vertices occur in clockwise order on the triangle defined by the points. Oth-
erwise, there is no valid solution for these points, in which case we set A[〈1, a〉, 〈2, b〉] = ∅.
For each subproblem in the dynamic program, the objective is to obtain valid subpolygons
where the edge (qpq1,a) is rotated clockwise as much as possible for all choices of a, as this
maximizes the size of the region where the next point after the subproblem may lie while
maintaining convexity, as illustrated in Figure 14.

The dynamic programming algorithm is described in detail in Algorithm 2. We
compute the base cases in lines 5 to 11. The loop in lines 13–22 successively adds triangles
to existing partial solutions: in the ith iteration of the main loop, for each triple of points
(qp, qi−1,b, qi,c) we check if it is possible to construct a convex polygon that touches these
points by adding the corresponding triangle solution that uses the points (qp, qi−2,d, qi−1,b)
over all possible values of d. Note that though there may be many solutions to form the
subproblem, it is enough to keep that minimizes the angle θa described in Figure 14. At
the end of this loop, if there exists any non-empty entry A[〈n′ − 1, b〉, 〈n′, c〉] then we have
found a solution. If this is the case, we then trace table A in lines 24 to 28 to find the
vertices of a polygon Q′.
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The dynamic programming algorithm must be run iteratively for each qp ∈ PV ,
using only discs centered on vertices v ∈ PV where dist(v, qp) ≥ k. If no solution Q′ is
found for any qp, then there is no solution where H(P,Q) = k.

Algorithm 2 FindConvexPolygon(C,P )

1: Input: Discs C = {c1, . . . , cn′} with ci = C(pi, kg) and qp 6∈ ci, and a simple polygon
P .

2: Output: Q′, a convex polygon approximating a k-bounded Hausdorff Core of P , or
fail if no such approximation exists.

3: For each interval on each disc in P , choose a point. Let qi,j be the jth point on disc ci.
4: {Base cases}
5: for each q1,a and q2,b do
6: if qpq1,a ⊂ P and q1,aq2,b ⊂ P and qpq2,b ⊂ P and qp, q1,a and q2,b appear in

clockwise order on the triangle they define then
7: A[〈1, a〉, 〈2, b〉] = {(), q1,a}
8: else
9: A[〈1, a〉, 〈2, b〉] = ∅

10: end if
11: end for
12: {Build partial solutions}
13: for i = 3 to n′ do
14: for each triple of points (qp, qi−1,b, qi,c) do
15: if qpqi,c ⊂ P and qi−1,bqi,c ⊂ P then
16: Over all values of d in A[〈i− 2, d〉, 〈i− 1, b〉], find an entry with a q1,a so that θa

is minimal and the points qp, q1,a, qi−2,d, qi−1,b, and qi,c are in convex position.
17: end if
18: if no valid entry was found then
19: A[〈i− 1, b〉, 〈i, c〉] = ∅
20: end if
21: end for
22: end for
23: {Return one polygon, if found}
24: if ∃b, c such that A[〈n′ − 1, b〉, 〈n′, c〉] 6= ∅ then
25: Backtrack on solution stored in A[〈n′ − 1, b〉, 〈n′, c〉] to build Q′

26: else
27: return fail
28: end if

4.2 The Minimization Problem

If a Hausdorff Core Q of a given polygon P has Hausdorff distance H(P,Q) = kmin, our
algorithm finds an approximate solution Q′ such that H(P,Q′) < kmin + ε. To determine
a value of k′ where k′ ≤ kmin + ε (kmin is unknown), it suffices to perform a binary search
over possible values for k′ in the range of [0 . . . 1], executing the approximation algorithm
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for the k-bounded Hausdorff Core problem at each iteration. At the ith iteration of the
algorithm, let the current radius be ki. If the algorithm finds a ki-bounded Hausdorff Core
solution Qi, we shrink the discs and use ki+1 = ki − 1/2i. If the algorithm fails to find
a solution, we use ki+1 = ki + 1/2i. Initially, k0 = 1. The stopping condition for the
binary search is met when we find a k-bounded Hausdorff Core, and the algorithm fails
to find a (k − ε/2)-bounded Hausdorff Core. Thus, the approximation algorithm requires
O(log(ε−1)) iterations of the k-bounded Hausdorff Core algorithm to find a solution. For
the latter algorithm, we showed that H(Q,Q′) < ε/2, if Q exists. For the Hausdorff Core
approximation algorithm, an optimal solution has a Hausdorff distance to P of up to ε/2
less than a solution returned by the approximation algorithm. Therefore, the minimization
approximation algorithm returns a solution Q′ where H(P,Q′) < kmin + ε, where kmin is
the Hausdorff distance of an optimal solution.

4.3 Running Time and Space Requirements

Theorem 5. There exists an approximation algorithm for the general Hausdorff Core prob-
lem on simple polygons with O(log(ε−1)(n3 + n2ε−4(log n+ ε−2))) running time. Given an
input polygon P , the algorithm computes a convex polygon Q, where Q ⊆ P , and with Haus-
dorff distance H(P,Q) < k + drad · ε, where k is the value of the optimal solution, and drad
is the distance from a constrained 1-center of P to the most distant vertex in P .

We begin by analyzing the space requirements and running time of the approximate
k-bounded Hausdorff Core algorithm. We compute the 1-center using the technique of Bose
and Toussaint [BT96], which takes O(n2) time (see Section 2.3). The single line solution
tests a line against O(n) discs, each of which may have O(n) intervals in the interval graph.
This procedure is repeated O(n) times, so it takes O(n3) time in total.

In the dynamic programming algorithm, there are O(n) discs and the number of
intervals on each disc is bounded by O(ε−2). A point is chosen in each interval, which
may be done by incrementing by ϕ′(= ε2/8π(k + ε/2)) around the boundary of the disc,
and performing a ray shooting query on P to determine whether P contains the point.
This can be done in O(log n) time per point [CEG+94], and there are O(n) discs with
O(ε−2) points per disc, so choosing all of the points may be done in O(nε−2 log n) time. For
each disc ci ∈ {c2, . . . , cn′}, we store in the dynamic programming table an entry for every
combination of points with one point on each of c1 and ci. Since there are O(ε−4) possible
combinations and each entry takes constant space, the space for the dynamic programming
table is O(nε−4). To fill in a table entry, we check for containment in P and then possibly
O(ε−2) subproblems are inspected and checked for convexity with the new points. Checking
for containment of an edge can performed using a ray shooting query on P in O(log n) time
[CEG+94], while the convexity test may be done in constant time for each entry in the
table, so each entry may take O(log n + ε−2) time to fill. Therefore, filling in the table
takes O(nε−4(log n+ε−2)) time. Finding the actual vertices of the approximate polygon by
tracing the table backwards takes O(n) time, and thus the dynamic programming algorithm
takes O(nε−4(log n+ ε−2)) time.

The algorithm may require O(n) iterations to test each value of qp, so the approx-
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imate decision algorithm requires O(n3 + n2ε−4(log n+ ε−2)) time. Finally, the minimiza-
tion version of the algorithm performs O(log(ε−1)) iterations of the approximate decision
algorithm, so the complete algorithm requires O(log(ε−1)(n3 + n2ε−4(log n+ ε−2))) time
to find a Hausdorff Core with Hausdorff distance k + ε, where k is the value of an optimal
solution.

4.4 An Approximation Scheme for the k-bounded Hausdor� Core Problem

Modifying the decision algorithm of Section 4.1 to admit an approximation scheme rather
than an algorithm with an additive approximation factor is straightforward. In this context,
we define an approximation scheme for the decision problem with parameters k and ε to
be an algorithm which returns false if there exists no solution for k and true if there exists
a solution for (1 + ε)k, while the algorithm cannot provide a definitive answer about the
existence of solutions in the range (k, (1 + ε)k) (in our case, we may get a false positive
result). We begin by determining whether there exists a circular segment Cϕ which covers
a Hausdorff Core solution for P , but now we use arc length kε/2. This way, our algorithm
will find a line segment which is a Hausdorff Core solution with Hausdorff distance (1 + ε)k
if one exists. The dynamic program requires 4π2(1 + ε)/ε2 ∈ O(ε−2) equal intervals so that
at least one interval is contained in any solution when the discs are enlarged to have radius
(1 + ε/2)k. The running time is asymptotically the same as the previous approximation
algorithm. However, we are not able to perform a binary search to find an approximate
Hausdorff Core in the same way as before, because it could have an arbitrarily large running
time relative to the sizes of the inputs. Since the running time of the decision algorithm
remains O(n3 + n2ε−4(log n+ ε−2)), this is an approximation scheme for the k-bounded
Hausdorff Core problem.

5 Conclusions and Future Work

We have described an algorithm which computes an approximate Hausdorff Core Q of
a simple input polygon P with Hausdorff distance H(P,Q) < kmin + ε, where kmin is
the value of an optimal solution, and ε is a fraction of drad (the distance from a con-
strained 1-center to the most distant vertex in P ). The running time of the algorithm
is O(log(ε−1)(n3 + n2ε−4(log n+ ε−2))) time. The approximate Hausdorff Core algorithm
makes use of an approximate algorithm for the k-bounded Hausdorff Core problem. We
extended this by describing an approximation scheme for the k-bounded Hausdorff Core
problem. These are the first known algorithms for the Hausdorff Core problem on general
simple polygons.

As future work, it would be interesting to explore other metrics. We studied the
Hausdorff metric, but any of the other metrics discussed in Section 2.1 could be used. In
our original application, we envisioned the creation of a hierarchy of simplified polygons,
from full-resolution contour lines down to the simplest possible approximations. This would
permit testing paths against progressively more accurate (and more expensive) approximate
representations of polygons until we found a definitive answer regarding whether the path
and polygon intersect. Our definition of the d-core, including the Hausdorff Core, requires
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the solution to be convex. While convexity has many useful consequences, it represents a
compromise to the original goal because it only provides one non-adjustable level of ap-
proximation. It would be interesting to consider other related problems that might provide
more control over the approximation level. Another direction for further work would be to
define some other constraint upon the simplified polygon. For instance, we could require
that it be star-shaped, i.e. there exists some point p ∈ P such that every q ∈ P can see p.
A similar but even more general concept might be defined in terms of link width. Another
extension would be to explore the Hausdorff Core problem with additional objectives, such
as finding a Hausdorff Core with optimal (i.e. maximal or minimal) area, perimeter or
number of vertices.
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