
JoCG 8(1), 78–104, 2017 78

Journal of Computational Geometry jocg.org

THE PROJECTION MEDIAN AS A WEIGHTED AVERAGE∗

Stephane Durocher,†Alexandre Leblanc,† and Matthew Skala‡

Abstract. The projection median of a set P of n points in Rd is a robust geometric
generalization of the notion of univariate median to higher dimensions. In its original
definition, the projection median is expressed as a normalized integral of the medians of the
projections of P onto all lines through the origin. We introduce a new definition in which the
projection median is expressed as a weighted mean of P , and show the equivalence of the two
definitions. In addition to providing a definition whose form is more consistent with those
of traditional statistical estimators of location, this new definition for the projection median
allows many of its geometric properties to be established more easily, as well as enabling
new randomized algorithms that compute approximations of the projection median with
increased accuracy and efficiency, reducing computation time from O(nd+ε) to O(mnd),
where m denotes the number of random projections sampled. Selecting m ∈ Θ(ε−2d2 logn)
or m ∈ Θ(min(d + ε−2 logn, ε−2n)) suffices for our algorithms to return a point within
relative distance ε of the true projection median with high probability, resulting in running
times O(d3n logn) and O(min(d2n, dn2)) respectively, for any fixed ε.

1 Introduction

The median is a fundamental statistic in data analysis. Given a multiset P of n elements
drawn from a totally ordered universe U , a (univariate) median of P is any value x in U
that lies in the interval [pbn/2c, pdn/2e], where pi denotes the element of rank i in P , for
each i in {1, . . . , n}. When U = R, it is straightforward to confirm that x is a balance
point that minimizes the sum of the distances (equivalently, the average distance) from x
to the elements of P . The one-dimensional notion of median can be generalized to higher
dimensions in multiple ways. One natural approach is to consider the Weber point (also
known as Fermat point, Torricelli point, geometric median, or Euclidean median) of a
multiset of points P ⊆ Rd: a point in Rd (not necessarily in P ) that minimizes the sum of
the Euclidean distances from itself to points in P . The Weber point is highly unstable [17].
That is, an arbitrarily small perturbation of the points in P can result in an arbitrarily
large relative change in the Weber point of P . This instability can lead to inconsistent
or incorrect conclusions being drawn during data analysis. Furthermore, no algorithm is
known for exact computation of the Weber point [4, 19]. The only known solutions are
algorithms that compute an approximation to the Weber point. These include Weizfeld’s
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algorithm [29] and more recent approximation algorithms [6, 9, 20]. Like the exact Weber
point, however, these previous approximations are highly unstable. See Kupitz and Martini
[21] or Wesolowsky [30] for more discussion of the Weber point and its properties.

Alternatively, Durocher and Kirkpatrick [17] introduced the projection median, de-
notedMP(P ), of a set of points P in R2 as a stable geometric generalization of the notion
of univariate median to higher dimensions for which the sum of the distances fromMP(P )
to points in P closely approximates the minimum sum achieved by the Weber point (see
Section 5) and whose position can be computed exactly (see Section 3.1). This definition
generalizes to Rd [14]. The examination of the projection median was continued by Basu
et al. [5], who established and extended several of its properties to higher dimensions. In
its original definition (see (1) in Section 2) the projection median of a set P of n points
in Rd is expressed as a normalized integral of the medians of the projections of P onto
all lines through the origin. This definition is similar in structure to that of the Steiner
centre of P , defined as a normalized integral of the extrema of the projections of P onto
all lines through the origin. Shephard [27] showed an equivalent expression for the Steiner
centre as a weighted mean of P . These dual expressions for the Steiner centre allow various
geometric, statistical, and algorithmic properties to be established for it [16]. This paper
seeks to identify a similar expression for the projection median as a weighted mean, with
the objective to apply the new expression to develop more efficient algorithms, to establish
new properties, and to expand the potential applications of the projection median by ex-
pressing it in a form more traditionally associated with statistical estimators of location.
We summarize our contributions below.

Expressing the Projection Median as a Weighted Mean. In Section 2, we introduce
an expression for the projection median as a weighted average (2) and show its equivalence
to the original definition of the projection median (1). The equivalence is non-trivial and
the techniques employed differ from those used by Shephard [27] for the Steiner centre. We
generalize this result to express the equivalence of the weighted mean and integral formula-
tions of a range of summary statistics defined as functions of order statistics, including the
projection median at one end, and the Steiner centre at the other.

Efficient Approximation Algorithms. The two expressions for the projection median,
(1) and (2), suggest randomized algorithms to compute MP(P ) using a discrete set of
projections selected at random. In Section 3, we introduce two randomized algorithms,
each defined in terms of one of the expressions for the projection median, and analyze
these to establish probabilistic bounds on the quality of the approximations returned. Our
randomized algorithms are easy to implement and run in O(mnd) time, where m denotes
the number of random projections selected, improving on the time of O(nd+ε) required by
the current most efficient algorithm for computing the projection median exactly [5]. All
points in P are included in the computation of the approximation; the approximation is
achieved by randomly selecting a discrete set of unit vectors, as opposed to selecting a
random subset of P . In Lemmas 4 and 7 we bound the probabilities that the approximate
projection medians returned by our algorithms lie within relative1 distance ε of the true

1The relative error is defined by ε = ε/(maxp∈P ‖p‖2), where ε denotes the difference in the positions of
the approximate and true projection medians. See Section 3 for details.
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projection median as functions ofm, n, and d. In particular, selectingm ∈ Ω(ε−2d2 logn) or
m ∈ Ω(min(d+ ε−2 logn, ε−2n)) ensures that each algorithm returns a point within relative
distance ε of the true projection median with high probability, i.e., with probability at
least 1 − n−a for some constant a ≥ 1. The resulting running times are O(d3n logn) and
O(min(d2n, dn2)) respectively, for any fixed ε. Furthermore, we show that the probability of
closeness approaches 1 exponentially quickly as a function of m. According to these bounds,
Algorithm 2, defined in terms of the weighted mean expression for the projection median
(2), is expected to require smallerm (directly proportional to running time) than Algorithm
1 to achieve the same precision for any given n and d, i.e., O(d2 logn) for Algorithm 1 versus
O(min(d, n)) for Algorithm 2. Furthermore, the accuracy of Algorithm 2 is independent of
the location of the origin relative to the true projection median; as we show in Section 4,
the accuracy of Algorithm 1 depends on the true projection median’s distance to the origin.
Thus, Algorithm 2 is robust with respect to similarity transformations, whereas Algorithm 1
is not, further motivating the new expression for the projection median as a weighted mean.
Definitions and theoretical analysis for both algorithms are given in Section 3. Experimental
analysis and discussion are found in Section 4.

Geometric Properties. In Section 5, we use the new expression of the projection median
as a weighted mean to provide arguments for establishing several of its geometric properties,
including equivariance under similarity transformations and consistency across dimensions.
These properties are compared against those of other multivariate estimators of median in
Section 5.2.

2 Expressing the Projection Median as a Weighted Mean

Given a multiset of points P in Rd and a unit vector u ∈ Sd−1, where Sd−1 = {u ∈ Rd |
‖u‖ = 1} is the d-dimensional unit hypersphere centred at the origin, let lu denote the
directed line in Rd through the origin in the direction u and let Pu = {u〈p, u〉 | p ∈ P}
denote the multiset determined by the projection of P onto lu. Durocher and Kirkpatrick
[17] introduced the projection median of a multiset of points P in Rd as a generalization of
the one-dimensional median to higher dimensions, defined as

MP(P ) = d

∫
Sd−1 med(Pu) du∫

Sd−1 1 du , (1)

where med(Pu) is a one-dimensional median of Pu. We use non-italic d for the differential
to distinguish it from the number of dimensions d.

If |P | is even, then the median of Pu may not be uniquely defined. For each u
and corresponding med(Pu), the computation of MP(P ) also includes −u and med(P−u).
Consequently, if the definition of med(Pu) is consistent relative to u, then med(Pu) and
med(P−u) are averaged, giving the midpoint of the interval of medians in Pu = P−u. There-
fore, MP(P ) is uniquely defined regardless of the median of Pu chosen, so long as the
choice is consistent for P−u. Without loss of generality, suppose med(Pu) denotes the left-
most (with respect to u) median of Pu. Finally, let p∗(u) denote the point in P whose
projection determines the median of Pu, i.e., the point p ∈ P such that u〈p, u〉 = med(Pu).
See Figure 1 for examples in R2.
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Figure 1: Left: A set P (seven black points) in R2, a unit vector u, the line lu through the
origin determined by u, the multiset Pu (white points) determined by projecting P onto lu,
and the point b (shaded) which is the projection of a onto lu and the median of Pu, denoted
med(Pu). Note that p∗(u) = a. As u rotates about the origin, the change in position of b
follows an arc (bold) of the circle tangent to the origin, a, and b until a 6= p∗(u). Right:
Given a second set P (three black points) in R2, as u rotates about the origin, the position
of med(Pu) follows a continuous trajectory along arcs (bold) of circles. Integrating med(Pu)
gives a point c that is a weighted mean of the arcs. Scaling by a factor of d (here d = 2)
gives a point e within the convex hull of P that defines the projection median of P , denoted
MP(P ).

As we show in Theorems 1 and 2, the projection median of a finite multiset of points
P in Rd as defined in (1) can also be expressed as

MA(P ) =
∑
p∈P

wpp, (2)

where for each p ∈ P , wp ∈ [0, 1] denotes the proportion of the unit vectors u ∈ Sd−1 such
that the projection of p onto lu is a median of Pu, i.e., such that p = p∗(u). Formally, for
each p ∈ P ,

wp =

∫
Sd−1
p

1 du∫
Sd−1 1 du, where Sd−1

p = {u | u ∈ Sd−1 and p = p∗(u)}. (3)

The sets Sd−1
p for p ∈ P partition Sd−1. Consequently,

∑
p∈P

wp =
∑
p∈P

∫
Sd−1
p

1 du∫
Sd−1 1 du

=

∫
∪p∈PSd−1

p
1 du∫

Sd−1 1 du

=
∫
Sd−1 1 du∫
Sd−1 1 du

= 1 .
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2.1 Equivalence in Two Dimensions

We now show the equivalence of the two definitions of the projection median, (1) and (2).
The special case of two dimensions is important in itself, and provides intuition for the
general case, so we give a specific proof for two dimensions first.

Theorem 1. For any finite multiset P ⊆ R2,MP(P ) =MA(P ).

Proof. Choose any finite multiset P containing n elements, each of which is a point in
R2. Let q0 = (x0, y0), . . . , qk−1 = (xk−1, yk−1) denote the sequence of k points in P whose
projections are medians of Pθ as θ varies over [0, 2π), where for each i, [θi, θi+1) ⊆ [0, 2π)
denotes the interval associated with qi. That is, for each i and each θ ∈ [θi, θi+1), qi = p∗(θ).
A point in P may realize a median in Pθ multiple times as θ varies, meaning that two points,
qi and qj , in the sequence could be equal, where i 6= j. Since the projection of each point
qj in Pθ changes continuously with θ, when the projection of qi ceases to be a median of Pθ
(at θ = θi+1), the projections of qi and qi+1 coincide on lθi+1 . Therefore,

〈uθi+1 , qi〉 = 〈uθi+1 , qi+1〉
⇒ xi cos θi+1 + yi sin θi+1 = xi+1 cos θi+1 + yi+1 sin θi+1, (4)

where the unit vector uθ = (cos θ, sin θ). By definition,

MP(P ) = 2
2π

∫ 2π

0
med(Pθ) dθ = 1

π

k−1∑
i=0

∫ θi+1

θi

uθ〈qi, uθ〉 dθ. (5)

Now consider only the x-coordinate in (5):

MP(P )x = 1
π

k−1∑
i=0

∫ θi+1

θi

cos θ(yi sin θ + xi cos θ) dθ

= 1
2π

k−1∑
i=0

[
−yi cos2 θ + xi(sin θ cos θ + θ)

]∣∣∣θi+1

θi

= 1
2π

k−1∑
i=0

xi(θi+1 − θi) + sin θi+1(yi sin θi+1 + xi cos θi+1)− sin θi(yi sin θi + xi cos θi)

= 1
2π

k−1∑
i=0

xi(θi+1 − θi) + sin θi+1(yi+1 sin θi+1 + xi+1 cos θi+1)

− sin θi(yi sin θi + xi cos θi) (by (4))

= 1
2π

[
k−1∑
i=0

xi(θi+1 − θi) +
k−1∑
i=0

sin θi+1(yi+1 sin θi+1 + xi+1 cos θi+1)

−
k−1∑
i=0

sin θi(yi sin θi + xi cos θi)
]
,
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and since all indices are modulo k (e.g., θj+k = θj),

MP(P )x = 1
2π

[
k−1∑
i=0

xi(θi+1 − θi) +
k−1∑
i=0

sin θi(yi sin θi + xi cos θi)

−
k−1∑
i=0

sin θi(yi sin θi + xi cos θi)
]

= 1
2π

k−1∑
i=0

xi(θi+1 − θi)

=
k−1∑
i=0

wqixi , (6)

where wqi = (θi+1 − θi)/(2π). By (6) and an analogous argument on the y-coordinate of
(5),

MP(P ) =
k−1∑
i=0

wqiqi =
∑
p∈P

wpp =MA(P ) .

2.2 Equivalence in Higher Dimensions

Now we show that the equivalence holds in arbitrary dimension.

Theorem 2. For any finite multiset P ⊆ Rd,MP(P ) =MA(P ).

Proof. The result follows trivially when d = 1. Therefore, choose any d ≥ 2. A d-
dimensional unit vector u ∈ Sd−1 can be described by generalized spherical coordinates
φ1, φ2, . . . , φd−1, where each φi ranges from 0 to π, except φd−1 which ranges from 0 to
2π. The Cartesian coordinates of u are u1 = cosφ1, u2 = sinφ1 cosφ2, . . . , ud−1 =
sinφ1 · · · sinφd−2 cosφd−1, and ud = sinφ1 · · · sinφd−2 sinφd−1. The area element du, which
can be thought of as an infinitesimal patch of (d − 1) dimensional space tangent to the
surface of the sphere, is given by du = sind−2 φ1 sind−3 φ2 · · · sinφd−1 dφ1dφ2 · · · dφd−1. Let
A be the generalized surface area of Sd−1. It can be calculated by integrating du:

A =
∫
Sd−1

1 du

=
∫
φd−1

∫
φd−2
· · ·
∫
φ1

sind−2 φ1 sind−3 φ2 · · · sinφd−1 dφ1dφ2 · · · dφd−1

= 2πd/2

Γ(d/2) .

While we don’t require the exact value of A for our purposes, we note that after increasing
to a maximum for integer d when d = 7, the generalized surface area approaches zero as d
goes to infinity.

From the definitions ofMA(P ) and wp we have

MA(P ) = 1
A

∫
Sd−1

1 · p∗(u) du ;

http://jocg.org/
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and because med(Pu) = 〈p∗(u), u〉u,

MP(P ) = d

A

∫
Sd−1
〈p∗(u), u〉u du . (7)

Splitting (7) into a sum over all the sets Sd−1
p , we get

MP(P ) = d

A

∑
p∈P

∫
Sd−1
p

〈p, u〉udu , (8)

which is an equation in d-dimensional vectors. It can equivalently be treated as a set of d
equations in real numbers, one for each dimension.

Choose any dimension, say without loss of generality the first, and let MP(P )1
denote the corresponding coordinate ofMP(P ). Since the definitions ofMP(P ) andMA(P )
are coordinate-free, we are free to choose the generalized spherical coordinates such that
the unit vector corresponding to all φi = 0 is the unit vector in our chosen dimension, and
u1 = cosφ1 regardless of which dimension we chose to represent by u1. We have

MP(P )1 = d

A

∑
p∈P

∫
φ1···d−1

〈p, u〉 cosφ1 sind−2 φ1 sind−3 φ2 · · · sinφd−1 dφ1dφ2 · · · dφd−1 .

We now apply the integration by parts formula
∫
x dy = xy−

∫
y dx to the integration over

φ1. Let

dy = cosφ1 sind−2 φ1 dφ1 ,

y = 1
d− 1 sind−1 φ1 ,

x = 〈p, u〉 sind−3 φ2 · · · sinφd−1 dφ2 · · · dφd−1

= [p1 cosφ1 + (sinφ1) · (p2 cosφ2 + · · · )] · sind−3 φ2 · · · sinφd−1 dφ2 · · · dφd−1 ,

dx = [−p1 sinφ1 + (cosφ1) · (p2 cosφ2 + · · · )] · sind−3 φ2 · · · sinφd−1 dφ1 · · · dφd−1 .

(9)

These values are chosen so that

MP(P )1 = d

A

∑
p∈P

∫
φ1···d−1

x dy .

But from (9) and the identity sin2 = 1− cos2, we have

x dy = 〈p, u〉 cosφ1 sind−2 φ1 sind−3 φ2 · · · sinφd−1 dφ1dφ2 · · · dφd−1

y dx = 1
d− 1

[
−p1 sin2 φ1 + (sinφ1 cosφ1) · (p2 cosφ2 + · · · )

]
· sind−2 φ1 · · · sinφd−1 dφ1 · · · dφd−1

= 1
d− 1 [−p1 + p1 cos2 φ1 + (sinφ1 cosφ1) · (p2 cosφ2 + · · · )]

· sind−2 φ1 · · · sinφd−1 dφ1 · · · dφd−1

= 1
d− 1 [−p1 du+ x dy] .
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Applying the integration by parts formula and re-arranging,∫
φ1···d−1

x dy =
∫
φ2···d−1

[
xy|φ1

−
∫
φ1
y dx

]
=
∫
φ2···d−1

[
xy|φ1

+ p1
d− 1

∫
φ1

du− 1
d− 1

∫
φ1
x dy

]
= p1

d

∫
Sd−1
p

du+ d− 1
d

∫
φ2···d−1

xy|φ1
.

The notation xy|φ1
denotes that xy is a function of φ1 and that, if we are integrating over

the range of φ1 from a to b, then xy|φ1
= xy(b) − xy(a). Substituting this into (8), using

the definition of p∗(u) to combine the sum over p into an integral over all of Sd−1 and using
the definitions of x and y, we have

MP(P )1 = 1
A

∫
Sd−1

p∗(u)1 du+ d− 1
A

∑
p∈P

∫
φ2···d−1

xy|φ1

= 1
A

∫
Sd−1

p∗(u)1 du+ 1
A

∑
p∈P

∫
φ2···d−1

〈p, u〉 sinφ1
du
dφ1

∣∣∣∣
φ1

.

For any fixed φ2 · · ·φd−1, the terms in the sum over p correspond to a set of intervals of
values of φ1, disjoint except at their endpoints, that cover the range from φ1 = 0 to φ1 = π.
As in the proof of Theorem 1, let q0, . . . , qk be the sequence of points from P that are
medians of P projected onto u as φ1 goes from 0 to π. Let φ1,i be the value of φ1 at
which qi becomes the median. Moving the summation inside the integral and writing u as
a function of φ1, the integrand becomes

[−〈q0, u(0)〉 sin 0 + 〈q0, u(φ1,1)〉 sinφ1,1

− 〈q1, u(φ1,1)〉 sinφ1,1 + 〈q1, u(φ1,2)〉 sinφ1,2 · · ·+ 〈qk, u(π)〉 sin π] du
dφ1

.

The first and last terms are zero because sin 0 = sin π = 0. The remaining terms telescope
because 〈qi, u(φ1,i+1)〉 = 〈qi+1, u(φ1,i+1)〉. The sum and the integral vanish. Recombining
the per-dimension equations and applying (2.2), we are left with

MP(P ) = 1
A

∫
Sd−1

p∗(u) du =MA(P ) .

This proof may seem more complicated than necessary, especially when compared to
the proof due to Shephard [27] of a similar result for the Steiner centre using coordinate-free
techniques. Unfortunately, his approach requires K (equivalent to our P ) to be a smooth
convex set, so that the “point of contact” function ξ(u,K) can be smooth, continuous,
and topologically well-behaved. Even in his setting, since K is not actually smooth, it
is necessary to invoke a sequence of smooth sets uniformly converging on the original K.
Smoothness and continuity are more difficult in our problem because we consider individual
points instead of only their convex hull; the value of p∗(u) jumps not only non-smoothly,
but also discontinuously, from one point in P to the next. Smoothness might be addressed

http://jocg.org/


JoCG 8(1), 78–104, 2017 86

Journal of Computational Geometry jocg.org

as Shephard does with a uniformly converging sequence, but there is also no obvious way
to achieve convexity at all, so the convexity requirement would have to be eliminated; and
then topological difficulties arise. A proof of this type may still be possible, but would not
be simpler. Our coordinate-based approach has the advantage of requiring only elementary
calculus.

Basu et al. [5] generalized a 2-dimensional result of Durocher and Kirkpatrick [17]
to show that in arbitrary dimension, the rectilinear median integrated over all rotations of
the coordinate system is equivalent to the projection median. Our Theorems 1 and 2 could
also be written in terms of that equivalence. Any one coordinate of the rectilinear median,
integrated over all rotations in SO(d) with the Haar measure, is essentially equivalent to
the one-dimensional projected median integrated uniformly over all unit vectors in Sd−1.
Using the equivalence to rectilinear median avoids explicit calculation of the area element in
polar coordinates, and might be advantageous if we were also proving other results about the
rectilinear median; but integrating over the much more complicated object SO(d) instead of
Sd−1 requires significant additional machinery and notation. We prefer to use the definition
of projection median directly. The direct approach also simplifies the generalization to other
order statistics in Section 2.3.

2.3 Other Order Statistics

Nothing in the proof of Theorem 2 actually requires that med(Pu) is the median of Pu
in particular. Any other function of u that defines a sequence of points q0, . . . , qk ∈ P
with the property 〈qi, u(φ1,i+1)〉 = 〈qi+1, u(φ1,i+1)〉 would suffice; for instance, any other
order statistic of Pu. Let P (i)

u be the i-th order statistic of P projected onto u. That is,
〈P (1)

u , u〉 ≤ 〈P (2)
u , u〉 ≤ · · · ≤ 〈P (n)

u , u〉; and let w(i)
p be the proportion of the unit vectors

u ∈ Sd−1 such that the projection of p onto lu is P (i)
u . For any integer 1 ≤ i ≤ n we can

define a projected i-th order statistic in both integral and weighted mean versions, analogous
toMP(P ) andMA(P ):

M(i)
P (P ) = d

∫
Sd−1 P

(i)
u du∫

Sd−1 1 du

M(i)
A (P ) =

∑
p∈P

w(i)
p p .

Appropriate substitutions in the proof of Theorem 2 give the following corollary.

Corollary 3. For any finite multiset P ⊆ Rd and any integer 1 ≤ i ≤ |P |, M(i)
P (P ) =

M(i)
A (P ).

Shephard’s result for the Steiner centre corresponds to the special cases i = 1 and
i = |P | [27]. Corollary 3 also holds for any linear combination of order statistics. For
instance, the trimmed mean found by taking the mean of all elements within an interval of
order statistics, such as from the first to the ninth decile, is sometimes used as a statistical
measure of central tendency. A trimmed mean has some of the properties of the mean,
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but may be less sensitive to outliers. We can generalize the trimmed mean to higher
dimensions by defining a projection version of it. Then, because any trimmed mean is a
linear combination of order statistics, Corollary 3 applies and the projection trimmed mean
is a weighted mean of the points in P . The weight for each point corresponds to the fraction
of unit vectors for which that point, when projected, is included in the one-dimensional
trimmed mean.

3 Randomized Algorithms for Computing the Projection Median

In this section we define and analyze two randomized algorithms that approximate the two
expressions for the projection median, (1) and (2). Both algorithms involve selecting a
sequence of unit vectors {u1, . . . , um} ⊆ Sd−1 at random. Algorithm 1 computes a normal-
ized average of the medians of Pu1 , . . . , Pum to approximate (1). Algorithm 2 estimates the
weight of each point p ∈ P by counting the number of random unit vectors ui for which
p = p∗(ui); the corresponding weighted mean approximates (2).

3.1 Computing the Projection Median Exactly in O(nd+ε) Time

Although expressing the projection median as a weighted mean rather than as an integral
of projections can help simplify its computation, brute-force algorithms for computing the
projection median exactly using the two definitions have identical asymptotic running times
in the worst case. The order of the points of P projected onto a line lu is a permutation π(u)
and this permutation determines the point p∗(u) associated with med(Pu). The brute-force
algorithms require partitioning the unit sphere Sd−1 into regions R1, . . . , Rk, each of which
is the preimage under π of some permutation. If we consider Sd−1 as a (d− 1)-dimensional
space cut by

(n
2
)

(d − 2)-dimensional hyperplanes, each normal to the line determined by
one of the

(n
2
)
pairs of points in P , we can treat one of the cuts as the equator of the sphere,

project from the centre onto two hyperplanes tangent to the poles, and find that the number
of regions on Sd−1 is exactly twice the number of regions in a (d−1)-dimensional Euclidean
space cut by

(n
2
)
−1 hyperplanes. It then follows from a result of Price [23] that the number

of regions for P in general position is Θ(n2d−2) (he also gives an exact recurrence relation
for it), and that remains an upper bound with degenerate P . The number of regions is a
lower bound on the worst-case time of the brute-force algorithms.

Since it suffices to compute regions in which the median’s identity remains un-
changed, only a subset of the Θ(n2d−2) regions is actually required. An algorithm only
needs to identify boundaries of regions at which the identity of the median changes. The
problem can be recast as a median-level computation in an arrangement of n hyperplanes.
See Basu et al. [5] for a detailed description of the dual transformation. In R2, the median-
level of a set of n lines has O(n4/3) vertices [12]. Using efficient algorithms for constructing
the median level of a set of lines (e.g., [7, 8, 18]), this dual transformation allows the projec-
tion median to be computed in O(n4/3 log2 n) time in R2 [17], instead of O(n2d−2) = O(n2)
time. Using the algorithm of Agarwal and Matous̆ek [1] for computing k-levels in Rd, Basu
et al. [5] generalize this idea to higher dimensions and describe a dual transformation and a
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corresponding algorithm for computing the projection median in O(nd(1− δd
d+1 )+ε) time, for

some δd > 0.
Both definitions of the projection median suggest that the number of components

necessary for its computation is at least proportional to the number of times the median
changes in the projection. As such, it appears unlikely that the projection median of a set
of n points in Rd can be computed asymptotically faster than the time required to com-
pute the median-level of a set of n hyperplanes in Rd. This motivates the exploration of
approximation algorithms that return a good approximation of the position of the projec-
tion median in significantly lower time. While approximating the projection median by a
discretization such as a Riemann sum works well in R2, doing so is often computationally
inefficient in Rd. To obtain a desired overall closeness of approximation of O(ε) requires
using a (d − 1)-dimensional grid of Θ(md) steps in each coordinate, where m = ε−1, for
a total of Θ((md)d−1) steps (see Davis and Rabinowitz [10, Section 5.5]). As the opera-
tions described in Algorithm 1 must be performed at each step, the resulting running time
would be Ω((md)d−1nd), making this approach unrealistic in most cases. In Sections 3.2
and 3.3 we describe and analyze two randomized approximation algorithms, both of which
have running time O(mnd) and, with high probability, achieve the desired closeness of
approximation in Rd using only m randomly selected unit vectors.

3.2 Approximating the Projection Median in O(mnd) Time

Taking advantage of representations (1) and (2), we propose two different approaches to
approximate the projection median by Monte Carlo simulation. See Robert and Casella [25]
for an excellent introduction to Monte Carlo simulation methods. Let U denote a randomly
selected point on Sd−1. The point U uniquely identifies a randomly selected direction from
the origin and lU , the line passing through the origin and U . Then, starting with (1), we
can write

MP(P ) = d

A

∫
Sd−1

med(Pu) du = d

∫
Sd−1

med(Pu)fU (u) du = d E[med(PU )], (10)

where fU is the uniform density over Sd−1 and E denotes mathematical expectation. In
other words, the above integral is the mathematical expectation of the median of the set of
points P projected onto the line lU , where U is selected uniformly at random on the unit
sphere.

This suggests using, as a simple Monte Carlo approximation ofMP(P ), the sample
average

M̂P,1(P ) = d

m

m∑
j=1

med(PUj ), (11)

where U1, U2, . . . , Um are (pseudo) random unit vectors uniformly distributed over Sd−1.
Calculating this approximation is relatively straightforward. First generate the m random
unit vectors U1, U2, . . . , Um. This takes O(md) time, independently of n. Then, calculate
the median med(PUj ) of all the points in P projected onto lUj . This can be done in two
steps for each index j ∈ {1, 2, . . . ,m}: first identify which projected point is associated
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with the median, which takes O(nd) time, then calculate the coordinates of the projected
median, which takes O(d) time. Doing this for every point requires O(mnd) time. Finally,
consider the average of the medians obtained as an approximation ofMP(P ). As this last
step takes O(md) time, the resulting approximation is computed in O(mnd) time. The
following algorithm summarizes this approximation method.

Algorithm 1. For j = 1 to m:

1. Generate Uj uniformly on Sd−1.
2. Find p∗(Uj), the point whose projection is med(PUj ).
3. Calculate med(PUj ) as the projection of p∗(Uj).

Then, calculate the scaled coordinate-wise average of med(PU1),med(PU2), . . . ,med(PUm)
given in (11).

Note that Step 2 of Algorithm 1 can be completed without calculating the projections
of all points in P . Specifically, it suffices to find the univariate median of the set of inner
products 〈p, Uj〉 for all p ∈ P . Step 3 is then necessary to find the actual median projection
onto lUj .

We now examine the probability of closeness of this approximation to the projec-
tion median MP(P ). Specifically, this approximation converges in probability to the true
projection median as m→∞, that is, for any set of points P ⊆ Rd,

∀ε > 0, lim
m→∞

Pr(‖M̂P,1(P )−MP(P )‖2 < ε) = 1. (12)

More importantly, this convergence holds for any d ≥ 1. The following lemma establishes a
lower bound on the probability of closeness of the approximation M̂P,1(P ) in terms of m,
d, and the desired approximation factor ε > 0.

Lemma 4. For any set of points P = {p1, p2, . . . , pn} ⊆ Rd, any ε > 0, and any m ≥ d,

Pr(‖M̂P,1(P )−MP(P )‖2 < ε) ≥ 1− C e−mε2/δ1(d,P ),

where C = 1 + e5/12/(π
√

2), δ1(d, P ) = 8e2d2‖P‖2, and ‖P‖ = max1≤i≤n ‖pi‖2.

Proof. We start by defining the random vectors med(PUj ) = Yj = (Yj1, Yj2, . . . , Yjd)T, where
AT denotes the transpose of A. Thus,

M̂P,1(P ) = d

m

m∑
j=1

Yj = dȲ = d
(
Ȳ1, Ȳ2, . . . , Ȳd

)T
,

where Ȳk = 1
m

∑m
j=1 Yjk for k = 1, 2, . . . , d. We note that, from (10), we have E[Ȳk] = µk =

E[med(PU )]k, the kth component ofMP(P )/d. We can further define the random vectors
Zj = Yj −E[med(PU )], which are independent and identically distributed with mean zero,
and that all satisfy

‖Zj‖2 ≤ ‖Yj‖2 + ‖E[med(PU )]‖2 ≤ 2 max
1≤i≤n

‖pi‖2 = 2‖P‖ . (13)
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Note that
dZ̄ = d(Ȳ −E[med(PU )]) = M̂P,1(P )−MP(P ),

and a theorem of Prokhorov [24] allows us to write, for all m ≥ d,

Pr
(
‖
√
mZ̄‖2 ≥

√
mε/d

)
≤
[
1 + e5/12

π
√

2
E[‖Z1‖22]

4‖P‖2

]
e−mε

2/δ1(d,P ) ≤ Ce−mε2/δ1(d,P ),

since E[‖Z1‖22] ≤ 4‖P‖2 trivially follows from (13). Using this, we get

Pr
(∥∥M̂P,1(P )−MP(P )

∥∥
2 < ε

)
= 1−Pr

(
‖
√
mZ̄‖2 ≥

√
mε/d

)
≥ 1− Ce−mε2/δ1(d,P ),

thus completing the proof.

The preceding results highlight the contribution of the dimension d to the difficulty
of approximating the projection median using (11). The value of d affects the quality of that
approximation in the sense that large values of d lead to a smaller probability of closeness.
Also, as will be seen below, the size of confidence regions on the projection median grows
faster than d2. The deterioration of the rate of convergence of the probability of closeness
to 1, when d increases, comes from the use of the scaling factor d in the approximation
to the projection median. It is not an artifact of the approach taken to derive the result,
as Prokhorov’s bound is the best possible in terms of d, only adding the requirement that
m ≥ d.

We also note that the bound given in the previous lemma can theoretically be
improved by somehow centering the points. Indeed, if one were to use the point o as the
origin, the previous result would still be valid but with ‖P‖ = max1≤i≤n ‖pi − o‖2. The
best choice for o would then be the Euclidean centre of P , i.e.,

o∗ = arg min
x∈Rd

max
1≤i≤n

‖pi − x‖2.

Computing this best origin o∗ can be done in O(dO(d)n) time [2], which may be prohibitive in
high dimensions. Using this best origin could nevertheless lead to improved overall efficiency
when n is very large but d is small, especially when considering multisets P that are highly
concentrated around o∗ and for which ‖o∗‖2 is large.

Lemma 4 makes it possible to derive a value of m which guarantees a certain prob-
ability of closeness for a desired approximation factor. Indeed, a desired probability of
closeness pc will be attained if

m ≥ 8e2d2

ε2
[
logC − log(1− pc)

]
,

where ε is the desired approximation factor and ε = ε/‖P‖ is the tolerated relative error.
In particular, we see that taking m ∈ Θ(ε−2d2 logn) is sufficient to guarantee that our
approximation is asymptotically close to the true projection median with high probability,
i.e., to guarantee a probability of closeness pc ≥ 1−n−a asymptotically for some fixed a ≥ 1.
This gives the following theorem.
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Theorem 5. Choosing m ∈ Θ(ε−2d2 logn) guarantees that Algorithm 1 returns a point
within relative distance ε of the true projection median with high probability. Also, this
point is returned in time Θ(ε−2d3n logn).

Unfortunately, this result does not quite allow us to clearly assess the precision of
the resulting approximation and, in most cases, is quite conservative: it suggests the use of
unnecessarily large simulation sizes when pc is close to 1. However, we can take advantage
of another important aspect of Monte Carlo simulation. Specifically, when approximating
MP(P ) through Monte Carlo simulation, we can easily assess the precision of the approxi-
mation by constructing a confidence region for it. Asymptotically in m, we have

M̂P,1(P ) ≈ Nd

(
MP(P ), d

2

m
V1(P )

)
, (14)

where Nd(·, ·) denotes the d-multivariate normal distribution, and the d× d scatter matrix
V1(P ) is constructed from the simulated data using

V1(P ) = 1
m− 1

m∑
j=1

(Yj − Ȳ )(Yj − Ȳ )T,

with the notation introduced in the proof of Lemma 4. This is simply the d × d sample
covariance matrix constructed from the medians obtained from the random projections
onto lU1 , lU2 , . . . , lUm . Hence, V1(P ) is calculated only once at the end of the Monte Carlo
experiment using simple matrix operations. Now, the approximate normality of M̂P,1(P )
given by (14) allows us to estimate its precision through the construction of a confidence
ellipsoid using the fact that

lim
m→∞

Pr
(
md−2[M̂P,1(P )−MP(P )

]T
V1(P )−1[M̂P,1(P )−MP(P )

]
≤ ε

)
= Hd(ε), (15)

where the function Hd is the cumulative distribution function of the chi-square distribution
with d degrees of freedom. In practice, we can fix an acceptable confidence level 1− α for
some α ∈ (0, 1); α = 0.05 is often reasonable. Then, we find ε such that Hd(ε) = 1− α, or

ε = H−1
d (1− α), (16)

known as the quantile of order 1−α of the chi-square distribution with d degrees of freedom.
According to (15), our Monte Carlo experiment has a probability tending to 1−α of leading
to a hyperellipsoid containing MP(P ) as the size of the simulation m → ∞. Note that
ε given in (16) is a strictly increasing (and unbounded) function of d. Hence, keeping
everything else constant, the confidence region given by

[
x− M̂P,1(P )

]T
V1(P )−1[x− M̂P,1(P )

]
≤ d2

m
H−1
d (1− α), (17)

and corresponding to the interior and the boundary of the hyperellipsoid, rapidly increases
in size with increasing d.
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Alternatively, we can construct intervals that have probability at least 1 − α of
simultaneously containing each of the d individual components of the projection median.
By the Bonferroni inequality, we have

lim
m→∞

Pr
( d⋂
k=1

{ √m
d
√
vkk

∣∣M̂P,1(P )k −MP(P )k
∣∣ ≤ ε}) ≥ 1− d

[
1− Φ(ε)

]
, (18)

where Φ is the cumulative distribution function of the (univariate) standard normal dis-
tribution and vkk denotes the diagonal elements of V1(P ). Here, it is common to use
ε = Φ−1(1 − α/d), the quantile of order 1 − α/d. The lower bound on the right-hand side
of (18) becomes 1− α, the same as in the previous case. This bound is known to be quite
conservative in many cases, especially so when d is large. The interpretation of (18) is
otherwise the same as that of (15): we are conducting a Monte Carlo experiment that has a
probability of at least 1−α to lead to a collection of d individual intervals that each contain
their associated component ofMP(P ).

3.3 Approximating the Projection Median Using a Weighted Mean

Another approximation to the projection median relies on the weighted average represen-
tation given in (2) and the fact that the weights wp can be rewritten as

wp =

∫
Sd−1
p

1 du∫
Sd−1 1 du = 1

A

∫
Sd−1
p

1 du =
∫
Sd−1
p

fU (u) du = Pr(U ∈ Sd−1
p ) = Pr(p∗(U) = p),

where Sd−1
p is defined in (3) and U is selected uniformly at random over the unit sphere.

That is, wp corresponds to the proportion of points u ∈ Sd−1 such that the median of Pu
is associated with p. This suggests another Monte Carlo scheme for approximating the
projection medianMP(P ). We can calculate

M̂P,2(P ) =
∑
p∈P

Ŵpp, where Ŵp = 1
m

m∑
j=1

ISd−1
p

(Uj), (19)

and IA(U) = 1 if U ∈ A, 0 otherwise, so that Ŵp corresponds to the sample proportion of
U1, U2, . . . , Um that belong to Sd−1

p . Note that, trivially,
∑
p∈P Ŵp = 1. This approxima-

tion is easier and faster to calculate than M̂P,1(P ), although the number of operations is
asymptotically of the same order. Again, start by generating the m random unit vectors
U1, U2, . . . , Um in O(md) time. Then, for each line lUj , identify which projected point of P
is associated with the median of PU , which takes O(nd) time. Note that here, the projected
median does not have to be calculated, as the original points are now used instead of the
projected points. Doing this for every point then requires O(mnd) time. Finally, consider
the weighted average of the original points in P as an approximation of MP(P ). As this
last step takes O(md) time, the resulting approximation is computed in O(mnd) time. The
following algorithm summarizes this second approximation method.
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Algorithm 2. For j = 1 to m:

1. Generate Uj uniformly on Sd−1.
2. Find p∗(Uj), the point p such that ISd−1

p
(Uj) = 1.

Then, calculate the weight Ŵp associated to each point p ∈ P and the weighted average (19).

As before, Step 2 of Algorithm 2 can be completed without calculating the projec-
tions of all points in P . The following result gives a concentration inequality for M̂P,2(P ).
The approximation toMP(P ) provided by Algorithm 2 does not seem to deteriorate nearly
as fast as that of M̂P,1(P ) as the dimension d increases. Note that M̂P,2(P ) converges in
probability to the true projection median, i.e. it also satisfies (12).

We now derive two bounds that allow us to characterize the precision of Algorithm 2.
The first bound is a straightforward adaptation of Lemma 4. The second is based on a
multinomial inequality due to Devroye and Györfi [11].

Lemma 6. For any set of points P ⊆ Rd, any ε > 0, and any m ≥ d,

Pr(‖M̂P,2(P )−MP(P )‖2 < ε) ≥ 1− C e−mε2/δ2(P ),

where C = 1 + e5/12/(π
√

2) and δ2(P ) = 8e2‖P‖2.

Proof. For j = 1, . . . ,m, define the d-dimensional random vectors Yj = p∗(Uj) with expec-
tation

E[Yj ] =
∑
p∈P

p Pr(p∗(U) = p) =MP(P ).

Proceeding as in the proof of Lemma 4, let Zj = Yj − E[Yj ] and note, once again, that
‖Zj‖2 ≤ 2‖P‖. Then, we have that Z̄ = M̂P,2(P )−MP(P ) and as before,

Pr
(∥∥M̂P,2(P )−MP(P )

∥∥
2 < ε

)
= 1−Pr

(
‖
√
mZ̄‖2 ≥

√
mε
)
≥ 1− Ce−mε2/δ1(1,P ).

The conclusion follows from the fact that δ2(P ) = δ1(1, P ).

As before, this result allows us to see that a desired probability of closeness pc will
be attained if

m ≥ max
(8e2

ε2
[
logC − log(1− pc)

]
, d

)
, (20)

where ε = ε/‖P‖ is the tolerated relative error. As observed by Prokhorov [24], d has little
effect on the choice of m since ε−2 logn will typically be much larger than d. In this case,
taking m ∈ Θ(ε−2 logn) is sufficient to guarantee that our approximation is asymptotically
close to the true projection median with high probability, i.e., to guarantee a probability of
closeness pc ≥ 1− n−a asymptotically for some fixed a ≥ 1.

When d is very large, choosing m ∈ Θ(d) guarantees that the approximation is
asymptotically close to the true projection median with high probability. Interestingly, it is
also possible to derive a bound similar to the ones obtained so far by linking the probability
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of closeness (for the projection median) to the probability that a multinomial random vector
is close to its mean. This gives another condition on m, this one completely independent
of d, that also guarantees a desired probability of closeness. This is an important property
of our second approximation: it does not require increasingly large simulation sizes as d
increases, i.e., the choice of m is independent of d when d is large.

Lemma 7. For any set of points P ⊆ Rd and any ε > 0, if m is sufficiently large (i.e.,
m ≥ 20‖P‖2n/ε2), then

Pr
(∥∥M̂P,2(P )−MP(P )

∥∥
2 < ε

)
≥ 1− 3e−mε2/δ3(P ),

where δ3(P ) = 25‖P‖2.

Proof. First, we observe that

Pr
(∥∥M̂P,2(P )−MP(P )

∥∥
2 ≥ ε

)
= Pr

(∥∥∥∥ n∑
i=1

(Ŵpi − wpi)pi
∥∥∥∥

2
≥ ε

)

≤ Pr
(
‖P‖

n∑
i=1
|Ŵpi − wpi | ≥ ε

)

by the triangle inequality. The result then follows from Lemma 3.1 of Devroye and Györfi [11]
sincem(Ŵp1 , Ŵp2 , . . . , Ŵpn)′ has a multinomial distribution with parametersm and wp1 , wp2 ,
. . . , wpn . The inequality is valid for all m such that n/m ≤ (ε/‖P‖)2/20.

As mentioned above, this bound does not depend on d other than indirectly through
‖P‖. This suggests that the performance of M̂P,2(P ) might deteriorate very slowly as d
increases, but that it would do so at a much slower rate than M̂P,1(P ). Indeed, the
inequality given in Lemma 7 is directly comparable to the ones obtained in Lemmas 4
and 6, and it suggests a significant difference in the rate of convergence of the probability
of closeness to 1 as d increases. The difference is also highlighted by the fact that, for a
given approximation factor ε, a desired probability of closeness pc will be attained if

m ≥ 5
ε2

max
{
5
[
log(3)− log(1− pc)

]
, 4n

}
, (21)

where ε = ε/‖P‖ is the tolerated relative error. In particular, we see that taking m ∈
Θ(ε−2n) is sufficient to guarantee that our approximation is asymptotically close to the
true projection median with high probability, i.e., to guarantee a probability of closeness
pc ≥ 1− n−a asymptotically for some fixed a ≥ 1. Finally, combining (20) and (21), we get
the following theorem, which establishes the performance of M̂P,2(P ).

Theorem 8. Choosing m ∈ Θ
(

min(d+ε−2 logn, ε−2n)
)
guarantees that Algorithm 2 returns

a point within relative distance ε of the true projection median with high probability. Also,
this point is returned in time Θ

(
dn ·min(d+ ε−2 logn, ε−2n)

)
.

Interestingly, for large set size n and small d, this simplifies to the result of The-
orem 5. However, for small n and large d, it reduces to using m ∈ Θ(ε−2n) and a total
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Table 1: Computation time for approximating the true projection median using the two
approximation methods in various scenarios. In each case, the relative distance ε is held
constant and 0 < α < 1 < β.

scenario M̂P,1(P ) M̂P,2(P )

d held constant, n→∞ Θ(n logn) Θ(n logn)
d→∞, n held constant Θ(d3) Θ(d)
n→∞, d ∈ Θ

(
(logn)α

)
Θ
(
n(logn)1+3α) Θ

(
n(logn)1+α)

n→∞, d ∈ Θ
(
(logn)β

)
Θ
(
n(logn)1+3β) Θ

(
n(logn)2β)

n→∞, d ∈ Θ(nα) Θ(n1+3α logn) Θ
(
n1+2α)

n→∞, d ∈ Θ(nβ) Θ(n1+3β logn) Θ
(
n2+β)

time of Θ
(
ε−2dn2). The result compares extremely well to the computing time obtained

in Theorem 5, which increases as d3 when other parameters are kept constant. Given that
M̂P,2(P ) is also easier to calculate, it seems clear that this second approximation will be
preferable in general. We summarize the implications of Theorem 8 in Table 1.

Now, we can assess the precision of M̂P,2(P ) by constructing a confidence re-
gion for it. Asymptotically in m, we have that M̂P,2(P ) is approximately distributed
as Nd(MP(P ), 1

mV2(P )), where the d × d scatter matrix V2(P ) is constructed from the
simulated data using

V2(P ) = m

m− 1

n∑
i=1

Ŵpi

(
pi − M̂P,2(P )

) (
pi − M̂P,2(P )

)T
.

Following the same approach as before, the confidence ellipsoid with asymptotic probability
1− α of containing the projection median is given by

[
x− M̂P,2(P )

]T
V2(P )−1[x− M̂P,2(P )

]
≤ 1
m
H−1
d (1− α). (22)

The size of this hyperellipsoid increases slowly with d. It is also possible to construct
simultaneous confidence intervals for the components of the projection median by essentially
adapting (18) to the current context.

4 Simulation and Analysis

In this section, we briefly describe a simulated experiment we ran to examine empirically
the precision of the two approximation algorithms described in Sections 3.2 and 3.3,

The first scenario considered is where P is a set of n = 9 points in R2. These points
are given in Table 2. We repeated the Monte Carlo experiment three times each with
m = 50 and m = 150 randomly generated angles. For each simulation we constructed the
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Table 2: The points in R2 used for the first and second simulation experiments, and the set
of weights w(P ) and w(P ′) associated to each scenario.

xk yk

0.6276 0.2772
10.0 10.0

0.2552 0.5599
0.1545 0.0257
0.8286 0.0545
0.4089 0.8235
0.5792 0.0441
0.2365 0.1227
0.4967 0.3219
0.6811 0.1024

w(P ) w(P ′)

0.0358 −
− 0.0008

0.0137 0.0137
0.0716 0.0250
0.1159 0.1159
0.0133 0.0133
0.0234 0.0234
0.1343 0.2225
0.4904 0.4837
0.1016 0.1016
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Figure 2: Confidence ellipses obtained from three repetitions of the Monte Carlo experiment
with m = 50 random angles (left) and m = 150 (right). The projection median is shown in
red.
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Figure 3: Sets of points P (left) and P ′ (right) displayed with the trajectory of the
projection of each point (dashed black circle), the trajectory of the corresponding projected
medians (solid red arcs), the weight associated with each point, and the projection median
(larger red point). The point p′1 = (10, 10) with weight 0.0008 is not displayed in the plot
of P ′.

associated confidence ellipses (17) and (22) using a confidence level of 0.95. From Figure 2,
it seems clear that M̂P,2(P ) leads to smaller confidence regions than M̂P,1(P ) does. The
average area contained in the confidence ellipses shown in Figure 2 is 0.0110 and 0.0037
based on M̂P,2(P ), compared to 0.0552 and 0.0187 based on M̂P,1(P ), for simulations of
size 50 and 150, respectively. Hence, in the current context, the second method is about
five times more precise than the first one.

Now, to test the robustness of the projection median to the presence of outliers, we
briefly consider the situation where the first point is replaced by the point p′1 = (10, 10). The
projection medians are given byMP(P ) = (0.4966, 0.2225) andMP(P ′) = (0.4928, 0.2284),
showing the robustness of the projection median to the presence of outliers. Observe that
the weights of only a few points change when p1 changes. The weight of p1 goes from 0.0358
down to 0.0008, while the weights of p2, p4, p5, p6 and p9 are unaffected (see Table 2). This
is seen in Figure 3, where removing p1 and replacing it with p′1 affects the median level of
the trajectories obtained from projecting each point.

5 Geometric Properties of the Projection Median

In Section 5.1 we review known geometric properties of the projection median and apply its
definition as a weighted mean to extend these and to establish new properties relevant to
estimating location of geometric multivariate data. In Section 5.2 we compare the projec-
tion median against other high-dimensional generalizations of the median in terms of these
properties.

http://jocg.org/


JoCG 8(1), 78–104, 2017 98

Journal of Computational Geometry jocg.org

 10

 100

 1000

 10000

 10  100  1000  10000  100000

nu
m

be
r 

of
 d

ire
ct

io
n 

sa
m

pl
es

 (
m

)

number of points (n)

average of projected medians, d=10

epsilon=0.1
epsilon=0.01

epsilon=0.001

 100

 1000

 10000

 100000

 10  100  1000  10000  100000

nu
m

be
r 

of
 d

ire
ct

io
n 

sa
m

pl
es

 (
m

)

number of points (n)

average of projected medians, d=100

epsilon=0.1
epsilon=0.01

epsilon=0.001

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000

nu
m

be
r 

of
 d

ire
ct

io
n 

sa
m

pl
es

 (
m

)

number of points (n)

average of projected medians, d=1000

epsilon=0.1
epsilon=0.01

epsilon=0.001

Figure 4:

algorithm Algorithm 1 (average of projected medians)
number of data n ∈ {101, 102, 103, 104, 105}
error tolerance ε ∈ {10−3, 10−2, 10−1}
data dimensionality d = 101 (left), d = 102 (centre), d = 103 (right)
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Figure 5:

algorithm Algorithm 2 (weighted mean)
number of data n ∈ {101, 102, 103, 104, 105}
error tolerance ε ∈ {10−3, 10−2, 10−1}
data dimensionality d = 101 (left), d = 102 (centre), d = 103 (right)

5.1 Properties of the Projection Median

The projection median was shown to provide a stable approximation of the Weber point
that can be computed exactly. Specifically, Durocher and Kirkpatrick [17] showed that
the sum of the distances from the projection median to points in P ⊆ R2 is at most 4/π
times that of the corresponding sum for the Weber point, and that any ε-perturbation of
points in P results in a displacement of at most 4ε/π in the projection median of P (unlike
previous approximations that are not κ-stable for any fixed κ). Durocher [14] extended the
latter result to show that in R3, any ε-perturbation of points in P results in a displacement
of at most 3/2 in the projection median of P . Basu et al. [5] generalized these results to
higher dimensions, showing that in Rd the sum of the distances from the projection median
to points in P is at most (d/π)B(d/2, 1/2) times that of the corresponding sum for the
Weber point and that any ε-perturbation of points in P results in a displacement of at most
(d/π)B(d/2, 1/2) in the projection median of P , where B(α, β) denotes the beta function.
The following upper bounds hold:

∀d ≥ 2, d
π
B(d/2, 1/2) ≤ 2

√
2d
π

<
√
d and lim

d→∞

d

π
B(d/2, 1/2) =

√
2d
π
. (23)
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algorithms Algorithm 1 (average of projected medians) and
Algorithm 2 (weighted mean)

number of data n = 101

error tolerance ε = 10−1 (left), ε = 10−2 (centre), ε = 10−3 (right)
data dimensionality d ∈ {101, 102, 103}
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Figure 7:

algorithms Algorithm 1 (average of projected medians) and
Algorithm 2 (weighted mean)

number of data n = 105

error tolerance ε = 10−1 (left), ε = 10−2 (centre), ε = 10−3 (right)
data dimensionality d ∈ {101, 102, 103}

A similarity transformation is an affine transformation that preserves not only
collinearity and relative distances, but also angles. The projection median was shown to be
equivariant under similarity transformations in two and three dimensions [14]. While the
earlier proofs can be generalized to higher dimensions, the generalization is straightforward
using the weighted mean definition of the projection median. Given any multiset of points
P in Rd, any unit vector u ∈ Sd−1, any similarity transformation f : Rd → Rd, and any
point p ∈ P , it follows that pu is a median of Pu if and only if f(p)f(u) is a median of
f(P )f(u), where qv denotes the projection of the point q ∈ Rd onto the line lv for any given
v ∈ Sd−1. Consequently, for any p ∈ P , the weight wp for p with respect to P is equal to
the weight wf(p) for f(p) with respect to f(P ). Therefore, f(MA(P )) =MA(f(P )), giving
the following corollary of Theorem 2.

Corollary 9. The projection median is equivariant under similarity transformations.

Basu et al. [5] showed that the projection median has a breakdown point of α = 1/2.
That is, if fewer than αn points are perturbed in any set P of n points, thenMP(P ) remains
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within the relative neighbourhood of the unperturbed points, where the perturbed points
can be moved any arbitrary distance.

The original definition of the projection median was also shown to be consistent
from two to three dimensions [14]. That is, the three-dimensional projection median of a
set of co-planar points in R3 coincides with the two-dimensional projection median of the
corresponding set of points in R2. Choose any d ≥ 1 and any set P of points in Rd that lies
in some (d−1)-dimensional flat H of Rd. For any unit vector u ∈ Sd−1 and any point p ∈ P ,
pu is a median of Pu if and only if puH is a median of PuH , where uH denotes the normalized
projection of u onto H. Consequently, the d-dimensional weight of p in Rd is equal to its
(d−1)-dimensional weight in H. Consistency from dimension d to d+1 follows immediately
from the weighted mean definition of the projection median, giving the following corollary
of Theorem 2.

Corollary 10. The definition of the projection median is consistent across dimensions.

The weights in the weighted sum definition of the projection median are non-negative
and sum to 1. Thus, the projection median of P is a convex combination of the elements of
P . This immediately implies thatMP(P ) is local to P (sinceMP(P ) is contained within
the convex hull of P ) and thatMP(P ) is unique.

5.2 Comparison Against Other Multivariate Estimators

The univariate median can be generalized to higher dimensions in many ways. The Weber
point and the projection median are two such definitions of high-dimensional medians central
to this work. Extending a similar table compiled by Basu et al. [5], in Table 3 we summarize
relevant properties of the projection median and compare these against the Weber point,
as well as against two other common multivariate estimators of location: the rectilinear
median and the centre of mass. These properties include the sum of the distances to points
in P relative to the minimum (recall that the optimum is attained by the Weber point);
instability (see Section 5); breakdown point, i.e., the fraction α of P that must be displaced
before the estimator moves away from the unperturbed points of P ; whether the estimator
can be expressed as a weighted mean; invariance under similarity transformations (rotation,
reflection, uniform scaling, translation); consistency across dimensions, i.e., whether the
estimator of P is equal under its k- and d-dimensional definitions when P lies in a k-flat of
Rd for any k ≤ d; whether the estimator is uniquely defined; the running time of the fastest
known algorithm for computing the exact position of the estimator; and the running time
of the fastest known algorithm for computing a good approximation of the exact position
of the estimator (assuming a sufficiently small fixed approximation factor ε).

A rectilinear median (also known as coordinatewise median) is given by finding a
univariate median independently for each coordinate. As such, a rectilinear median of a set
of points P minimizes the sum of rectilinear (`1) distances to points in P . The centre of
mass is given by the coordinatewise weighted mean of P , where each point in a multiset P
is weighted by its multiplicity. The centre of mass is easily shown to be the unique point
that minimizes the sum of the squared distances to points in P [26, 30].
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Table 3: A comparison of properties of common multivariate estimators of location

Property Weber Rectilinear Centre Projection
point median of mass median

relative sum of distances 1
√
d [14] 2 [14] (d/π)B(d/2, 1/2) [5]2

instability ∞ [17]
√
d [14] 1 (d/π)B(d/2, 1/2) [5]2

breakdown point 1/2 1/2 1/n 1/2
weighted mean 5 5 3 3

similarity transformations 3 5 3 3

dimensional consistency 3 5 3 3

uniqueness 33 34 3 3

exact computation 5 O(nd) O(nd) O(nd+ε)
approximate computation O(nd) [20, 6] O(nd) O(nd) O(min{n2d, nd3 logn})

In addition to the four listed in Table 3, many other estimators of multivariate loca-
tion exist, including various medians (deepest points) defined according to data depth mea-
sures, e.g., simplicial median, Tukey (half-space) median (which generalizes centre points),
Oja median, majority median, convex hull peeling median, zonoid median, Mahalanobis
median, Gao spatial rank median, etc. Most of these are unstable or do not guarantee any
bounded approximation of the relative sum of distances. See Aloupis [3], Small [28], and
Zuo and Serfling [32] for surveys of data depth.

6 Discussion and Directions for Additional Research

In this paper we introduced a new definition of the projection median as a weighted mean
and show its equivalence to the original definition. The form of this new definition is
more consistent with those of traditional statistical estimators of location, allows many
of the geometric properties of the projection median to be established more easily, and
suggests randomized algorithms that compute approximations of the projection median
with increased accuracy and efficiency.

Several natural questions remain unanswered. With respect to approximation algo-
rithms, it is unknown how closely the projection median can be approximated in O(f(ε)nd)
time, for some function f . The Weber point can be approximated in O(f(ε)nd) time [6,
9, 20]; our current approximation algorithms for the projection median achieve O(g(ε)n2d)
and O(g(ε)nd3 logn) time, for g(ε) = ε−2. Can the best of both worlds be achieved simulta-
neously? For example, does there exist a fixed c > 0 such that for any multiset of n points
P ⊆ Rd and any ε > 0, an ε-approximation of the projection median of P can be returned
in O(ε−cnd) time? If so, what is the smallest such c?

2As shown in (23), for all d ≥ 2, (d/π)B(d/2, 1/2) ≤ 2
√

2d/π <
√
d, where B() denotes the beta function.

3If |P | is odd or there exist three points in P that are not collinear, then the Weber point is unique.
4If |P | is odd, then the rectilinear median is unique.
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As mentioned in Section 1, if the minimum (or maximum) of Pu is used in (1) instead
of med(Pu), the result is the Steiner centre of P , which, as shown by Shephard [27], can
also be expressed as a weighted mean. For the Steiner centre, the weight, wp, of each point
p ∈ P corresponds to the exterior solid turn angle at p on the convex hull of P (interior
points have weight 0). Upon normalizing, this weight has an interpretation analogous to
(2), corresponding to the proportion of unit vectors u ∈ Sd−1 such that the projection of
p onto lu is the leftmost point of Pu relative to u. This leads to a natural conjecture that
the equivalence holds for any order statistic, which we show to be true in Corollary 3. As
mentioned in Section 2.3, Corollary 3 applies to multivariate trimmed means. It could be
interesting to identify applications for this generalization, and to compare it against other
definitions of trimmed means in higher dimensions [13, 22, 31].
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