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Abstract

The traditional problems of facility location are defined statically; a set (or
multiset) of n points is given as input, corresponding to the positions of clients,
and a solution is returned consisting of set of k points, corresponding to the
positions of facilities, that optimizes some objective function of the input set.
In the k-centre problem, the objective is to select k points for locating facilities
such that the maximum distance from any client to its nearest facility is mini-
mized. In the k-median problem, the objective is to select k points for locating
facilities such that the average distance from each client to its nearest facility
is minimized. A common setting for these problems is to model clients and
facilities as points in Euclidean space and to measure distances between these
by the Euclidean distance metric.

In this thesis, we examine these problems in the mobile setting. A problem
instance consists of a set of mobile clients, each following a continuous trajectory
through Euclidean space under bounded velocity. The positions of the mobile
Euclidean k-centre and k-median are defined as functions of the instantaneous
positions of the clients. Since mobile facilities located at the exact Euclidean k-
centre or k-median involve either unbounded velocity or discontinuous motion,
we explore approximations to these. The goal is to define a set of functions,
corresponding to positions for the set of mobile facilities, that provide a good
approximation to the Euclidean k-centre or k-median while maintaining motion
that is continuous and whose magnitude of velocity has a low fixed upper bound.
Thus, the fitness of a mobile facility is determined not only by the quality of its
optimization of the objective function but also by the maximum velocity and
continuity of its motion. These additional constraints lead to a trade-off between
velocity and approximation factor, requiring new approximation strategies quite
different from previous static approximations.

We identify existing functions and introduce new functions that provide
bounded-velocity approximations of the mobile Euclidean 1-centre, 2-centre,
and 1-median. We show that no bounded-velocity approximation of the Eu-
clidean 3-centre or the Euclidean 2-median is possible. Finally, we present
kinetic algorithms for maintaining these various functions using both exact and
approximate solutions.

Stéphane Durocher

University of British Columbia

January 2006
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Keywords
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Thesis Title
Alternative titles considered for this thesis include the brief but perhaps too
general, “Mobile Facility Location”, and that which was selected as the subti-
tle, “Bounded-Velocity Approximations to the Mobile Euclidean k-Centre and
k-Median Problems”, with the possibility of appending the suffix “with Appli-
cations to Mobile Facility Location”. The final title was chosen for its appeal to
a more general audience, as the term “geometric facility location” is somewhat
less technical and potentially more widely recognized. As well, the mention
of “continuous motion” signals that we are not dealing with discretized time
samples, but rather with motion defined over a continuous time interval.

Previously Featured
Some of the work presented in this thesis has appeared in conference proceed-
ings and journal publications. Some results on the Steiner centre from Ch. 4
appear in [DK03, DK04, DK06]. Some results on the projection median from
Ch. 5 appear in [DK05b, DK05c]. Some results on reflection-based 2-centre
approximations from Ch. 6 appear in [DK05a].

In a Rush?
If you possess only limited time with which to make your way through these
pages, an overview of the motivation, main ideas, and contributions can be
extracted from the obvious places such as Ch. 1, the first section of every chapter,
and the last section of Chs. 4 through 6. Secs. 2.3 and 2.4 are recommended for
readers unfamiliar with the Euclidean k-centre and k-median problems. Ch. 3
is recommended for readers new to problems involving continuous motion or
approximation. Of particular significance to all readers is Sec. 3.6 which provides
a perspective on the relevance of results developed in subsequent chapters.
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Chapter 1

Introduction

This chapter presents a brief introduction and motivation for the mobile prob-
lems of geometric facility location, followed by a short description of the main
contributions developed in this thesis and an overview of the thesis’ organiza-
tion into chapters. Chapter 1 serves as an extended abstract for the following
chapters.

1.1 Geometric Facility Location and Mobility

1.1.1 Continuous Motion and the Need to Approximate

The traditional problems of facility location are set in a static setting; client
positions are fixed and a single location is selected for each facility. A set of n
points is given as input, corresponding to the positions of clients, and a solution
consisting of set of k points that optimizes some objective function of the input
set is returned, corresponding to the positions of facilities. These static problems
of facility location, in particular the k-centre and k-median problems, have been
studied extensively (see [FMW83, HM03, HLP+87, HM89, LMW88] for general
overviews of static facility location). In the k-centre problem, the objective is to
select k points for locating facilities such that the maximum distance from any
client to its nearest facility is minimized. In the k-median problem, the objective
is to select k points for locating facilities such that the average distance from
each client to its nearest facility is minimized. A common setting for these
problems is to model clients and facilities as points in Euclidean space and
to measure distances between these by a Minkowski distance metric (typically
either Euclidean distance, rectilinear distance, or Chebyshev distance). This
class of facility location problems is referred to as geometric facility location.

Motivated by recent advances in mobile computing and telecommunications,
these questions have been posed in the mobile setting (e.g., [AH01, AGHV01,
AGG02, AdBG+05, BBKS06, GGH+03, Her05]), presenting new constraints
and challenges specific to mobility. A problem instance consists of a set of
mobile clients, each following a continuous trajectory through Euclidean space
under bounded velocity. Since mobile facilities located at the exact Euclidean k-
centre or k-median involve either unbounded velocity or discontinuous motion,
we explore approximations to these. The goal is to define a set of functions,
corresponding to positions for the set of facilities, that provide a good approxi-
mation to the k-centre or k-median while maintaining motion that is continuous
and whose magnitude of velocity has a low fixed upper bound. Thus, the fitness

1
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of a mobile facility is determined not only by the quality of its optimization of
the objective function but also by the maximum velocity and continuity of its
motion. These additional constraints lead to a trade-off between velocity and
approximation factor, requiring new approximation strategies quite different
from previous static approximations.

Although numerous papers examine problems related to mobile, kinetic, or
dynamic facility location, most are only indirectly related to this work since they
involve variations such as discontinuous motion, discrete time steps, or distance
metrics other than Euclidean distance. A notable exception is the work of
Bereg et al. [BBKS00, BBKS02, BBKS06] which examines some early problems
of mobile facility location and introduces the mobile Euclidean 1-centre and
1-median problems discussed in Chs. 4 and 5; in fact, their paper provided the
catalyst that eventually led the author to select this direction for his thesis.

Why are these problems relevant? Any actual implementation involving
real mobile clients and mobile facilities in the physical world requires both
continuity in position and some upper bound on velocity. Scenarios involv-
ing vehicles, mobile robots, or people with wireless communication devices sug-
gest that bounds on continuity and velocity are necessary in many applications
[AOY99, KNW02, CFPS03, Sch03, CMKB04, CMB06] (See Sec. 3.7.6 for a dis-
cussion of applications of mobile facility location). Therefore, in many cases
a bounded-velocity approximation of the k-centre and k-median is necessary.
Finally, it should be noted that the worst-case examples resulting in unbounded
velocity or discontinuity of the k-centre or k-median are easily realized by a
small number of clients, for example, with as few as four clients moving at unit
velocity along random linear trajectories inside the unit square on the plane.

1.1.2 Evaluating Bounded-Velocity Approximations

Given that approximation is necessary, we are motivated to ask how closely the
exact positions can be approximated. The two measures by which approxima-
tion schemes are compared are maximum velocity, an upper bound on the max-
imum relative velocity of a mobile facility, and approximation factor, a bound
on the worst-case ratio of the values of the optimization function given by the
approximation function relative to the optimal value.

Maximum velocity is straightforward to define relative to the motion of the
mobile clients. Since we are interested in relative velocity we may assume that
the velocity of every client is at most one.

Each facility location problem has an associated optimization function g. For
the k-centre, g is the maximum distance from any client to the nearest facility,
whereas for the k-median, g is the sum of the distances from each client to the
nearest facility. The usual measure for evaluating the approximation factor of
an approximation scheme Υ relative to the optimal scheme Ξ is to bound the
worst-case ratio of their optimization functions over all sets of mobile clients P .
Thus, we say Υ is a λ-approximation of Ξ if

∀P, f(P,Υ) ≤ λf(P,Ξ). (1.1)
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For some problems, however, no bounded-velocity approximation is possible.
That is, for any approximation scheme Υ, no fixed values of vmax and λ satisfy
both the bounded-velocity requirement and Eq. (1.1). For these cases, a counter-
example can be constructed to demonstrate that given any λ and vmax, no
approximation moving with maximum velocity at most vmax can guarantee an
approximation factor of λ. Evaluation of potential solutions to these problems
requires a different type of analysis, one which falls outside the definition of
approximation considered in this thesis.

Depending on the number of facilities, k, and the dimension, d, of the prob-
lem space Rd, either a) a mobile k-centre or k-median problem has a low upper
bound on its velocity and no approximation is necessary, b) the problem has
unbounded velocity or discontinuous motion but a bounded-velocity approxi-
mation is possible, or c) the problem has unbounded velocity or discontinuous
motion and no bounded-velocity approximation is possible. We consider prob-
lems that corresponds to the second set of conditions, when the motion of the
mobile k-centre or k-median is discontinuous or has unbounded velocity but a
bounded-velocity approximation exists. Values of k and d that result in these
conditions are:

1. Euclidean 1-centre in Rd for d ≥ 2,

2. Euclidean 2-centre in Rd for d ≥ 2, and

3. Euclidean 1-median in Rd for d ≥ 2.

For each of these, although the motion of the exact centre(s) or median has un-
bounded velocity or is discontinuous, a bounded-velocity approximation is still
possible. We develop, analyze, and compare several strategies for approximating
the mobile Euclidean 1-centre, 2-centre, and 1-median problems.

1.2 Contributions and Thesis Overview

This section highlights the major contributions of my thesis research. It also
provides a summary of the organization of this material into chapters.

1.2.1 Geometric Facility Location (Ch. 2)

Ch. 2 presents the definitions of two fundamental problems of geometric facil-
ity location, the Euclidean k-centre and the Euclidean k-median, as these are
commonly defined in the facility location literature. Work related to static in-
stances of these problems is discussed along with related problems including the
rectilinear k-centre, the rectilinear k-median, the centre of mass, and k-means
clustering. A reader familiar with these definitions may consider omitting this
chapter as no new material is introduced.

3



CHAPTER 1. INTRODUCTION

1.2.2 Mobile Facility Location (Ch. 3)

This research explores new ground which initially requires establishing answers
to fundamental questions such as: what properties are significant in a mobile
setting, why might the exact k-centre or k-median be inadequate under mo-
tion, and how should potential alternatives be compared against each other? In
answering these questions, Ch. 3 introduces concepts necessary for discussing
problems of mobile facility location, including formal definitions for maximum
velocity, continuity of motion, approximation factor, and the related notion of
stability. In addition, work related to problems in mobile facility location is
discussed. This chapter establishes the important questions regarding mobile
problems in geometric facility location, questions which are addressed in the
remaining chapters. Ch. 3 and, in particular, Sec. 3.6 are essential to under-
standing the full significance and context of the results established in this thesis
and their relevance in relation to the fields of computational geometry and fa-
cility location.

1.2.3 Mobile Euclidean 1-Centre (Ch. 4)

Ch. 4 explores bounded-velocity approximations of the mobile Euclidean 1-
centre. Motivated to define a weighted mean of the extreme points of the client
set whose weights change continuously under motion, our search led (somewhat
indirectly) to the definition of the Steiner centre. Interestingly, the Steiner cen-
tre can also be defined by projection of the client positions onto a line through
the origin, and integrating over all such projections. Previous applications of the
Steiner centre have been mostly limited to its definition on convex polytopes as
applied to topological problems in differential geometry involving surface curva-
ture. To the author’s knowledge, the Steiner centre had never been examined as
approximation to the Euclidean 1-centre nor had it been applied to the setting
of mobile facility location. The proof of the approximation factor (eccentric-
ity) of the Steiner centre established in Ch. 4 suggests the Steiner centre as a
bounded-velocity approximation to the mobile Euclidean 1-centre, providing a
good compromise between maximum velocity and approximation factor, which
compares well against other natural approximation functions of the Euclidean
1-centre including the rectilinear 1-centre and the centre of mass.

1.2.4 Mobile Euclidean 1-Median (Ch. 5)

Ch. 5 explores bounded-velocity approximations of the mobile Euclidean 1-
median. The Euclidean 1-median problem is perhaps more complicated to
approximate than the Euclidean 1-centre, since not only does the Euclidean
1-median move discontinuously, but, in general, its exact position cannot be
calculated for five or more clients [Baj88]. Not knowing the position of the
Euclidean 1-median increases the difficulty of measuring approximation factors
since the exact value of the optimization function cannot be known for the ma-
jority of client sets. Nevertheless, we introduce the projection median, a new
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median function which we analyze as a bounded-velocity approximation of the
Euclidean 1-median. Indeed, good upper and lower bounds on its approxima-
tion factor as well as a tight bound on its maximum relative velocity compare
well against other natural approximation functions of the Euclidean 1-median,
including the rectilinear 1-median and the centre of mass.

1.2.5 Mobile Euclidean 2-Centre (Ch. 6)

Ch. 6 explores bounded-velocity approximations of the mobile Euclidean 2-
centre. Multiple-facility problems differ in several aspects from single-facility
problems. Specifically, a static k-centre problem usually involves two steps:
clients are partitioned into k clusters and a 1-centre is identified for each clus-
ter. These two steps are not independent; the optimal positioning of k facilities
induces an optimal partition of the client set and vice-versa. Identifying a Eu-
clidean k-centre requires coordination between the positions of the facilities. In
the mobile setting, explicit clustering is infeasible because client movement be-
tween partitions inevitably leads to discontinuities in the motion of the mobile
k-centre. Again, our goal remains to maintain an approximation function that
returns a set of k mobile facilities, each moving continuously and under bounded
velocity.

To overcome problems of discontinuous motion, we introduce reflection-
based 2-centre functions, a new set of approximations to the mobile Euclidean
2-centre that involves coordinating the positions of the two facilities without
explicit partitioning of the clients. Our analysis capitalizes on our results from
Ch. 4. We derive bounds on the approximation factor and on the maximum
velocity of these approximations of the Euclidean 2-centres. To the author’s
knowledge, no previous bounded-velocity approximations to the mobile Eu-
clidean 2-centre have been defined.

1.2.6 Mobile Geometric k-Centres and k-Medians (Ch. 7)

In Ch. 7 we show that even in one dimension, no bounded-velocity approxima-
tion is possible for any geometric k-centre when k ≥ 3 nor for the geometric
k-median when k ≥ 2. For any fixed values of λ and vmax, we construct a
counter-example to show that either λ or vmax is insufficient. Finally, we ask
whether there exist bounded-velocity approximations to these problems when
the approximation function has greater than k facilities.

1.2.7 Implementation (Ch. 8)

The development of kinetic data structures (KDS) by Basch et al. [BGH99]
within the last decade precipitated research on a series of algorithmic prob-
lems in computational geometry involving sets of mobile points (clients) mov-
ing continuously through Euclidean space. Implementation issues for our work
on mobile facility location fall very naturally within this framework, allowing
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for several existing algorithms and data structures to be adapted to the var-
ious approximation functions, including the mobile Steiner centre, the mobile
projection median, and reflection-based mobile 2-centres. In the case of the mo-
bile Steiner centre, achieving an efficient implementation using a KDS required
defining a new approximation of the convex hull, a concept of independent in-
terest.

In addition to the theoretical work, a Java applet was coded to provide a
visual demonstration of numerous approximation functions of the mobile Eu-
clidean 1-centre, 1-median, and 2-centre. This implementation was used to col-
lect statistics for an empirical average-case evaluation of these approximation
functions.

1.2.8 Conclusion and Open Problems (Ch. 9)

Ch. 9 provides a brief summary and concludes with some direction for future
research.
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Chapter 2

Geometric Facility Location

2.1 Introduction

2.1.1 Chapter Objectives

Chapter 2 motivates and defines the traditional static problems of facility lo-
cation. Of particular relevance to this thesis are centre and median problems
when the domain of input points is Euclidean space and the distance metric is
Euclidean distance. The chapter closes with a discussion of related work. The
mobile versions of these problems are addressed in Chapter 3.

2.1.2 Chapter Overview

Below is a summary of the sections presented in this chapter.

Defining Geometric Facility Location (Sec. 2.2)

Sec. 2.2 begins by identifying the four attributes of a facility location problem
instance: the universe, the distance metric, the number of facilities to be located,
and the optimization criterion. Of relevance to this thesis are the problems of
geometric facility location, where clients and facilities are modelled as points in
Euclidean space, distance between these is measured by a Minkowski distance
metric, and facilities are not restricted to coincide with client positions.

Centre Problems (Sec. 2.3)

Sec. 2.3 defines the centre problem, one of two elementary problems of facility
location. The first problem introduced is the 1-centre on any metric δ and in any
universe. The problem is generalized to the k-centre, where multiple facilities
serve the client set. We focus specifically on the Euclidean 1-centre and the
Euclidean k-centre, where the metric δ corresponds to Euclidean (ℓ2) distance.
We provide an overview of previous work.

Median Problems (Sec. 2.4)

Sec. 2.4 introduces the median problem, the second of two elementary problems
of facility location. The 1-median and k-median are introduced first, followed
by a discussion of the Euclidean 1-median and the Euclidean k-median and an
overview of previous work.
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Related Work (Sec. 2.5)
Sec. 2.5 provides an overview of related static problems in facility location.
These include the rectilinear k-centre and k-median, the centre of mass, k-
means clustering, and continuous facility location. Related problems in mobile
facility location are discussed in Sec. 3.7.

2.2 Defining Geometric Facility Location

2.2.1 Facility Location: Clients and Facilities

Facility location describes an extensive range of problems that have been ex-
amined within numerous fields including computational geometry (e.g., [RT90,
Wel91, AS94, BE97, AS98, Est01, BMM03]), operations research (e.g., [Hak64,
HPRT85, DTW86, MS02, HM03]), data analysis (e.g., [JD88, ME98, Est99,
GMMO00, EH01]), computational complexity (e.g., [KH79a, FPT81, MIH81,
MS84]), and graph theory (e.g., [HM72, WH73b, DF74, Min77, Sla81, HLN91]).
This research area has a long history and continued activity accompanied by a
rich literature. The traditional problem of locating a facility to optimize some
function of the input set of client positions was first formally defined by Weber
[Web22] early in the last century. Problems that would eventually define the
fundamental questions of facility location, however, were examined much ear-
lier. These include finding the centre of the circumcircle of a triangle (the circle
on which all three triangle vertices lie) examined as early as the 3rd century
B.C. by Archimedes and finding the Fermat-Torricelli point of a triangle (the
point that minimizes the sum of the distances to the triangle vertices) which was
first posed by Fermat [Fer91] and solved by Torricelli early in the 17th century
[KV97].

Although countless variations of problems are classified as facility location,
every instance of a problem in facility location is characterized by the following
input parameters:

• a universe, U , from which a set (or multiset) P of input client positions is
selected,

• a distance metric, δ : U × U → R+, defined over the universe U ,

• an integer, k ≥ 1, denoting the number of facilities to be located, and

• an optimization function, g : P(U)×Uk → R, that takes as input a set (or
multiset) of client positions and a set of k facility positions and returns a
function of their distances as measured by metric δ, where P(A) denotes
the power set of set A.

The corresponding problem statement consists of selecting locations for a set of
facilities to optimize the value of function g;

• select a set (or multiset) F of k facility positions in universe U that min-
imizes g(P, F ).
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In a typical scenario, the client set1 represents demand points. The cost
for providing a service to these clients is represented as a function, g, of the
distances between their respective positions and the positions of a set of facili-
ties. Regardless of whether the metric and optimization function are measuring
distance travelled, bits transferred, length of cable required, amplitude of signal
transmitted, dollars spent, or time required to complete service, the underlying
problems share similar instance attributes and problem statements.

Given a universe U and an integer k, we refer to any function Υ : P(U) →
P(U) that takes a multiset of elements from U as input (clients) and returns
a multiset of k elements of U (facilities) as a facility function. When k = 1,
we say Υ is a single-facility function. When k > 1, we say Υ is a multiple-
facility function. Given specific values for U , δ, k, and g describing a particular
facility location problem, an exact or approximate solution to the problem is
given by defining a facility function. Common facility functions have specific
names such as the Euclidean k-centre, the Euclidean k-median, and the centre
of mass described in Secs. 2.3, 2.4, and 2.5.2.

Many facility location problems are NP-hard when greater than one facility is
being located. These include the k-centre and k-median problems in R2 under
Euclidean or rectilinear distance [MS84], both of which remain NP-hard to
approximate within some fixed factor, and the k-centre and k-median problems
on graphs [KH79a], where in all cases k is assumed to be an arbitrary input
parameter (discussed in greater detail in Secs. 2.3 through 2.5). When only
one or two facilities are to be located, the majority of these same problems can
be solved either exactly or within close approximation of the exact solution in
polynomial time.

Reviews of the relevant problems and histories of significant discoveries
within the field of facility location are provided in [FMW83, HLP+87, HM89,
LMW88] and more recently in [HM03].

2.2.2 Geometric Facility Location: Euclidean Space and
Minkowski Distance

Problems are classified by differences in the domain universe and in the choice
of distance metric. In addition, the fundamental problems of facility location
have spawned countless variations by augmentations incorporating additional
constraints such as weights, capacities, costs, or obstacles; some of these related
problems are examined in Sec. 2.5.

The universe of allowable positions for clients and facilities for a particular
problem is modelled by one of three spaces: continuous space, discrete space,
or network space [HLP+87, HN98, Pao99, HM03]. Continuous space refers
to a universe defined as a region, typically within Rd, such that clients and
facilities may be positioned anywhere within the continuum, and the number

1Unless otherwise specified, both the set of input client positions and the set of facility
positions may include multiplicities. By convention, we use the same set theory terminology,
notation, and operations for multisets as we do for sets.
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?

Figure 2.1: Where should the radio tower be located to minimize the maximum
distance from any house to the tower?

of possible locations is uncountably infinite. Discrete space refers to a uni-
verse defined by a finite set of predefined positions. Network space refers to a
universe defined by an undirected weighted graph, whose edge weights respect
the triangle inequality. Possible client positions are given by vertices. Depend-
ing on the problem, facilities may be positioned anywhere along an edge, or
restricted to graph vertices. Common definitions for the universe include the
real numbers in one or more dimensions, Rd; a d-dimensional grid, Zd; some
d-dimensional region, [a1, b1] × . . . × [ad, bd]; a finite set of allowable client po-
sitions, {u1, . . . , uk}; and an undirected graph whose edge weights respect the
triangle inequality. A natural domain for describing problems involving contin-
uous motion and the domain used within this work is unbounded d-dimensional
Euclidean space, namely, Rd.

The following example illustrates the differences between the three possible
domains for the universe. Say the client set corresponds to the positions of
houses within some neighbourhood for which a single radio tower (the facility)
must be positioned with the objective to optimize the worst-case signal reception
(minimize the distance from the tower to the furthest house). See Fig. 2.1. If
the tower may be positioned anywhere, then the universe is a continuous space.
If the radio tower may only be constructed on one of five available tower-sized
lots, then the universe is a discrete space. Finally, if instead the problem is
to position a mailbox along the roadside somewhere within the neighbourhood
so as to minimize the worst-case bicycling distance from the mailbox to the
furthest house, then the universe is a network space (assuming bicycles ride on
the road).

For a given universe, the distance metric further differentiates between spe-
cific problems. Within continuous-space universes, the most prevalent conven-
tion for measuring distance between two points u and v in Rd is to use the
Minkowski distance given by the ℓp norm of the vector u − v for some p ≥ 1.
In general, the class of continuous-space facility location problems whose input
universe is Rd and whose distance metric is a Minkowski distance is referred to
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as geometric facility location [HRS04, FMW05] (and sometimes as planar
facility location when d = 2 [FMW83]). As expressed by Fekete et al.,

With many practical motivations, geometric instances of facility lo-
cation problems have attracted a major portion of the research to
date. In these instances, the sets D of demand locations and F of
feasible placements are modelled as points in some geometric space,
typically R2, with distances measured according to the Euclidean
(ℓ2) or rectilinear (ℓ1) metric. [FMW05, p. 61]

The Minkowski distance between two points x and y in Rd corresponds to the
Minkowski norm ||x − y||p. For a given p ≥ 1, the ℓp norm2 of a point x =
(x1, . . . , xd) ∈ Rd is given by

||x||p =

(
d∑

i=1

|xi|p
)1/p

. (2.1)

Almost exclusively, the three values of p used are p = 1, i.e., the rectilinear
distance ||u− v||1; p = 2, i.e., the Euclidean distance ||u− v||2; and p = ∞, i.e.,
the Chebyshev distance ||u − v||∞.

Distance and velocity in Euclidean space are commonly measured using Eu-
clidean distance. As discussed in Chs. 3 through 6, many of the interesting
challenges of mobile facility location arise under Euclidean distance. Thus,
we adopt Euclidean distance as our distance metric, although rectilinear and
Chebyshev distance arise occasionally throughout the thesis. By Eq. (2.1), the
Euclidean distance between two points x = (x1, . . . , xd) and y = (y1, . . . , yd) in
Rd is given by

||x − y|| =

√√√√
d∑

i=1

(xi − yi)2. (2.2)

Since it is the norm most frequently referred to in this work, we omit the sub-
script and write simply ||x|| to denote the ℓ2 norm of x ∈ Rd.

2.2.3 Optimization Function: Sum or Maximum

Perhaps the most significant characteristic that distinguishes problems of facil-
ity location is the objective function. A typical instance of a facility location
problem can be classified as either a centre problem or a median problem, cor-
responding to the two major underlying classes of objective functions involving
either a maximum or a sum, respectively. As stated by Hale and Moberg,

There exists two predominant objective functions in location science:
minisum and minimax. These are also known as the median and
center problems, respectively. [HM03, p. 22]

2The Minkowski norm is defined for any p > 0. When p ∈ (0, 1), however, the resulting
norm is not a metric since it does not respect the triangle inequality.

11



CHAPTER 2. GEOMETRIC FACILITY LOCATION

We now introduce definitions for various centre problems (Sec. 2.3) and median
problems (Sec. 2.4) specific to geometric facility location.

2.3 Centre Problems

2.3.1 1-Centre and k-Centre

Given a set of points P , a fundamental problem of geometry and data analysis
concerns the characterization and computation of points that are central to P .

Definition 2.1. Given a universe U , a finite set of points P ∈ P(U), and a
metric δ : U × U → R+, a 1-centre of P is a point c ∈ U that minimizes

max
p∈P

δ(p, c). (2.3)

Set P must be nonempty for the value of Expr. (2.3) to be defined. Fur-
thermore, multiplicities of points in P do not alter the value of Expr. (2.3).
Consequently, it is irrelevant whether P is a set or a multiset. As we will see in
Sec. 2.4, the same observation is not true of the 1-median.

A 1-centre problem is also known as a minimax problem [Han73, EH72,
DF74, HPRT85, MC86b, DTW86, HM03].

Of course, the term 1-centre derives directly from the more general k-centre,
where k denotes the number of facilities. We now generalize the single-facility
definition of the 1-centre to multiple facilities.

Definition 2.2. Given a universe U , a finite set of points P ∈ P(U), a metric
δ : U × U → R+, and a positive integer k, a k-centre of P is a set of k points
F ⊆ U , that minimizes

max
p∈P

min
c∈F

δ(p, c). (2.4)

That is, C is a set of k points such that the maximum distance, δ(p, c), from
any point p ∈ P to the nearest facility c ∈ F is minimized.

When the domain is Euclidean space and δ is a Minkowski distance, we refer
to a k-centre as a geometric k-centre. If δ is the Euclidean distance metric,
then we call it a Euclidean k-centre.

2.3.2 Euclidean 1-Centre

A natural, and for many applications the default, metric for measuring distance
between two points is the Euclidean distance. The corresponding Euclidean
1-centre of P is the (unique) centre of the smallest enclosing hypersphere of P .
See Fig. 2.2.

Definition 2.3. Given a finite set P ∈ P(Rd), the Euclidean 1-centre of P
is the function whose value, Ξd(P ), is the point in Rd that minimizes

max
p∈P

||p − Ξd(P )||. (2.5)

12
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PΞ2(  )

Figure 2.2: The Euclidean 1-centre, Ξ2(P ), of a set of points P in R2 corresponds
to the centre of the smallest enclosing circle of P .

The value maxp∈P ||p − Ξd(P )|| is referred to as the Euclidean radius of
P , also known as the circumradius of P .

It is straightforward to show that the Euclidean 1-centre is invariant under
similarity transformations. Note, this property does not hold for all geometric
1-centres. For example, the rectilinear 1-centre is not invariant under rotation
and reflection (see Sec. 2.5.1).

Synonyms for the Euclidean 1-Centre

The Euclidean 1-centre is also known as Euclidean centre [DK06], 1-centre, cir-
cumcentre [Hon95, Kim98], centre of the circumcircle, ℓ2 centre, unweighted Eu-
clidean minimax problem [HLP+87], midpoint (in R), spatial 1-centre [HM03],
centre of the smallest enclosing circle/sphere/hypersphere or disc/ball/d-ball
(in R2/R3/Rd) [Wel91], and Kimberling triangle centre X(3) [Kim98] (when
|P | = 3). In contrast, the centrepoint of P sometimes refers to a point c such
that for every line l through c, at least k|P | points of P lie on either side of l,
where 0 < k < 1 is some fixed fraction [JM93] (such a point c is also sometimes
called a median of P [AdBG+05]).

Algorithms for Finding the Euclidean 1-Centre

Although the question of finding the minimum enclosing circle of a triangle is
thought to have been first posed by Archimedes, the general question of find-
ing the minimum enclosing circle for n points in the plane was first posed by
Sylvester in 1857 [Syl57]. An early algorithm was provided by Chrystal in
1885 [Chr85]. Since then, the minimum enclosing circle (for points in R2) and
minimum enclosing sphere (for points in R3) problems have been well stud-
ied with both deterministic and randomized linear-time algorithmic solutions.
Megiddo [Meg83] gives a deterministic Θ(n)-time linear programming solution
in R2, where n = |P |. This result has been extended to Rd for any fixed d
in O(dO(d)n) time by Agarwal et al. [AST93] and by Chazelle and Matous̆ek

13



CHAPTER 2. GEOMETRIC FACILITY LOCATION

A B

Figure 2.3: a set of points P in R2, a Euclidean 3-centre of P , the associated
three minimum enclosing circles of P , the corresponding Voronoi diagram, and
the induced 3-partition

[CM96]. Since every point must be examined, these results are asymptotically
optimal when d is fixed. Welzl [Wel91] gives a simpler randomized algorithm
with Θ(n) expected time in Rd for any fixed d. Xu et al. [XFS03] review solu-
tions to the minimum enclosing circle problem while Nielsen and Nock [NN04]
review solutions to the minimum enclosing sphere problem.

Applications of the Euclidean 1-Centre
As stated by Nielsen and Nock, applications for the Euclidean 1-centre problem
span a wide array of fields:

The smallest enclosing ball, as a fundamental primitive, finds many
applications in computer graphics (collision detection, visibility cul-
ling, . . . ), machine learning (support vector clustering, similarity
search, . . . ), metrology (roundness measurements, . . . ), facility lo-
cations (base station locations, . . . ), and so on. [NN04, p. 147]

2.3.3 Euclidean k-Centre

The Euclidean k-centre is the natural generalization of the Euclidean 1-centre
to multiple facilities.

Definition 2.4. Given a finite set P ∈ P(Rd) and a positive integer k, a
Euclidean k-centre of P is a set of k points in Rd, {Ξ1

d(P ), . . . ,Ξkd(P )}, that
minimizes

max
p∈P

min
1≤i≤k

||p − Ξid(P )||. (2.6)

The value maxp∈P min1≤i≤k ||p − Ξid(P )|| is referred to as the Euclidean
k-radius of P .

Given a set P , the points of a Euclidean k-centre of P correspond to the
centres of k hyperspheres whose union encloses the points of P such that the ra-
dius of the largest hypersphere is minimized. See Fig. 2.3. Unlike the Euclidean
1-centre, a Euclidean k-centre is not unique, even for k = 2. For example, let
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A B

Figure 2.4: non-uniqueness of the Euclidean 2-centre

four points be located at the vertices of the unit square in the plane. Two dis-
tinct 2-centres are possible, corresponding to the midpoints of opposite pairs of
edges of the square. See Fig. 2.4.

Synonyms for the Euclidean k-Centre

The Euclidean k-centre is also known as Euclidean p-centre [Dre84a, HLC93b],
Euclidean m-centre [KLC90], minimax location-allocation problem [DC97], min-
max multicentre problem [GJ79, CPP02], minimax radius clustering [BE97], and
planar k-centre problem (in R2) [Cha99, Dre84b].

Algorithms for Finding the Euclidean 2-Centre

A Euclidean 2-centre is straightforward to find in linear time in R (see Sec. 6.2).
Drezner [Dre84b] provides an O(n3)-time algorithm for finding a Euclidean 2-
centre in R2. Eppstein [Epp92] gives algorithms requiring O(n2 log2 n log2 log n)
expected time and O(n2 log4 n) worst-case time. Hershberger and Suri [HS91]
provide an O(n2 log n)-time solution to the corresponding decision problem;
this result is improved to O(n2) time by Hershberger [Her93]. Agarwal and
Sharir [AS91, AS94] and Katz and Sharir [KS93] give O(n2 log3 n)-time solu-
tions for finding the Euclidean 2-centre in R2. Jaromczyk and Kowaluk [JK94]
give an O(n2 log n)-time algorithm. Sharir [Sha97] reduces the time complex-
ity to O(n log9 n). Eppstein [Epp97] gives a simpler randomized algorithm in
O(n log2 n) expected time. Finally, Chan [Cha99] gives a deterministic algo-
rithm in O(n log2 n log2 log n), still in R2. Agarwal and Sharir [AS98] mention
a generalization of Drezner’s algorithm from R2 to Rd to give an algorithm
requiring O(nd+1) time.

Algorithms for Finding the Euclidean k-Centre

No efficient algorithm is known for the Euclidean 3-centre in R2 [Sha97] (with
running time comparable to those of algorithms for the Euclidean 2-centre de-
scribed above). The problem is solved in linear time in R using the algorithms
of Drezner [Dre87] and Hoffmann [Hof05]; these same algorithms also solve the
rectilinear 3-centre in linear time in R2.
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k = 1 k = 2 k fixed k arbitrary
R Θ(n) Θ(n) Θ(n) Θ(n)

R2 Θ(n) O(n log2 n log2 log n) nO(
√
k)

NP-hard
Rd O(dO(d)n) O(nd+1) nO(k1−1/d)

Table 2.1: time complexities of algorithmic solutions to the Euclidean k-centre

The Euclidean k-centre can be solved in linear time in R using the algorithm
of Frederickson [Fre91] for finding the k-centre in a tree. Frederickson’s algo-
rithm does not restrict centres to be located at vertices but also allows them to
be located along the interiors of edges [BBK+02, CPP02].

When k is an arbitrary input parameter, Megiddo and Supowit [MS84] show
the Euclidean k-centre problem is NP-hard in R2; they also show that finding an
ǫ-approximation remains NP-hard for any ǫ < 2/

√
3 ≈ 1.1547. This bound was

increased by Feder and Greene [FG88] who show the problem remains NP-hard
for any ǫ < (1+

√
7)/2 ≈ 1.8229. Exponential-time solutions exist. The current

best algorithm for the Euclidean k-centre in R2 requires nO(
√
k) time [HLC93b].

Drezner [Dre84a] gives an O(n2k+1)-time algorithm for solving the Euclidean
k-centre problem in Rd. Agarwal and Procopiuc [AP98] provide a algorithm

that improves the time to nO(k1−1/d). These results are summarized in Tab. 2.1.
Many approximation algorithms exist for the Euclidean k-centre problem.

Gonzalez [Gon85] and Hochbaum and Shmoys [HS86] provide 2-approximation
algorithms for the Euclidean k-centre in R2 that requires O(nk) time. This time
was reduced to Θ(n log k) and generalized to Rd by Feder and Greene [FG88].
Agarwal and Procopiuc [AP98] give a (1 + ǫ)-approximation algorithm for the
Euclidean k-centre problem in Rd running in time O(n log k + k/ǫdk).

2.4 Median Problems

2.4.1 1-Median and k-Median

Whereas the optimization function in a centre problem has as its goal to mini-
mize the maximum distance to any point, the goal of the median’s optimization
function is to minimize the sum (or average) of the distances to the points.

Definition 2.5. Given a universe U , a finite multiset of points P ∈ P(Rd),
and a metric δ : U×U → R+, a 1-median of P is a point m ∈ U that minimizes

∑

p∈P
δ(p,m). (2.7)

A 1-median problem is also known as a minisum problem (e.g., [HPRT85,
DTW86]). Set P must be nonempty for the value of Expr. (2.7) to be defined.
Observe that minimizing the sum of the distances to the points of P is equivalent
to minimizing the average distance to the points of P .
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Unlike the 1-centre, the position of a 1-median is affected by multiplicities
of points in P . Consequently, we consider finite multisets P ∈ P(Rd).

As with the 1-centre, the term 1-median derives directly from the more
general k-median, where k denotes the number of facilities. We now generalize
the single-facility definition of the 1-median to multiple facilities.

Definition 2.6. Given a universe U , a finite multiset of points P ∈ P(U), a
metric δ : U × U → R+, and a positive integer k, a k-median of P is a set of
k points F ⊆ U , that minimizes

∑

p∈P
min
c∈F

δ(p, c). (2.8)

When the domain is Euclidean space and δ is a Minkowski distance, we refer
to a k-median as a geometric k-median. If δ is the Euclidean distance metric,
then we call it a Euclidean k-median.

2.4.2 Euclidean 1-Median

The corresponding Euclidean 1-median of P is a point in Rd that minimizes the
sum of the Euclidean distances to points of P .

Definition 2.7. Given a finite multiset P ∈ P(Rd), a Euclidean 1-median
of P is a function whose value, Md(P ), is a point in Rd that minimizes

∑

p∈P
||p − Md(P )||. (2.9)

The value
∑
p∈P ||p−Md(P )|| is referred to as the Euclidean median sum

of P .
Unlike the Euclidean 1-centre, the Euclidean 1-median not always uniquely

defined. If the points of P are not collinear, then the Euclidean 1-median is
unique [KM97]. Similarly, if |P | is odd, then the Euclidean 1-median is also
unique. When the points of P are collinear and |P | = 2n, the points of P can
be ordered and any point that lies on the line segment between the nth and
n+1st largest elements is a 1-median of P . See Fig. 2.5. Since Md is a function
and must return a single point in Rd, the common convention when defining the
Euclidean 1-median, is to let Md be the midpoint between these two elements
[Wei]. Finally, the Euclidean 1-median of some (but not all) unbounded sets is
uniquely defined. See Sec. 2.5.3.

Synonyms for the Euclidean 1-Median
The Euclidean 1-median has been rediscovered in a variety of contexts result-
ing in numerous names being assigned to it. The most common of these is
Weber point [Baj88, BMM03, FMW05, Wes93]. Other names include Torricelli
point [Kim98, Wei], Fermat point [Kim98], first Fermat point [Wei], general-
ized Fermat point [Wes93], first isogonic centre [Kim98, Wei], isogonal point
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a
b

M2(P ) = (a + b)/2

Figure 2.5: When the points of P are collinear and |P | is even, by convention we
define the Euclidean 1-median to be the midpoint of the two middle elements
of P .

[KM97], ℓ2 median, Euclidean median [DK05c, DK05b], median centre [Wes93],
minisum problem [HLP+87, Wes93], spatial median [Wes93], Steiner problem
[KM97, Wes93], bivariate median [Wes93], minimum aggregate travel point
[Wes93], the point of equilibrium in a Varignon frame [Wes93], Kimberling tri-
angle centre X(13) [Kim98], or any combination of Fermat-Steiner-Torricelli-
Weber point [BMM03, CT90, KM97, Pla95, Wes93]. Note, the centre of mass
(centre of gravity) is sometimes incorrectly identified as being equivalent to the
Euclidean 1-median; the centre of gravity is the point that minimizes the sum
of the squares of distances [Sch73]. In addition, the term “median” sometimes
refers to alternate generalizations of the median to higher dimensions. For ex-
ample, Agarwal et al. [AdBG+05], use the term in reference to a point m such
that for every line l through m, at least k|P | points of P lie on either side of
l, where k ∈ [0, 1

2 ] is fixed. Finally, the Euclidean 1-median is sometimes de-
fined with a non-negative weight assigned to each point [CT90, Wes93]; when
the weights are rational this reduces to Def. 2.7 since we allow multiplicities
of points. An overview of the history and solutions to the Euclidean 1-median
problem can be found in [DKSW02, KM97, Wes93].

Algorithms for Finding the Euclidean 1-Median

The Euclidean 1-median problem on three points in the plane was first posed by
Fermat [Fer91] and solved geometrically by Torricelli early in the 17th century
[KV97]. Alternate geometric solution techniques were subsequently found by
Cavalieri and Simpson [DKSW02]. In R, a Euclidean 1-median is easily found
in Θ(n) time, where n = |P |, by a linear-time selection algorithm. In general,
solving for the exact location of the Euclidean 1-median in two or more dimen-
sions is difficult. Bajaj states, “there exists no exact algorithm under models
of computation where the root of an algebraic equation is obtained using arith-
metic operations and the extraction of kth roots” [Baj88, p. 177]. Indeed, no
polynomial-time algorithm is known, nor has the problem been shown to be
NP-hard [Hak00]. The most common approximation algorithm is Weiszfeld’s
algorithm [Wei37], an iterative procedure that converges to the Euclidean 1-
median. Chandrasekaran and Tamir [CT90] give a polynomial-time algorithm
for an ǫ-approximation of the Euclidean 1-median. More recently, Indyk [Ind99]
and Bose et al. [BMM03] both give randomized ǫ-approximations algorithms
with running times linear in n and polynomial in 1/ǫ. Bose et al. also give an
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C DBA
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>2π/3

Figure 2.6: the Euclidean 1-median when |P | = 3 and |P | = 4

O(n log n)-time deterministic ǫ-approximation algorithm.

Most approximation algorithms exploit the convexity of the objective func-
tion [LMW88, KM97]. That is, since the function f(x) = ||p−x|| is convex and
the sum of convex functions remains convex, Expr. (2.9) must also be convex.

Finding the Euclidean 1-Median of Small Point Sets

The position of the Euclidean 1-median of P is well defined when |P | ≤ 4. As
shown by Heinen [Hei34], when |P | = 3, either a) the interior angle formed at
some client p ∈ P on the convex hull of P is at least 2π/3 and the Euclidean
1-median of P coincides with p (see Fig. 2.6A) or b) all three interior angles are
less than 2π/3 and the Euclidean 1-median of P is located at the unique point
whose position induces three angles of 2π/3 with the clients of P (see Fig. 2.6B).

When |P | = 4 in R2, three cases are possible [KM97]: either a) the points
of P are convex and the Euclidean 1-median of P is defined by the intersection
of the two lines induced by opposite points (see Fig. 2.6C) b) the points P are
collinear and any point between two middle points of P defines a Euclidean 1-
median of P (see Fig. 2.5) or c) the points of P are neither convex nor collinear
and the Euclidean 1-median of P coincides with the unique client of P located
inside the convex hull of P (see Fig. 2.6D).

When |P | = 4 in R3, the cases are analogous to those for |P | = 3 in R2

[KM97]: either a) the points of P are collinear, b) the interior solid angle formed
at some client p ∈ P on the convex hull of P has measure at least π and the
Euclidean 1-median of P coincides with p, or c) all interior solid angles have
measure less than π and the Euclidean 1-median of P is the unique point inside
the convex hull of P that forms four solid angles of measure π with the clients
of P .

The Euclidean 1-median is invariant under similarity transformations. When
|P | ≥ 5, this invariance property allows the exact position of the Euclidean 1-
median to be calculated for some configurations of points P by exploiting a
rotational or reflectional symmetry to reduce the set of allowable locations for
Md(P ) (for example, see the proof of Thm. 5.21).
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BA

Figure 2.7: a set of points P in R2, a Euclidean 2-median of P , the corresponding
Voronoi diagram, and the induced 2-partition

2.4.3 Euclidean k-Median

Definition 2.8. Given a finite multiset P ∈ P(Rd) and a positive integer k, a
Euclidean k-median of P is a set of k points in Rd, {M1

d (P ), . . . ,Mk
d (P )},

that minimizes ∑

p∈P
min

1≤i≤k
||p − M i

d(P )||. (2.10)

The value
∑
p∈P min1≤i≤k ||p − M i

d(P )|| is referred to as the Euclidean
k-median sum of P .

Synonyms for the Euclidean k-Median
The Euclidean k-median is also known as Euclidean p-median [TFL83a, Est01],
spatial k-median problem [HM03], minisum location-allocation problem [DC97],
multisource Weber problem [HMT98, BHMT00], generalized multi-Weber prob-
lem [DC97], k-hub location problem [SP97], multi-switch location problem [VP03],
multi-depot location problem [DC97], two centre location-allocation problem
(when k = 2) [Ost75], and planar k-median (in R2) [Dre84b].

Algorithms for Finding the Euclidean 2-Median
The solution space for the Euclidean k-median is neither convex nor concave
[Coo67]. Naturally, finding a Euclidean k-median is at least as difficult as finding
a Euclidean 1-median, meaning that no algorithms are known for finding an
exact Euclidean k-median, even in R2 when k = 2.

Since a client is always served by the nearest facility, the Voronoi diagram
of a Euclidean 2-median of a set of points P consists of a single straight line
(plane, hyperplane) that partitions P into two sets. See Fig. 2.7. The number
of possible dividing lines (planes, hyperplanes) is proportional to the number
of pairs of clients [CRW91]. Algorithms for finding an approximate Euclidean
2-median in R2 provided by Ostresh [Ost75] and Drezner [Dre84b] exploit this
property by exhaustively examining all such possible partitions of the client
set, identifying an approximate Euclidean 1-median for every subpartition, and
taking the minimum over all possible solutions. Consequently, both algorithms
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k = 1 k = 2 k fixed k arbitrary
R Θ(n) Θ(n) Θ(kn) Θ(kn)
R2 complexity

NP-hard
Rd unknown

Table 2.2: time complexities of algorithmic solutions to the Euclidean k-median

have time complexity O(n2f(n)), where f(n) is the time complexity of finding an
approximate Euclidean 1-median for a set of n points. Rosing [Ros92] extends
this technique to find an approximate Euclidean 3-median in R2.

Algorithms for Finding the Euclidean k-Median

In R, Hassin and Tamir [HT91] show that the Euclidean k-median can be solved
exactly in O(kn) time. Like the Euclidean k-centre, when k is an arbitrary input
parameter, Megiddo and Supowit [MS84] show the Euclidean k-median problem
is NP-hard in R2; they also show that finding an ǫ-approximation remains NP-
hard for any ǫ < 3/2. These results are summarized in Tab. 2.2.

As for approximate solutions, Jain and Vazirani [JV99] give a 6-approximation
algorithm in O(n2) time. Charikar and Guha [CG99] give a 4-approximation al-
gorithm in O(n3) time. Finally, Arora et al. [ARR98] give an O(nO(1+1/ǫ))-time
ǫ-approximation. Kolliopoulos and Rao [KR99] provide a randomized approx-
imation scheme that returns a solution expected to be within a factor of 1 + ǫ

of the optimum, requiring O(21/ǫdn log n log k) time. Given fixed values for ǫ,
k, and d, Har-Peled and Mazumdar [HM04] provide a linear-time algorithm for
finding a (1 + ǫ)-approximation of the Euclidean k-median using coresets.

2.5 Related Work in Geometric Facility
Location

This section provides a brief overview of other key areas within the wide range
of problems of facility location. The rectilinear k-centre, rectilinear k-median,
centre of mass, k-means clustering, and continuous facility location are concepts
that will be revisited in Chs. 4 through 7. This section provides an overview of
results related to these problems.

The section concludes with a brief description of other key areas within facil-
ity location, both those outside geometric facility location and those involving
restrictions, augmentations, or interesting variations of problems in geometric
facility location. These include two other major areas of facility location: fa-
cility location on networks and discrete facility location. These topics define
tangential areas only indirectly related to the work of this thesis. Familiarity
with the contents of this section is not essential to understanding the results
and contributions of this thesis.
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2.5.1 Rectilinear k-Centre and k-Median

Problems that are difficult under Euclidean distance are sometimes solved more
easily under a distance metric not defined in terms of radicals. Chebyshev dis-
tance and rectilinear distance are the only two such Minkowski distance metrics.
Although ambiguous, the facility location literature defines the rectilinear k-
centre as a geometric k-centre for which the distance metric δ is Chebyshev (ℓ∞)
distance whereas the rectilinear k-median is defined as a geometric k-median for
which the distance metric δ is rectilinear (ℓ1) distance. The definitions of the
rectilinear k-centre and rectilinear k-median which we establish formally in this
section will be used in Chs. 4 through 6.

Rectilinear k-Centre
The definition of the rectilinear k-centre is analogous to that of the Euclidean
k-centre, but with respect to the Chebyshev (ℓ∞) distance metric.

The Chebyshev distance between two points x = (x1, . . . , xd) and y =
(y1, . . . , yd) in Rd is given by

||x − y||∞ = lim
p→∞

||x − y||p = max
1≤i≤d

|xi − yi|. (2.11)

Chebyshev distance is also known as Tchebychev, chessboard, maximum, min-
imax, or ℓ∞ distance. Although ambiguous, Chebyshev distance is sometimes
also referred to as rectilinear distance, the name more commonly used to refer
to ℓ1 distance, the Minkowski distance metric when p = 1.

Definition 2.9. Given a finite set P ∈ P(Rd) and a positive integer k, a
rectilinear k-centre of P is a set of k points in Rd, {R1

d(P ), . . . , Rk
d(P )}, that

minimizes

max
p∈P

min
1≤i≤k

||p − Ri
d(P )||∞. (2.12)

The value maxp∈P min1≤i≤k ||Rd(P )− p||∞ is referred to as the rectilinear
k-radius of P . The rectilinear k-centre is also known as rectangular p-centre
[Dre87] and rectilinear minimax.

Just as a Euclidean k-centre of a set P in Rd corresponds to the centres of
k hyperspheres of minimum radius that enclose the points of P , a rectilinear
k-centre of P corresponds to the centres of k axis-parallel hypercubes, such that
the width of the largest hypercube is minimized while also enclosing the points
of P . See Fig. 2.9B. Since the enclosing hypercube of a set of points is not
unique, it is common to select the centre of the corresponding bounding box.
See Fig. 2.8A.

Since the Chebyshev norm is not invariant under rotation or reflection, the
rectilinear k-centre is not invariant under these transformations. See Fig. 2.8B.
It is straightforward to show that the rectilinear k-centre is invariant under
translation and scaling.

Just as the Euclidean 1-centre is the centre of the smallest enclosing hy-
persphere and the rectilinear 1-centre is the centre of the smallest enclosing
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A B

Figure 2.8: A. A rectilinear 1-centre is not unique whereas the centre of the
bounding box is unique. B. The rectilinear 1-centre is not invariant under
reflection or rotation.

axis-parallel box, other generalizations are possible to the centre of the smallest
enclosing diamond (the ℓ1 1-centre), ellipsoid, cylinder, tetrahedron, rectangular
box, and parallelepiped in R3 [VW04].

Algorithms for Finding the Rectilinear k-Centre
All Minkowski norms coincide in R. Therefore, finding a rectilinear k-centre
in R corresponds to finding a Euclidean k-centre in R. Finding a rectilinear
1-centre of P in Rd reduces to solving d independent one-dimensional geometric
1-centre problems. That is, the rectilinear 1-centre is found by identifying the
extreme points of P along each dimension and returning the midpoint of each.
A single scan of the clients of P suffices, requiring Θ(nd) time.

Drezner [Dre84b] provides a linear-time solution to the rectilinear 2-centre
in R2. Still in linear time, this result is extended to higher dimensions and to
the weighted case by Ko and Ching [KC92]. Similarly, the rectilinear 3-centre
in R2 is solved in linear time by Hoffmann [Hof05]. The analogous problem
in Rd can be solved in time O(n log n) [AK99], matching the lower bound of
Ω(n log n) [Hof01]. The rectilinear 4-centre is solved in O(n log n) by Sharir
and Welzl [SW96]. Chan [Cha98] gives a randomized algorithm with O(n log n)
expected time for the rectilinear 5-centre. Sharir [SW96] provides the fastest
deterministic algorithm for the 5-centre in R2, requiring O(n log4 n) time.

Nussbaum [Nus97] gives an O(nk−4 log n)-time algorithm for the rectilinear
k-centre in R2 for a fixed k. As stated by Agarwal and Procopiuc [AP98], the
techniques of Hwang et al. [HLC93b] for solving the Euclidean k-centre in R2

(k fixed) in nO(
√
k) can be generalized to the rectilinear k-centre with the same

running time. Finally, Agarwal and Procopiuc [AP98] provide an algorithm for

the rectilinear k-centre in Rd (k fixed) in nO(k1−1/d).
In R2, Feder and Greene [FG88] and Ko et al. [KLC90] show it is NP-hard to

approximate the rectilinear k-centre problem with an approximation factor less
than 2 when k is an arbitrary input parameter. These results are summarized
in Tab. 2.3.

Gonzalez [Gon85] gives a 2-approximation for the rectilinear k-centre in R2

in O(nk) time. This time was reduced to O(n log k) by Feder and Greene [FG88].
In Rd, Hochbaum and Shmoys [HS86] give a 2-approximation algorithm in O(nk)
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BA DC

Figure 2.9: examples of the rectilinear 1-centre, 3-centre, 1-median, and 3-
median in R2 including the corresponding ℓ∞ and ℓ1 Voronoi diagrams and the
projection of client positions onto the axes

time. Still in Rd, Agarwal and Procopiuc [AP98] provide a (1+ǫ)-approximation
algorithm for the rectilinear k-centre problem in O(n log k + k/ǫdk) time.

Rectilinear k-Median
The definition of the rectilinear k-median is analogous to that of the Euclidean
k-median, but with respect to the rectilinear (ℓ1) distance metric.

The rectilinear distance between two points x = (x1, . . . , xd) and y =
(y1, . . . , yd) in Rd is given by

||x − y||1 =

d∑

i=1

|xi − yi|. (2.13)

Rectilinear distance is also known as Manhattan, city block, taxicab, rectangu-
lar, metropolitan, or ℓ1 distance [SS01].

Definition 2.10. Given a finite multiset P ∈ P(Rd) and a positive integer k,
a rectilinear k-median of P is a set of k points in Rd, {S1

d(P ), . . . , Skd (P )},
that minimizes ∑

p∈P
min

1≤i≤k
||p − Sid(P )||1. (2.14)

The value
∑
p∈P min1≤i≤k ||p − Sid(P )||1 is referred to as the rectilinear

k-median sum of P . The rectilinear k-median is also known as rectangular
p-median [Dre87], rectilinear minisum, and coordinate median [Wes93] (when
k = 1).

Since the rectilinear distance metric is not invariant under rotation or re-
flection, the rectilinear k-median is not invariant under these transformations.
It is straightforward to show that the rectilinear k-median is invariant under
translation and scaling.

Algorithms for Finding the Rectilinear k-Median
As is the case for the rectilinear k-centre, finding a rectilinear k-median in R

corresponds to finding a Euclidean k-median in R since all Minkowski norms
coincide in one dimension. As shown by Wendell and Hurter [WH73a], to find
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rectilinear k-centre
k = 1 k = 2 k fixed k arbitrary

R same as Euclidean k-centre

R2 Θ(n) Θ(n) nO(
√
k)

NP-hard
Rd Θ(dn) Θ(n log n) nO(k1−1/d)

rectilinear k-median
k = 1 k = 2 k fixed k arbitrary

R same as Euclidean k-median
R2 Θ(n) O(n5) O(n2k+1)

NP-hard
Rd Θ(dn) O(n2d+1) O(ndk+1)

Table 2.3: time complexities of algorithmic solutions to the rectilinear k-centre
and k-median

possible locations for a rectilinear k-median of a set P in Rd, one need only
consider intersection points within the convex hull of P . That is, the projection
of P onto each axis induces a grid of O(nd) points. Those that lie within the
convex hull of P are candidates for defining a rectilinear k-median of P .

The rectilinear 1-median in Rd is solved in linear time by solving d inde-
pendent one-dimensional 1-median problems along each dimension [Baj84]. See
Fig. 2.9C.

The hardness results of Megiddo and Supowit [MS84] for the Euclidean k-
median also apply to the rectilinear version of the problem. That is, the rectilin-
ear median problem is NP-hard in R2 when k is an arbitrary input parameter.
Furthermore, the problem remains hard when approximating to within a factor
of 3/2.

Little is known on the complexity of the rectilinear k-median when k is
fixed in two or more dimensions. The property restricting possible solutions
to intersection points leads to a brute-force algorithm requiring O(ndk+1) time.
These results are summarized in Tab. 2.3.

Several approximation algorithms for the Euclidean k-median can be used to
find approximate solutions to the rectilinear k-median in Rd. Jain and Vazirani
[JV99] give a 6-approximation algorithm in O(n2) time. Charikar and Guha
[CG99] give a 4-approximation algorithm in O(n3) time. Arora et al. [ARR98]
give an O(nO(1+1/ǫ))-time ǫ-approximation. In addition, heuristic solutions
are common, including heuristics using Tabu search [Ohl97] and Kohonen self-
organizing feature maps [HT04].

2.5.2 Centre of Mass and k-Means Clustering

The objective of the Euclidean k-median optimization function involves mini-
mizing the sum of the Euclidean distances from the clients to their respective
nearest facilities. The k-means clustering problem is a close relative of the
Euclidean k-median, for which the optimization function involves minimizing
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the sum of the squared Euclidean distances. For a single facility (k = 1) this
function has a single optimum, more commonly known as the centre of mass.

Centre of Mass
We define the centre of mass.

Definition 2.11. Given a finite multiset P ∈ P(Rd), the centre of mass of
P is the function whose value, Cd(P ), is the point in Rd given by

Cd(P ) =
1

|P |
∑

p∈P
p. (2.15)

The centre of mass is the point that minimizes the sum of the square dis-
tances [Sch73, Wes93]. This is easily seen by the following derivation. Given a
set P in Rd, let c be a point in Rd that minimizes the sum of the squares of the
distances to the points of P . That is, c minimizes

∑

p∈P
||c − p||2. (2.16)

The partial derivatives of Expr. (2.16) with respect to c must all be zero. Thus,
for all 1 ≤ i ≤ d,

∂

∂ci

∑

p∈P
||ci − p||2 = 0,

⇒
∑

p∈P
(ci − pi) = 0,

⇒ ci =
1

|P |
∑

p∈P
pi, (2.17)

where c = (c1, . . . , cd) denote the components of c (respectively, p) in dimensions
1, . . . , d. Eq. (2.17) matches the definition of the centre of mass in Eq. (2.15).

The centre of mass is also known as geometric centroid [Wei], least squares
point, centroid, mean, 1-mean, centre of gravity [Sch73], and Kimberling triangle
centre X(2) [Kim98].

Function Cd is invariant under affine transformations. The position of the
centre of mass is is easily constructed in Θ(n) time.

k-Means Clustering
The k-means clustering problem is the generalization of the centre of mass to
multiple facilities.

Definition 2.12. Given a finite multiset P ∈ P(Rd) and a positive integer k,
a k-means clustering of P is a set of k points in Rd, {C1

d(P ), . . . , Ck
d (P )},

that minimizes ∑

p∈P
min

1≤i≤k
||p − Ci

d(P )||2. (2.18)
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Observe that the squared Euclidean norm || · ||2 is not a distance metric since
the triangle inequality does not hold. The optimization function of a k-means
cluster in Expr. (2.18) corresponds to the sum of the variance of each cluster
[HE02].

Synonyms for k-Means Clustering

The k-means clustering problem is also known as least squares clustering [EE04],
least squares quantization [Llo82], minimum variance clustering [DM00], variance-
based k-clustering [IKI94], k-cluster centroid [DM00], k-cluster mean [DM00],
generalized Lloyd Max problem [GJW82], ℓ22 k-median clustering [VKKR03],
and minimum sum-of-squares clustering [HM01]. The measure (value of the
optimization function, Expr. (2.18)) is also known as squared error distortion
[KMN+02b] and root-mean-square distance [AM04].

Complexity of k-Means Clustering

The exact complexity of k-means clustering is unclear. Some go so far as to claim
that k-means clustering is NP-complete even for k = 2 [VKKR03, KSS04, SS05].
This is surprising given that polynomial-time algorithms exist for solving 2-
means clustering in Rd when d is fixed. The source of this confusion may be a
citation by Sabharwal and Sen [SS05] of an article by Drineas et al. [DFK+99];
Drineas et al. state that discrete 2-means clustering is NP-hard in Rd, which is
cited by Sabharwal and Sen [SS05] and interpreted to mean that (non-discrete)
2-means clustering is NP-hard. In general, it seems widely believed that k-means
clustering is NP-complete when k is an arbitrary input parameter in two or more
dimensions [DM00, KMN+02a, Mer03] but again, the source of this result is un-
clear. The literature makes frequent reference to the paper of Brucker [Bru78]
as evidence that k-means clustering is NP-complete. Although Brucker’s paper
proves NP-completeness for several related clustering problems, the hardness of
k-means clustering does not appear to be an immediate consequence of these
results. Brucker’s results are often referenced indirectly via Garey and Johnson
[GJ79]. A second source cited is the work of Garey et al. [GJW82, DM00] show-
ing NP-hardness for the generalized Lloyd-Max problem. Again, the hardness
of k-means clustering does not appear to be an immediate consequence of these
results. According to Mount [Mou05], an expert on k-means clustering, no proof
of NP-hardness nor any polynomial-time algorithm has been presented to date.

Algorithms for Finding a k-Means Clustering

In R, k-means clustering can be solved using dynamic programming in O(kn3)
time. The clients are first sorted. Partial solutions for an optimal k′-means
clustering on the first n′ clients of P are stored in a k × n array. The optimal
solution for a k-means clustering of all n clients is given by examining all possible
(k− 1)-means clusterings for 1 through n− 1 clients, calculating the sum of the
squared distances for the last cluster in each case, and selecting the minimum
over all cases.
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k = 1 k = 2 k fixed k arbitrary
R Θ(n) O(n2) O(kn3) O(kn3)

R2 Θ(n) O(n3) O(n2k(k−1)/2+1) complexity
Rd Θ(dn) O(nd+1) O(ndk(k−1)/2+1) unknown

Table 2.4: time complexities of algorithmic solutions to the k-means clustering
problem

The facility nearest to a client p under Euclidean distance remains nearest
to p under the squared Euclidean distance. Consequently, given a 2-means
clustering of a set of clients P , the corresponding 2-partition of P must be
separable by a hyperplane, as is the case for the Euclidean 2-centre and 2-
median [Ost75, Dre84b]. In R2 there are O(n2) possible choices for a dividing
line to partition the clients. The centre of mass for each partition is found in
O(n) time, giving a total time of O(n3). In Rd a hyperplane is uniquely defined
by d linearly independent points, of which there are O(nd) possible choices
[Ost75]. Thus, this algorithm solves the 2-means clustering problem in Rd in
O(nd+1) time [HII+93, IKI94]. The 3-means clustering problem is solved in
R2 in O(n5 log n) time by Hasegawa et al. [HII+93]. For a fixed k, the k-means
clustering problem can be solved in O(ndk(k−1)/2+1) time in Rd [HII+93]. These
results are summarized in Tab. 2.4.

Kanungo et al. [KMN+02b] give a (9 + ǫ)-approximation algorithm to k-
means clustering in Rd (no time complexity is given). Still in Rd, Matous̆ek
[Mat00] gives a (1 + ǫ)-approximation algorithm to the k-means clustering

problem that runs in time O(n logk nǫ−2k2d) for any fixed k and d. De la
Vega et al. [VKKR03] describe a randomized algorithm that returns a (1 + ǫ)-
approximation with constant probability in Rd requiring O(g(k, ǫ)n logk n) time,
where g(k, ǫ) = exp(k3 ln k[ln(1/ǫ) + ln k]/ǫ8). Hasegawa et al. [HII+93] give an
O(nk+1) time 2-approximation to k-means clustering in Rd for a fixed d. Inaba
et al. [IKI94] provide a (1 + ǫ)-approximate randomized algorithm to 2-means
clustering in Rd that runs in O(n(1/ǫ)d) time. Sabharwal and Sen [SS05] pro-
vide a (1 + ǫ)-approximate randomized algorithm to 2-means clustering in Rd

that runs in time O(1/ǫO(1/ǫ)(d/ǫ)dn) with constant probability. Given fixed
values for ǫ, k, and d, Har-Peled and Mazumdar [HM04] provide a linear-time
algorithm for finding a (1 + ǫ)-approximation of k-means clustering using core-
sets. Agarwal et al. [AHV05] provide a survey of approximation algorithms for
k-means clustering that make use of coresets.

The term k-means algorithm sometimes refers to Lloyd’s method, an iterative
heuristic used for approximating a solution to the k-means clustering problem in
Rd [Llo82, KMN+00, EE04]. Additional popular heuristics solutions to k-means
clustering were introduced by MacQueen [Mac67] and Ball and Hall [BH67].

28



2.5. RELATED WORK IN GEOMETRIC FACILITY LOCATION

2.5.3 Continuous Facility Location

In facility location problems, clients positions are typically defined by a finite
set of points. However, one may model a large set of clients, P , by a continuous3

region of points over which we define a client density function, ρ : P → [0, 1],
such that

∫
p∈P ρ(p) dp = 1. Equivalently, we can define ρ : U → [0, 1] and add

the requirement that ρ(p) = 0 for all p 6∈ P .
As argued by Drezner [Dre95], continuous facility location is useful for mod-

elling large clients sets. In these cases, numerical error from discretization is
reduced by employing a client density function.

The definition of the continuous Euclidean 1-centre is a straightforward gen-
eralization of Def. 2.3. The client set (now a region) must be bounded for the
1-centre to be defined.

Definition 2.13. Given a bounded set P ∈ P(Rd), the continuous Euclidean
1-centre of P is the function whose value, Ξd(P ), is the point in Rd that
minimizes

max
p∈P

||p − Ξd(P )||, (2.19)

where P denotes the closure of set P .

The continuous Euclidean k-centre is defined similarly by the corresponding
generalization of Def. 2.4.

The objective function for the continuous 1-median is described in terms
of an integration over the client set as opposed to a sum. Thus, when |P | is
infinite, Def. 2.7 is generalized by integrating.

Definition 2.14. Given an arbitrary set P ∈ P(Rd), let ρ : P → [0, 1] denote
the client density function of the points of P within Rd such that

∫
p∈P ρ(p) dp =

1. A continuous Euclidean 1-median of P is a function whose value, Md(P ),
is a point in Rd that minimizes

∫

p∈P
ρ(p)||p − Md(P )|| dp. (2.20)

Note that Def. 2.14 reduces to Def. 2.7 when P is finite. Under Euclidean
distance in Rd for d ≥ 2, the continuous Euclidean 1-median problem is at
least as hard as the Euclidean 1-median on a finite universe [Baj88, FMW05].
Fekete et al. [FMW00, FMW05] give an O(n)-time algorithm for solving the
continuous 1-median in R2 under rectilinear distance, where the region of clients
is polygonal and n denotes the number of vertices on its boundary. Carmi et

3The term continuous facility location is sometimes used to refer to any problem in facility
location for which the universe is a continuous space (see Sec. 2.2.2), even when the set of
clients is itself finite (for example, [Pla95, Pla02]). We differentiate between these by referring
to a continuous space universe versus a discrete space universe and apply the more common
definition of continuous facility location to describe those problems that include a continuous
region of clients representing an infinite distribution.
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al. [CHPK05] provide a linear-time algorithm for finding an approximation of
the Euclidean 1-median of a convex region.

The continuous Euclidean k-median is defined similarly by the corresponding
generalization of Def. 2.8:

Definition 2.15. Given a set P ∈ P(Rd), and a positive integer k, let ρ :
P → [0, 1] denote the client density function of the points of P within Rd such
that

∫
p∈P ρ(p) dp = 1. A continuous Euclidean k-median of P is a set of k

points in Rd, {M1
d (P ), . . . ,Mk

d (P )} that minimizes

∫

p∈P
min

1≤i≤k
ρ(p)||p − M i

d(P )|| dp. (2.21)

Fekete et al. [FMW00, FMW05] show the continuous rectilinear k-median is
NP-hard in R2 when k is an input to the problem.

When |P | is infinite, the centre of mass (Def. 2.11) is also generalized by
integrating.

Definition 2.16. Given a set P ∈ P(Rd), let ρ : P → [0, 1] denote the client
density function of the points of P within Rd such that

∫
p∈P ρ(p) dp = 1. The

continuous centre of mass of P is the function whose value, Cd(P ), is the
point in Rd given by

Cd(P ) =

∫

p∈P
ρ(p)p dp. (2.22)

Note that Def. 2.16 reduces to Def. 2.11 when P is finite.
In this thesis we implicitly apply definitions of continuous facility location.

That is, whenever P is not finite, a facility function F is understood to refer to
the definition of F under continuous facility location.

2.5.4 Additional Constraints and Related Problems

This section identifies and briefly describes additional major areas within facility
location that are only indirectly related to the focus of this thesis.

Facility Location on Networks
Unlike geometric facility location, where clients and facilities reside at any point
in Rd and distances between points are defined by a Minkowski distance metric,
facility location on graphs allows more general distance metrics while restricting
the set of possible locations for facilities. Facility location on graphs has a well-
explored set of problems accompanied by an extensive literature. A problem
instance consists of a weighted graph, G = (V,E, d, w), where the vertex set V
corresponds to the set of clients, d : E → R+ assigns positive weights to edges,
and w : V → R+ assigns non-negative weights to vertices. The weight, d(e),
of an edge, e = (u, v) ∈ E, is a positive real representing the distance between
u and v. The weight wv of vertex v is a non-negative real representing the

30



2.5. RELATED WORK IN GEOMETRIC FACILITY LOCATION

demand of client v. Weights may be normalized. Typically it is required that
the triangle inequality hold for edge weights.

A facility p must be located either exclusively on a vertex or anywhere along
an edge of the graph. If p lies on edge e = (u, v), its position is defined by u
and v and a real value a ∈ [0, 1] such that the distance from p to u is a · d(u, v)
and the distance from p to v is (1 − a)d(u, v). Hakimi gives this definition for
distance on a graph:

If x and y are any two points on G, the distance d(x, y) is the length
of the shortest path between x and y in G, where the length of a
path is the sum of the lengths of the edges (or partial edges) in the
path. [Hak00, p. 987]

Given any graph G, a k-median on G exists such that all k facilities are vertices
of G [Hak00]. This theorem does not hold for the k-centre on graphs. In
the vertex k-centre problem, facilities are required to lie on a vertex while the
absolute k-centre problem allows facilities to lie on a vertex or anywhere along
an edge.

Let n = |V | and let m = |E|. Hakimi and Kariv [KH79a] give O(mn +
n2 log n)-time algorithm for the unweighted centre problem on graphs and time
O(mn log n) in the weighted case. The latter problem has its runtime reduced
to O(n2) if an all-pairs shortest path distance matrix is given [EL95]. Hakimi
[Hak64] gives an O(n3)-time algorithm for the median problem on graphs; this
is also reduced to O(n2) if an all-pairs shortest path distance matrix is given
[EL95]. When k is an input parameter, weighted or unweighted k-centre and
k-median are NP-hard [KH79a]. When k is fixed, k-centre can be solved in
O(mknk log2 n) and k-median can be solved in O(nk+1) [Tam88].

Frederickson [Fre91] shows that the k-centre of a tree can be found in linear
time. Tamir [Tam96] gives an algorithm for finding the k-median of a tree that
requires O(n2k). Hakimi gives linear algorithms for the median problem and
the unweighted centre problem on trees [Hak00]. Hakimi and Kariv [KH79a]
give an O(n log n)-time algorithm for the weighted centre problem on a tree.

A review of single-facility location problems on networks is given in [HLPT87].
As for multiple-facility location problems, [KH79a, KH79b], and [TFL83a] pro-
vide reviews of the k-centre and k-median problems on graphs while [TFL83b]
reviews these problems on trees.

Discrete Facility Location
A problem in discrete facility location is any facility location problem for which
the domain of allowable facility positions is restricted to a finite set. In par-
ticular, a common restriction within discrete facility location is that the set of
allowable facility locations be restricted to the positions of the input client set.
That is, given a set of clients P contained in some universe U and an integer k,
select a set F ⊆ P , |F | = k, that minimizes the optimization function. Discrete
facility location is sometime referred to as metric facility location [CGTS99].

The discrete k-median problem on any distance metric is NP-hard when k
is an arbitrary input parameter [CGTS99]. In Rd, Bereg et al. [BKST99] give a
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Θ(nd)-time algorithm for the discrete rectilinear 1-median problem. Under ℓ∞
they give an O(n log2 n)-time algorithm. Charikar et al. [CGTS99] provide a 62

3 -
approximation algorithm to the discrete k-median problem under any distance
metric.

In R2, the Euclidean discrete k-centre is NP-hard if k is an input variable

[AS98]. Still in R2, Hwang et al. [HLC93a] give a nO(
√
k)-time algorithm for the

discrete Euclidean k-centre. Agarwal et al. [ASW98] give an algorithm for the
discrete Euclidean 2-centre in R2 that runs in time O(n4/3 log5 n). As noted
in [ASW98], the discrete Euclidean 1-centre in R2 is solved in O(n log n) time
by finding the furthest-neighbour Voronoi diagram of the set of client positions
and selecting the client with the nearest furthest neighbour. Finally, Agarwal
and Procopiuc [AP98] provide an algorithm for the discrete Euclidean k-centre

in Rd (k fixed) in nO(k1−1/d) time.
Bereg and Kirkpatrick [BK99] give an algorithm for the discrete rectilinear

2-centre in Rd in O(n logd−2 n log log n + n log n) running time. In R2, Bereg
and Segal [BS99, BS01] give an optimal algorithm for the discrete rectilinear
2-centre problem in O(n+m) log(n+m) time, where m denotes the cardinality
of the set of points from which the facilities are drawn.

See Mirchandani and Francis [MF90] for an overview of the problems of
discrete facility location.

Discrete facility location is not conducive to continuous motion of facilities.
As is discussed in Ch. 3, one of the objectives of this thesis is to model situations
in which clients and facilities are free to move continuously, providing yet further
motivation for examining points in continuous space, as opposed to discrete
space.

The term “facility location” sometimes refers to discrete facility location
with costs associated with each potential facility. Given a set of potential fa-
cilities, each with some associated cost, a set of clients, and a distance metric
(proportional to cost), the problem is to select a subset of the facilities (any
number of them) to minimized the total cost of shipping a product to every
client from the facility nearest to that client while including the cost of opening
each new facility.

Capacitated Facility Location
To model facilities more realistically, a fixed upper bound α > 0 is introduced
such that the sum of the weights of all clients served by a single facility may
not exceed α. Let F , |F | = k, denote the set of facilities to be positioned, let
P denote the set of clients, and let w(p) denote the weight of client p. For a
solution to exist, a necessary condition is that

k · α ≥
∑

p∈P
w(p). (2.23)

Hakimi [Hak00] describes two formulations for capacitated facility location. The
first requires a discrete allocation of clients to facilities such that each client is
served by the nearest facility. If a client lies an equal distance from two or
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Figure 2.10: When α = 4, no capacitated 2-centre or 2-median exists.

more facilities, then it may be served by any of these. Alternatively, clients may
distribute their demand among several facilities, without requiring to be served
solely by the nearest facility. These formulations differ in two ways. The first
formulation requires a client to be served by a single facility while the second
formulation allows a client to have its demand split between several facilities,
so long as these sum to the client’s demand. The first formulation requires a
facility to be served by the closest facility to it while the second formulation
allows a client to be served by a distant facility.

For some problem instances, the first formulation of the problem may not
have any solution. For example, let four points lie on a line such that the first
two have weight 1 and the last two have weight 3. When α = 4, no capacitated
2-centre or 2-median exists under Euclidean distance. See Fig. 2.10.

In general, the additional constraints of capacity correspond to combinatorial
problems as opposed to the geometric constraints of position and velocity under
Euclidean distance which we consider.

Obnoxious Facility Location
The goal of every facility location problem described until now has been to
minimize the sum or the maximum of the distances between clients and facilities.
This goal can be reversed to maximize these distances, modelling the selection
of positions for a set of undesirable facilities. Of course, the domain must be
finite, otherwise a facility could be positioned at a distance approaching infinity.
For models in Rd, the domain is typically restricted to a d-dimensional region
[a1, b1] × . . . × [ad, bd].

Unlike a k-median on a graph, an obnoxious k-median on a graph G does
not always consist of vertices of G.

Eiselt and Laporte [EL95] give a good overview of obnoxious facility location.
Moon and Chaudry [MC84] also include a brief overview of these problems. Ben-
Moshe et al. [BMKS99] show that in R2 under ℓ∞, the obnoxious 1-median is
solvable in O(n log2 n) time and the corresponding decision problem is solvable
in O(n log n) time. They also show that in R2 under ℓ2, the obnoxious 1-median
problem is solvable in O(npolylog n) time and the corresponding decision prob-
lem is solvable in O(n log n) time. For additional results in obnoxious facility
location within polygonal regions in R2 under ℓ2 and ℓ∞ distance metrics see
[MC86a] and [MC86b].

Bereg et al. [BKST99] examine the obnoxious k-centre problem in R2 under
multiple weights (one for each dimension). They examine both the discrete and
continuous cases.
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Regions, Generalized Distance Metrics, Obstacles, and New Facilities
Either clients, facilities, or both may be modelled as regions in space instead of
single points. For example, the facility may be a line and the clients points in
Rd. The problem is then a linear regression style problem of positioning a line
to minimize the distance from the points to the line [LMW88]. Applications to
this problem involve selecting positions for roads, railroads, power lines, sewage
pipes, etc. The problem has a natural generalization to locating a hyperplane
that minimizes the maximum Euclidean distances to a set of points in Rd [SS97].

Gao et al. [GLS06] examine the inverse problem for which clients consist of
lines in the plane and the facility consists of a point. Given a set of lines in the
plane, Gao et al. give an algorithm that identifies the smallest circle (Euclidean
1-centre) that intersects every line.

Defining points or facilities as regions results in a variety of distance metrics
being employed, ranging from object-to-object distance (for example, Hausdorff
distance) to non-linear distance metrics (involving an additive factor). In gen-
eral, multitudes of distance metrics are considered under various models for the
universe including spherical distance [Pla95] and combinations of ℓp distance
metrics [HLP+87, LMW88, BL95].

All problems described thus far assumed unobstructed paths between facili-
ties and clients. The introduction of obstacles into a continuous space universe,
around which the path from a client to a facility (and its corresponding length)
must wind, alters the distance metric and, correspondingly, the optimal posi-
tioning of facilities [CSK98].

Another common variation involves selecting positions for a set of new facil-
ities, given the positions of existing facilities [LMW88].

Probabilistic Facility Location
Yet another model of facility location incorporates problems for which the exact
position of clients is unknown, but some probability distribution is given on these
positions [LMW88, HM89, Sny04]. See [Sny05] and [BJSL95] for reviews of the
problems of probabilistic facility location.

Weighted Clients
A common variation of the centre and median involves assigning weights to
clients. Since multiplicities of clients are permitted in the k-median problem,
when the client weights are rational, any instance of a weighted client set can
be reduced to an equivalent unweighted client set by addition the corresponding
number of new clients coinciding with the positions of the weighted clients. The
definition of the k-centre problem, however, is altered by the addition of weights.
The optimization function of Expr. (2.1) becomes

max
p∈P

w(p)δ(p, c).

For example, if P = {0, 1, 2} with corresponding weights w(0) = 1, w(1) = 8,
and w(2) = 4, the weighted 1-centre of P lies at 4/3. In general, weighted
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Figure 2.11: A. a set of points P in R2, B. a Euclidean 2-centre of P of radius
r, C. the corresponding 2-piercing for a set of disc of radius r centred at the
points of P

problems are more difficult to solve than the corresponding unweighted problem.
In this thesis we consider only unweighted problem instances.

Piercing Sets and Covering
Set covering and piercing problems are closely related to the problems of facility
location. For a discussion of mobile piercing and set covering problems, see
[HRS04, KNS00, Seg99].

Sharir and Welzl [SW96] describe a reduction from the decision problem for
a geometric k-centre problem to the k-piercing problem. Given a set P of client
positions in Rd and a positive integer k, the decision problem associated with the
Euclidean k-centre involves fixing the Euclidean radius r, and asking whether
there exists a set F of k points in Rd such that the points of P are contained
within at least one of k hyperspheres of radius r centred at the points of F .
The reduction to the piercing problem is achieved by instead positioning |P |
hyperspheres of radius r centred at the points of P , and asking whether there
exists a set F of k points in Rd such that each hypersphere contains at least one
point of F . This reduction generalizes to any Minkowski distance metric. See
Fig. 2.11.
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Chapter 3

Mobile Facility Location

3.1 Introduction

3.1.1 Chapter Objectives

Chapter 2 introduced the Euclidean k-centre and Euclidean k-median problems,
two fundamental problems of geometric facility location, as they are tradition-
ally presented in a static setting; a problem instance consists of a set of fixed
points in Euclidean space, corresponding to client positions, and a problem so-
lution consists of a second set of fixed points in Euclidean space, corresponding
to locations for facilities. In this thesis, the Euclidean k-centre and Euclidean
k-median are examined in a mobile setting with the objective of maintaining
bounded-velocity approximations to these. Chapter 3 formalizes concepts per-
tinent to discussing mobile problems, including maximum velocity and approx-
imation factor. The chapter closes with a discussion of related work.

Chapter 3 establishes the important questions regarding mobile problems in
geometric facility location. We identify the relevant open problems which are
subsequently addressed in the remainder of the text. Of particular significance
is Sec. 3.6 which provides a contextual perspective of the relevance of results
developed in subsequent chapters.

3.1.2 Chapter Overview

Below is a summary of the sections presented in this chapter.

Continuous Motion (Sec. 3.2)
Sec. 3.2 introduces continuous motion and definitions for mobile clients and
mobile facilities. We consider mobile clients whose positions are defined over a
time interval by a continuous function in Rd. The position of a mobile facility
is defined as a function of the instantaneous client positions.

Velocity and Continuity (Sec. 3.3)
Sec. 3.3 formalizes the notions of velocity and continuity, two natural proper-
ties of mobile problems. By adding these constraints we alter our criteria for
defining a good approximation of a facility function. The fitness of a mobile
facility is measured in terms of two parameters: approximation factor and max-
imum velocity (which requires continuity). In this section we discuss maximum
velocity, denoted vmax.
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Approximation Factor (Sec. 3.4)

Given the unbounded velocity of the mobile Euclidean 1-centre and the disconti-
nuity of the mobile Euclidean 1-median, our search for bounded-velocity facility
functions leads us to consider approximations to these. Along with maximum
velocity, approximation factor, denoted λ, defines the second of two measures
by which we compare mobile facility functions. Thus, the fitness of an approx-
imation is measured both by the quality of its optimization of the objective
function and also by its maximum velocity and continuity of its motion.

Stability (Sec. 3.5)

We note an inverse relationship between the stability of a facility function, as
defined statically, and the maximum velocity of a mobile facility function, pro-
viding additional motivation for considering bounded-velocity approximations
with implications to problems of static facility location.

Taking Perspective (Sec. 3.6)

Having motivated the importance of identifying approximations to the mobile
Euclidean k-centre and k-median and having defined the concepts of maximum
velocity, continuity, approximation factor, and stability necessary to evaluating
and comparing approximation functions, Sec. 3.6 classifies the problems into
those which do not require approximation, those that can be approximated with
bounded velocity, and those for which no bounded-velocity approximation is
possible. The resulting subdivision of problems corresponds to the organization
of Chs. 4 through 7.

Related Work (Sec. 3.7)

Sec. 3.7 provides an overview of recent related work in mobile facility loca-
tion, including work in discrete mobile facility location and dynamic facility
location. Details of some results directly related to the Euclidean 1-centre, Eu-
clidean 1-median, rectilinear 1-centre, rectilinear 1-median, and centre of mass
are mentioned briefly here but are described more completely alongside detailed
analyses of these concepts in Chs. 4 and 5.

3.2 Continuous Motion

The traditional problems of facility location are set in a static setting; client po-
sitions are fixed and a single location is selected for each facility. The problems
of static facility location have been studied extensively. Within the last few
years, partly motivated by the applicability of mobile computing to the wire-
less telecommunication industries involving cellular and radio ethernet, these
questions have been posed in the mobile setting [AH01, AGHV01, AGG02,
AdBG+05, BBKS00, BBKS06, DK03, DK04, DK05a, DK05b, DK05c, DK06,
GGH+03, Her05].
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We consider continuous motion in Rd. That is, each client’s position traces
a continuous trajectory through Euclidean space, defined as a function over a
continuous temporal dimension. Furthermore, we assume no prior knowledge of
future client positions.

Definition 3.1. Let T = [0, tf ] denote a time interval. Let P = {p1, . . . , pn}
be a set of mobile clients such that for every i, pi : T → Rd is a bounded
continuous function that defines the position of client i in Rd at every instant
t ∈ T .

For every t ∈ T , let P (t) = {pi(t) | pi ∈ P} denote the set of points
corresponding to the positions of clients in P at time t.

For every client p ∈ P , the point p(t) is defined at every instant t over the
interval T . As such, Def. 3.1 differs significantly from another common notion of
mobility, often called dynamic motion [Wes73, WT75, APP96, BGKS98, HP98,
AHT00]. Although both continuous motion and dynamic motion refer to change
in position over a temporal axis, the distinction between these two models of
mobility is noted because their often disjoint objectives result in fundamentally
different solution techniques. Dynamic motion involves discretized time steps
for which the position of a mobile client or facility a is described by a sequence
of discrete points in Euclidean space, corresponding to sampling the position of
a at regular intervals in time. Hence, constraints of velocity and continuity are
typically inconsequential to a solution. Work related to this alternate notion
of mobility is discussed in Sec. 3.7.5. We restrict our attention to continuous
motion as described by Def. 3.1.

Having defined mobile clients, we augment the definition of a facility function
to the mobile setting. Given a set of mobile clients, the location of a mobile
facility is specified by a given facility function Υd of the client positions.

Definition 3.2. Let T = [0, tf ] denote a time interval. Given a facility func-
tion Υ : P(Rd) → P(Rd), the corresponding mobile facility function,
Υ∗ : P(Rd) × T → P(Rd), is given by

Υ∗(P, t) = Υ(P (t)). (3.1)

Thus, the position of a mobile facility function Υd at time t ∈ T corresponds
its static definition applied to the set of points P (t) induced by the positions of
a set of mobile clients P at time t.

When k > 1, the facility function returns a set of single-facility functions.
That is, Υd(P (t)) = {Υ1

d(P (t)), . . . ,Υk
d(P (t))}, where Υi

d : P(Rd) → Rd. For
simplicity, we present definitions in terms of single-facility functions throughout
this chapter; all definitions given are easily generalizable to multiple-facility
functions.

Following Bereg et al. [BBKS00], we define the mobile Euclidean 1-centre,
the mobile Euclidean 1-median, the mobile rectilinear 1-centre, the mobile
rectilinear 1-median, and the mobile centre of mass as a direct extensions of
their respective static definition: Ξd(P (t)), Md(P (t)), Rd(P (t)), Sd(P (t)), and
Cd(P (t)). See Fig. 3.1.
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DC

A B

Figure 3.1: A. a set of mobile clients in R2, B. the corresponding mobile Eu-
clidean 1-centre, C. a second set of mobile clients in R2, and D. the correspond-
ing mobile Euclidean 1-median

3.3 Velocity and Continuity

Continuity of motion and a finite upper bound on velocity1 impose natural
constraints on any physical moving object. Scenarios involving vehicles, mobile
robots, or people with wireless communication devices suggest that bounds on
continuity and velocity are necessary in many applications [AOY99, KNW02,
CFPS03, Sch03, CMKB04, CMB06]. Thus, the fitness of a mobile facility is
determined not only by the quality of its optimization of the objective function
but also by the maximum velocity and continuity of its motion.

We consider clients whose motion is continuous2 and we assume that their
velocity is bounded by a constant σ > 0. That is,

∀pi ∈ P, ∀t1, t2 ∈ T, ||pi(t1) − pi(t2)|| ≤ σ · |t1 − t2|. (3.2)

When pi is differentiable, then ∀t ∈ T, ||p′i(t)|| ≤ σ. Throughout this thesis we
assume a constant upper bound of σ = 1 on the velocity of clients since we are
interested in relative velocity.

Continuity is a necessary condition for bounded velocity.

1We use the term bounded velocity to mean bounded magnitude of velocity.
2We restrict our attention to motion that is temporally continuous; that is, given a mobile

client or facility a : T → Rd, we require that a(t) be defined for every t ∈ T , where T = [0, tf ]
for some tf > 0. We use the term continuous in reference to a mobile client or facility that is
spatially continuous (see Def. 3.3).
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Definition 3.3. Mobile facility function Υd : P(Rd) → Rd is continuous if
for any time interval T = [0, tf ] and any set of mobile clients P defined over T ,

∀t0 ∈ (0, tf ), ∀ǫ > 0, ∃δ > 0, ∀t ∈ (t0 − δ, t0 + δ), ||Υd(P (t0))−Υd(P (t))|| < ǫ.
(3.3)

That is, a mobile facility whose motion is continuous follows a continuous
trajectory through Euclidean space.

As will be shown in Chs. 4 through 6, although mobile clients are limited
to at most unit velocity, the maximum velocity of a mobile facility must some-
times exceed unit velocity to guarantee a good approximation of the objective
function. Maintaining a low upper bound on the relative velocity of a mobile
facility function remains a primary objective, which we now define:

Definition 3.4. Let P be a set of mobile clients. Let Υd : P(Rd) → Rd be
a mobile facility function. The maximum velocity of a mobile facility whose
location is determined by Υd is bounded by vmax if

∀t1, t2 ∈ T, ||Υd(P (t1)) − Υd(P (t2))|| ≤ vmax|t1 − t2|. (3.4)

We say vmax is tight if vmax is the infimum over all v′
max, where the maximum

velocity of Υd is bounded by v′
max as defined in Eq. (3.4). Equivalently, velocity

vmax is realizable; that is, there exists a set of mobile clients P in Rd defined
over a time interval T such that Υd(P (t)) moves with (instantaneous) velocity
vmax at some instant t ∈ T .

For some mobile facility functions, even when clients are limited to unit ve-
locity, no finite upper bound on velocity exists; that is, vmax = ∞. For example,
it is not possible to bound the velocity of the Euclidean 1-centre by any fixed
constant vmax. Specifically, for any vmax ≥ 0, Bereg et al. [BBKS00] construct
an example of a set of mobile clients in R2, each moving in a linear trajectory
with unit velocity, such that the Euclidean 1-centre moves with average velocity
at least vmax over some time interval T , |T | = δ > 0, where δ depends on vmax

(see Sec. 4.2). Consequently, given any vmax, Eq. (3.4) does not hold for the
Euclidean 1-centre. Similarly, the velocity of the Euclidean 1-median is also
unbounded, as is straightforward to demonstrate by a set of four mobile clients
in R2 (see Sec. 5.2).

Although the velocity of the mobile Euclidean 1-centre is unbounded, its
motion is continuous. The motion of the mobile Euclidean 1-median, however,
is discontinuous. Again, this property is straightforward to demonstrate by a
set of four mobile clients in R2 (see Sec. 5.2).

Empirical evidence suggests that these examples resulting in unbounded
velocity or discontinuity of the Euclidean k-centre or Euclidean k-median are
easily realized by a small number of mobile clients, for example, with as few as
four clients moving at unit velocity along random linear trajectories inside the
unit square on the plane. See Sec. 8.4.2.
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3.4 Approximation Factor

Given their unbounded velocities, the Euclidean 1-centre and the Euclidean 1-
median may be unfit for certain applications and impossible to maintain exactly
within specific mobile contexts. A function that approximates a facility function
while maintaining some fixed upper bound on its maximum velocity may be
better suited. We refer to such a function as an approximation function.

As discussed in Ch. 2, approximation algorithms are commonly used to solve
static Euclidean k-centre and k-median problems. Unlike the static setting,
where the fitness of an approximation strategy is determined solely by the qual-
ity of its optimization of the objective function, in the mobile setting the fitness
of an approximation strategy is also determined by the maximum velocity and
continuity of its motion. As discussed in Ch. 4 and 5, these dual objectives
cannot both be simultaneously satisfied optimally, leading to the development
of new approximation strategies quite different from previous static approxima-
tions.

Let Υd : P(Rd) → Rd denote an arbitrary approximation function. Within
the context of the Euclidean 1-centre, we refer to Υd as a centre function
and measure the quality of Υd’s approximation of Ξd in terms of their relative
values of the optimization function. Within the context of the Euclidean 1-
median, we refer to Υd as a median function and measure the quality of Υd’s
approximation of Md, also in terms of their relative values of the optimization
function.

If Υd is a centre function with maximum relative velocity bounded by vmax,
then maxp∈P ||p−Υd(P )|| must exceed the Euclidean radius of P for some P ∈
P(Rd). That is, for some P ∈ P(Rd), the ratio of the values of the optimization
function for Υd and Ξd must exceed one. Similarly, if Υd is a median function
with maximum relative velocity bounded by vmax, then

∑
p∈P ||p−Υd(P )|| must

exceed the Euclidean median sum of P for some P ∈ P(Rd). We formalize
the notion of the relative value of the optimization function in terms of the
approximation factor of Υd.

Definition 3.5. Given an optimization function g : P(Rd)×Rd → R, a facility
function Fd : P(Rd) → Rd that optimizes g, and an approximation function
Υd : P(Rd) → Rd, Υd is a λ-approximation of Fd if

∀P ∈ P(Rd), g(P,Υd(P )) ≤ λg(P, Fd(P )). (3.5)

Specifically, when Fd is the Euclidean 1-centre, Ξd, Eq. (3.5) becomes

∀P ∈ P(Rd), max
p∈P

||p − Υd(P )|| ≤ λ max
q∈P

||q − Ξd(P )||. (3.6a)

Within the context of centre functions, we refer to the approximation factor
as eccentricity. Similarly, when Fd is the Euclidean 1-median, Md, Eq. (3.5)
gives

∀P ∈ P(Rd),
∑

p∈P
||p − Υd(P )|| ≤ λ

∑

q∈P
||q − Md(P )||. (3.6b)
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Figure 3.2: In this example, the Euclidean radius is four and the distance be-
tween Υ2(P ) and client p is five. Consequently, the approximation factor of Υ2

(over all possible sets of clients) is at least 5/4.

We say λ is tight if λ is the infimum over all λ′, where the approximation
factor of Υd is bounded by λ′ as defined in Eq. (3.5). Equivalently, the approx-
imation factor λ is realizable; that is, there exists a set of clients P in Rd such
that g(P,Υd(P )) = λg(P, Fd(P )).

Since Ξd and Md optimize their respective objective functions, the approx-
imation factor λ ranges from 1 to ∞, with a 1-approximation function being
the best approximation. Any such approximation function necessarily has max-
imum velocity at least one; otherwise, any parallel translation of the clients at
unit velocity leads to an unbounded approximation factor because the mobile
facility is unable to keep up with the client set. Thus, we consider approximation
functions whose maximum velocity is in the range [1,∞) and whose approxima-
tion factor is also in the range [1,∞), and strive to attain values close to one
for both properties.

Although it may also seem natural instead to define approximation as a
function of relative proximity to the exact position of the Euclidean k-centre
or k-median, our measure of approximation defined in terms of the objective
function allows for a bounded-velocity approximation function whose position
can lie relatively far away from the exact position of the Euclidean k-centre or
k-median while still providing a good approximation of the objective function.
This consideration is particularly relevant when the mobile facility being ap-
proximated moves arbitrarily quickly (e.g., the Euclidean 1-centre), when its
position changes discontinuously (e.g., the Euclidean 1-median), when its posi-
tion is not uniquely defined (e.g., the Euclidean 2-centre), or when its position
in unknown (e.g., the Euclidean 1-median). Approximations to the Euclidean
k-centre and k-median are typically defined in accordance with our definition of
approximation factor (e.g., [AP98, ARR98, BMM03, Ind99]).

Since approximation factor is defined in terms of a worst-case configuration,
it is independent of motion of points. Thus, the approximation factor of a mobile
facility whose position is defined by approximation function Υd is simply the
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approximation factor of Υd on a static set of clients.
In addition to being defined by lower maximum velocity and a lower approxi-

mation factor, natural properties of a “better” approximation function may also
include invariance under similarity transformations and consistency of definition
across dimensions. Secs. 4.3 and 5.3 discuss these properties in details specific
to the contexts of centre functions and median functions, respectively.

In summary, the maximum velocity and approximation factors, vmax and λ,
allow us to compare the utility of different approximation functions. In general,
functions with lower approximation factors have a higher maximum velocity,
and vice-versa. Subject to this trade-off, we seek approximation functions with
low maximum velocity and low approximation factor.

3.5 Stability

The notion of stability is directly related to maximum velocity.
Point coordinates are commonly represented by discretization of real po-

sitions to nearby grid coordinates. That is, each point is approximated by
the nearest grid point. Given a finite set of points P ∈ P(Rd) and its Eu-
clidean 1-centre Ξd(P ), small perturbations at only a few points of P can re-
sult in a relatively large change (error) in the corresponding position of Ξd(P )
[Dre95, BBKS00]. The same is true of the Euclidean 1-median Md(P ). In this
sense, both the Euclidean 1-centre and the Euclidean 1-median are unstable.

We formalize the notion of stability by defining κ-stability for an approx-
imation function Υd as a measure of its maximum volatility. This requires
preliminary definitions for an ǫ-perturbation.

Definition 3.6. Given ǫ > 0, function f : P → Rd is an ǫ-perturbation on
P ∈ P(Rd) if for all p ∈ P , ||p − f(p)|| ≤ ǫ.

Let FP
ǫ denote the set of all ǫ-perturbations on P .

Definition 3.7. A function Υd : P(Rd) → Rd is κ-stable if

∀ǫ > 0, ∀f ∈ FP
ǫ , κ||Υd(P ) − Υd(f(P ))|| ≤ ǫ, (3.7)

for all P ∈ P(Rd).

The similarity of the definitions of stability (Def. 3.7) and maximum velocity
(Def. 3.4) is perhaps not surprising; the maximum velocity, vmax, and the stabil-
ity, κ, of a mobile facility function are inversely related. Maximum velocity and
approximation factor describe the fitness of a mobile approximation function’s
approximation of a mobile facility function just as stability and approximation
factor describe the fitness of an approximation function’s approximation to a
static facility function.

Observation 3.1. Υd : P(Rd) → Rd is a κ-stable centre function if and only
if a mobile facility whose position is determined by Υd has maximum velocity
bounded by

vmax =
1

κ
. (3.8)
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Proof. Let ǫ = |t1 − t2|, Q = P (t1), and f(Q) = P (t2). It follows that

||Υd(P (t1)) − Υd(P (t2))|| ≤ vmax|t1 − t2| ⇔ κ||Υd(Q) − Υd(f(Q))|| ≤ ǫ, (3.9)

where κ = 1/vmax.

An immediate consequence of Obs. 3.1 is that neither the Euclidean 1-centre
nor the Euclidean 1-median is κ-stable for any κ > 0; that is, Ξd and Md are
0-stable. This observation provides further motivation for the identification of
approximation functions that achieves both low maximum velocity and a low
approximation factor.

3.6 Taking Perspective: When is
Bounded-Velocity Approximation Possible,
Necessary, or Impossible?

Presumably, by now our motivation has convinced the reader of the value in
seeking mobile facility functions to approximate the mobile Euclidean k-centre
and the mobile Euclidean k-median in d-dimensional Euclidean space. We now
examine which specific values of k and d define mobile problems for which
bounded-velocity approximation is both necessary and possible.

A mobile problem is well-behaved if it always has at least one solution that
moves continuously with a fixed upper bound on its velocity. Depending on the
number of facilities, k, and the dimension, d, of the problem space Rd, either
a) a mobile Euclidean k-centre or k-median problem is well-behaved and no
approximation is necessary, b) the problem is ill-behaved but can be approxi-
mated with bounded velocity, or c) the problem is ill-behaved and no bounded-
velocity approximation is possible. We consider problems that corresponds to
the second set of conditions, for which the velocity of the Euclidean k-centre or
k-median is unbounded, but for which a bounded-velocity approximation is pos-
sible. Tab. 3.1 summarizes these conditions for specific values of d and k, with
the corresponding cases annotated by a star (⋆). Observe that if a Euclidean
k-centre problem does not have bounded-velocity approximation in Rd for some
d, then no bounded-velocity approximation exists in any higher dimension (the
same is true for the Euclidean k-median). Similarly, if a specific Euclidean k-
centre problem cannot be approximated, then the analogous j-centre problem
cannot be approximated for any j ≥ k (again, the same is true for the Eu-
clidean k-median). These claims and the classification implied by Tab. 3.1 are
formalized in Chs. 4 through 7.

Tab. 3.1 displays an overview of the mobile Euclidean k-centre and k-median
problems in Rd. Three sets of parameters result in problems whose velocity is
unbounded and for which bounded-velocity approximation is possible (⋆):

1. Euclidean 1-centre in Rd for d ≥ 2,

2. Euclidean 2-centre in Rd for d ≥ 2, and
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k-centre in Rd d = 1 d ≥ 2

k = 1
continuous, continuous, vmax = ∞,
vmax = 1 bounded-velocity approximable (⋆)

k = 2
continuous, discontinuous,
vmax = 2 bounded-velocity approximable (⋆)

k ≥ 3
discontinuous,

no bounded-velocity approximation

k-median in Rd d = 1 d ≥ 2

k = 1
continuous, discontinuous,
vmax = 1 bounded-velocity approximable (⋆)

k ≥ 2
discontinuous,

no bounded-velocity approximation

Table 3.1: taking perspective: feasibility of bounded-velocity approximation for
the mobile Euclidean k-centre and k-median problems

3. Euclidean 1-median in Rd for d ≥ 2.

In each of these cases, although the motion of the exact k-centres or k-medians
has unbounded velocity or is discontinuous, a bounded-velocity approximation
is still possible. For each case we develop, analyze, and compare possible ap-
proximation strategies in Chs. 4 through 6.

The sets of parameters for which no bounded-velocity approximation exists
can be reduced to two cases:

1. Euclidean k-centre in Rd for any k ≥ 3 and any d, and

2. Euclidean k-median in Rd for any k ≥ 2 and any d.

These cases are examined in Ch. 7, in which we prove the infeasibility of ap-
proximation by k mobile facilities and examine whether these problems can be
approximated by greater than k mobile facilities.

In summary, a primary objective of this thesis is to identify and analyze
bounded-velocity strategies for approximating the mobile 1-centre, 2-centre, and
1-median problems in Euclidean space.

3.7 Related Work in Mobile Facility Location

Similarly to Sec. 2.5, which addresses related work in static facility location,
Sec. 3.7 provides an overview of related work in mobile facility location.

3.7.1 Data Structures for Mobile Data

We examine four classes of data structures developed to maintain one or more
properties of a set of mobile clients. In particular, we make use of kinetic data
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structures in our algorithm for maintaining the mobile Steiner centre described
in Ch. 8.

Early Work in Dynamic Computational Geometry
Atallah [Ata85] considers problems for which a set of mobile clients moves con-
tinuously over time. He examines the combinatorial complexity of maintaining
the position of the minimum client in R and maintaining the two-dimensional
convex hull, when the motion of the clients is linear or bounded-degree alge-
braic. Specifically, the number of times a client can join or leave the boundary
is calculated as a function of the cardinality of the client set and the algebraic
degree of the motion. Also examined is the steady-state relative configuration
of client positions after all combinatorial change events have terminated as time
approaches infinity.

Kinetic Data Structures
Kinetic data structures (KDS) introduced by Basch et al. [BGSZ97, Gui98,
BGH99, Bas99b] allow for efficient implementation and maintenance of various
attributes of a set of mobile clients under piecewise-linear (or bounded-degree
algebraic) motion. In brief, a KDS algorithm maintains a set of certificates
that validate a specific property of a set of mobile clients. Each certificate
corresponds to a simple geometric assertion (for example, “client p1 lies below
the line induced by clients p2 and p3”). The constraint on the degree of the
motion of the client set allows for the occurrence of change events related to
the trajectories of mobile clients to be calculated exactly. Whenever a client
decides to change its trajectory, a flight update event is submitted. The list of
certificates is updated accordingly whenever either a flight update or certificate
failure event occurs. Basch et al. describe criteria by which a KDS is evaluated:

For a KDS to be of good quality, the following criteria should be
met:

• the certificate list does not change too much when an event
occurs (responsiveness);

• the overhead of internal events with respect to external events
is reasonable (efficiency);

• the KDS itself is of small size, typically linear or slightly super-
linear (compactness); and

• each client is involved in only a small number of certificates
(locality). [BGSZ97, p. 388]

Several KDS algorithms are related to our work on mobile facilities, some of
which are employed in our implementations described in Ch. 8. These include
the bounding box [AH01], the two-dimensional convex hull [BGSZ97, BGH99,
Gui98], a (1 + ǫ)-approximate Euclidean 1-centre [AH01], and the extent of a
set of mobile clients in R [AH01, Gui98, BGH99].

47



CHAPTER 3. MOBILE FACILITY LOCATION

Real-Time Kinetic Algorithms

Recent work by Uthaisombut [Uth05a, Uth05b] suggests a compromise between
dynamic facility location, in which client position are reported and facility lo-
cations are calculated at discrete time steps (see Sec. 3.7.5), and mobile facility
location, in which the positions of clients and facilities are defined at all points
over a continuous time interval.

Uthaisombut proposes that the time required by an algorithm for online com-
putation should be factored into the event framework. In his model, clients move
continuously and under bounded velocity, but without additional constraints on
the complexity of the motion. The positions of clients are sampled at regular
intervals, where the frequency of sampling is an input parameter whose value
affects the maximum error between samples. As an example, Uthaisombut de-
scribes maintaining the order of a set of mobile clients in R, such that a user
may query the data structure to determine the kth largest element at any time.
A näıve algorithm simply sorts the points every time step, requiring that the
time interval be at least Θ(n log n) in duration. Naturally, between time steps,
a query will result in some degree of error, as a function of the proximity and
maximum velocity of clients. Uthaisombut proposes an algorithm that allows
sampling at regular time intervals of duration O(n), resulting in a reduction in
the magnitude of possible error and allowing for the necessary maintenance of
the data structure to occur within the alloted time.

The primary difference between real-time kinetic algorithms and algorithms
involving discretized time incrementation, is that the time interval T remains
continuous. Although the algorithm samples client positions at fixed points in
T , error is calculated not only for client configurations at sample times, but
rather it is defined as the maximum error occurring at any point in T , including
the intervals between sample times.

Incremental Motion

Motivated to generalize kinetic data structure to allow unconstrained motion,
recent work of Mount et al. [MNP+04] provides data structures for incremental
motion. Unlike a KDS, the motion of clients is incremental. Like a KDS,
this algorithm relies on a set of certificates to validate some property of a set
of mobile clients. A lower level algorithm provides estimates of future client
trajectories and projected certificate failures. Whenever a client’s trajectory
deviates from its predicted course, the data structure is updated as necessary
to validate certificates.

3.7.2 Mobile Euclidean k-Centre and k-Median

Perhaps the most significant work related to the mobile Euclidean k-centre and
the mobile Euclidean k-median is the work of Bereg et al. [BBKS00, BBKS02,
BBKS06] who first raised some of the fundamental questions relating to bound-
ing the velocity of a mobile facility function. They show the velocity of the
mobile Euclidean 1-centre is unbounded in R2. Bereg et al. consider the the
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mobile centre of mass, the mobile rectilinear 1-centre, and the mobile rectilin-
ear 1-median as approximations of the Euclidean 1-centre and 1-median and
examine bounds on their respective approximation factors and maximum veloc-
ities. The properties of each of these mobile facility functions are examined in
greater detail in Chs. 4 and 5, in which we refer to [BBKS00, BBKS02, BBKS06].

Agarwal and Har-Peled [AH01] maintain an approximation to the mobile
Euclidean 1-centre in R2. Their approximation does not require continuity or
bounded velocity in the motion of the centre function; their objective, rather,
is to minimize the number of events processed and the update cost per event
using a KDS to maintain a (1+ ǫ)-approximation on the extent of the point set.
Agarwal et al. [AGG02] use a KDS to maintain a kd-tree of the points and an
ǫ-approximate mobile median in R. In [AdBG+05], a KDS maintains the exact
(expensive) and ǫ-approximate (less expensive) mobile Euclidean 1-median in R

and R2.

As discussed in Secs. 4.3.2 and 5.3.2, no bounded-velocity approximation
function can guarantee an approximation factor of λ to either the Euclidean
1-centre or the Euclidean 1-median for an arbitrary λ and a fixed maximum
velocity vmax that is independent of λ. Thus, although the algorithms of Agar-
wal and Har-Peled [AH01] and Agarwal et al. [AdBG+05] provide excellent
approximations of the mobile Euclidean 1-centre and 1-median, their maximum
velocities cannot be bounded independently of the approximation factor.

3.7.3 Mobile Rectilinear k-Centre and k-Median

A natural question might be to ask why the rectilinear k-centre and k-median are
not included in the set of geometric facility location problems listed in Tab. 3.1.
Firstly, the distance metric selected should be applied uniformly within the
optimization function (to measure distances between clients and facilities) and
to describe velocity (defined as a rate of change in distance over time). Although
velocity and distance are most naturally described using Euclidean distance,
one may still wish to examine the mobile problems of geometric facility location
under rectilinear or Chebyshev distance metrics.

As mentioned in Sec. 3.7.2, Bereg et al. [BBKS00] show the mobile rectilin-
ear 1-centre and 1-median move with bounded velocity (under any Minkowski
distance metric). Thus, no approximation is necessary. Detailed discussions of
the rectilinear 1-centre and 1-median can be found in Chs. 4 and 5.

When k ≥ 2, no bounded-velocity approximation exists for any geometric
k-median in Rd for any d. Similarly, when k ≥ 3, no bounded-velocity ap-
proximation exists for any geometric k-centre in Rd for any d. See Ch. 7 for a
discussion of bounded-velocity approximations of the rectilinear 2-centre. This
result implies that no bounded-velocity approximation exists for the rectilinear
2-median or for the rectilinear 3-centre in any dimension.

Finally, just like the Euclidean 2-centre, the rectilinear 2-centre exhibits
discontinuous motion in R2. The same strategies used to approximate the mobile
Euclidean 2-centre apply in this case. See Ch. 6.
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Agarwal et al. [AGHV01] maintain the exact mobile rectilinear 1-centre in
R2 under Chebyshev distance using a KDS. Agarwal and Har-Peled [AH01]
maintain an approximation to the mobile rectilinear 1-centre in R2. Given a
set P of mobile clients in Rd, Hershberger [Her05] introduces a new KDS for
maintaining a set of unit hypercubes that cover P . The number of boxes is
within 3d of the optimal value. These boxes, however, are not constrained to
move continuously. Furthermore, the number of boxes is not constant; boxes
are added or removed as the clients move.

3.7.4 Mobile Discrete Facility Location

By their nature, problems of discrete facility location serve different objectives
than do problems in a continuous space (see Sec. 2.5.4). Since each facility
is restricted to having a position that coincides with that of a client, while a
facility follows a particular client, its relative velocity is at most one. However,
the facility is obligated to change positions instantaneously from one client to
another, resulting in discontinuities in its motion.

Given a fixed w and a set of mobile clients P in Rd, Gao et al. [GGH+03]
provide a KDS for maintaining a set of discrete k-centre of P such that every
client is contained within a d-dimensional hypercube of width w whose centre
is a client in P . The number of hypercubes k is within a constant factor of the
minimum value for k.

3.7.5 Dynamic Facility Location and Discretized Time

Until recently, only discrete changes to the location of clients have been con-
sidered. These problems, termed dynamic facility location [Wes73, WT75],
attempt to optimize the objective function summed over a finite set of discrete
time slots, T = {t1, . . . , tf}. This model does not incorporate continuity or
bounded-velocity constraints in the motion of the facility. Thus, the techniques
employed to solve dynamic facility location problems do not necessarily extend
to their counterparts involving continuous motion.

Bhatia et al. [BGKS98] examine dynamic facility location on graphs, where
edges are assigned two weights corresponding to two times t1 and t2. They
problem consists of selecting k vertices as facilities such that the maximum
graph distance from any vertex to the nearest facility is minimized over t1 and
t2. Thus, the facilities are not mobile, but distances between clients may change.
The motivating example for this model is to identify locations for facilities to
serve a road network at both rush-hour and lower traffic times. Bhatia et al. give
a constant factor approximation for the problem and show that no constant
factor-approximation is possible for greater than two time slots.

Related to the work of Bhatia et al., Hochbaum and Pathria [HP98] ex-
amine the dynamic 2-centre on graphs. They provide a polynomial-time 3-
approximation algorithms for the k-centre problem on a graph for which two
time slots are given. They go on to show that the problem is NP-hard when
three or more time slots are given. See Alstrup et al. [AHT00] and Auletta et
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al. [APP96] for a discussion of dynamic facility location on trees. See Johansson
and Carr-Motyc̆ková [JCM03] for a discussion of the mobile discrete k-clustering
on ad-hoc networks.

Suzuki and Okabe [SO95] consider problems of dynamic facility location for
which facilities are only available for specific time slots. For example, for some
set of time slots, k facilities are to be located while for the remaining time slots,
an additional j facilities are available.

Also considered by Suzuki and Okabe is a problem which they refer to as
mobile facility location, where clients are static but the facility is mobile. The
mobile facility has some maximum distance d it may move over the time interval.
Thus, the problem is similar to a static problem of locating k facilities with the
additional constraint that there must exist a path of length at most d connecting
the k facilities.

Finally, we mention the work of Har-Peled [HP04], who examines the prob-
lem of finding positions for a set of static facilities for a given set of trajectories
for mobile clients. Under this model, Har-Peled provides a 2-approximation
algorithm to the k-centre in Rd in linear time.

3.7.6 Applications

In addition to the theoretical interest of generalizing the static problems of
facility location to the mobile realm, problems of mobile facility location are
motivated by a broad set of applications across a variety of fields, ranging ev-
erywhere from statistics to economics to robotics to telecommunications. We
briefly list some of these applications in this section, first generally for problems
of geometric facility location, and then specifically for the problems addressed
in this thesis.

According to Nielsen and Nock [NN04], the Euclidean 1-centre finds ap-
plications in computer graphics, machine learning, and metrology. Classical
applications for both 1-centre and 1-median problems in facility location in-
clude identifying sites for mobile emergency services, bus stops, or hospital sites
[MS02]. Closely related is the common problem of selecting a location for a
hub, be it for an airline, a rapid transit provider, a postal network, or a freight
carrier [CEK02].

Telecommunications and network configuration are traditional applications
for facility location on graphs [GLY02]. The advent of wireless telecommunica-
tions and wireless ethernet defines a new set of mobile facility location problems,
introduced in this chapter. As stated by Karch et al. [KNW02], these mobile
problems have applications in robotics including maintaining oil platforms, ex-
ploring Mars, disarming bombs, cleaning, and moving hazardous substances.
To this list, Agarwal et al. [AGG02] add air-traffic control, mobile communi-
cation, navigation systems, and geographic information systems. To motivate
the mobile Euclidean 1-centre and 1-median, Bereg et al. [BBKS00] suggest the
problem of locating a mobile utility within a factory such as a welding robot in a
manufacturing plant. Cortés et al. [CMKB04, CMB06] cite applications involv-
ing control and coordination for groups of autonomous vehicles. The framework
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discussed by Cortés et al. is developed for d-dimensional Euclidean space for an
arbitrary d. Ando et al. [AOY99] and Cortés et al. [CMB06] suggest algorithms
for identifying the Euclidean 1-centre of a set of mobile autonomous agents; their
objective is to define a point of convergence on which the agents uniformally
agree. These ideas are related to the work of Cieliebak et al. [CFPS03] and
Schlude [Sch03] who suggest the Euclidean 1-median as a point of convergence
for mobile robots that remains constant as the clients converge toward it.

Recent developments in mobile computing, and more specifically ad-hoc net-
works, presents further applications for the techniques in mobile facility location
[GT95, Sha96, Bas99a, CWLG97, HRS04]. Huang et al. [HRS04] examine ad-
hoc networks where each client’s range of communication is modelled by a unit
disc; as a solution to this problem, they give approximation algorithms for the
mobile piercing set problem. Gao et al. [GGH+03] mention the applicability
of mobile centre solutions to the fields of mobile computing, specifically within
ad-hoc networks. Additional related problems from the networks community
are described in the work of Gerla and Tsai [GT95], Sharony [Sha96], Basagni
[Bas99a], and Chiang et al. [CWLG97].

Additional potential applications include positioning tow trucks to serve a
fleet of taxis or buses, positioning police cruisers to assist patrolling officers on
foot, positioning a helicopter to oversee a rescue operation, and positioning coast
guard ships within proximity of a fleet of freight ships. Cortés et al. [CMKB04]
mention an oceanographic sampling network, in which a series of underwater
robots communicate via a local acoustic network. Closely-related are applica-
tions of mobile problems in discrete facility location, including the work of Wang
and Olariu [WO04] on cluster maintenance in mobile ad-hoc wireless networks.

3.7.7 Other Related Questions

Given a set P of mobile clients in R or R2, Agarwal et al. [AdBG+05] examine
exact and approximate KDS algorithms for maintaining a mobile facility func-
tion Υ such that any line passing through the point Υ(P (t)) has at least 2|P |/3
clients on either side of it at all times. Agarwal et al. observe the same trade-off
between quality of approximation and stability of a mobile facility function.

Huang et al. [HRS04] provide approximation algorithms for the mobile pierc-
ing problem. Given a set of unit disks whose centres move continuously, Huang
et al. provide a 7-approximate solution in R2 and a 21-approximate solution
in R3. Given a set of unit hypercubes whose centres move continuously in Rd,
Huang et al. provide a 2d-approximate solution. See Sec. 2.5.4 for a description
of piercing problems and their relevance to the k-centre problem.
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Chapter 4

Mobile Euclidean 1-Centre

4.1 Introduction

4.1.1 Chapter Objectives

The previous chapter provides us with tools for evaluating bounded-velocity ap-
proximations the mobile Euclidean k-centre and k-median problems. In Chap-
ter 4, we address the first of these: the Euclidean 1-centre. Our exploration of
approximation functions (referred to as centre functions in the context of the Eu-
clidean 1-centre) leads us to consider the centre of mass, the rectilinear 1-centre,
the Steiner centre, and convex combinations of these, for which we examine the
maximum velocity and approximation factor (referred to as eccentricity in the
context of the Euclidean 1-centre). Kinetic algorithms for maintaining these
various mobile centre functions are discussed in Ch. 8; for now we focus on their
respective qualities as approximation functions.

Although previously defined, the notion of a Steiner centre had not been an-
alyzed in terms of its approximation of the Euclidean 1-centre nor had it been
considered with respect to a set of mobile clients. Exploiting the equivalence
of the two definitions of the Steiner centre established by Shephard [She66],
we show the Steiner centre successfully balances the conflicting goals of close-
ness of approximation and low maximum velocity. Summaries of the chapter’s
significant results and their implications are found in Secs. 4.1.2 and 4.9.

4.1.2 Chapter Overview

Below is a summary of the sections presented in this chapter.

Properties of the Mobile Euclidean 1-Centre (Sec. 4.2)
Sec. 4.2 briefly examines additional properties of the mobile Euclidean 1-centre,
Ξd. Specifically, we show that the motion of the mobile Euclidean 1-centre is
continuous and we quote a theorem of Bereg et al. [BBKS00, BBKS06] proving
that the velocity of the mobile Euclidean 1-centre is unbounded.

Comparison Measures (Sec. 4.3)
Building on work of Bereg et al. [BBKS00, BBKS06], Sec. 4.3 expands on the
measures of eccentricity and maximum velocity and explores bounds on their
relationship in terms specific to the approximation of the Euclidean 1-centre.
Additional natural properties of centrality are also considered.
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Rectilinear 1-Centre (Sec. 4.4)
Sec. 4.4 analyzes the properties of the mobile rectilinear 1-centre, Rd, in terms
of its approximation of the Euclidean 1-centre. The rectilinear 1-centre mini-
mizes the maximum Chebyshev (ℓ∞) distance between itself and any client in
P , suggesting it as a candidate for approximating the Euclidean 1-centre. In
particular, we show that in Rd, the rectilinear 1-centre has eccentricity 1

2 (1+
√

d)
and we refer to a result of Bereg et al. [BBKS06] showing that its maximum
velocity is

√
d.

Centre of Mass (Sec. 4.5)
Sec. 4.5 analyzes the properties of the mobile centre of mass, Cd, in terms of
its approximation of the Euclidean 1-centre. In particular, we refer to results of
Bereg et al. [BBKS06] showing that in Rd, the centre of mass has eccentricity 2
and maximum velocity 1.

Steiner Centre (Sec. 4.6)
Sec. 4.6 presents two definitions of Steiner centre, Γd, first by Gaussian weights
and then by projection. The core of Ch. 4 consists of the derivations of the eccen-
tricity and maximum velocity of the Steiner centre in two and three dimensions
contained in this section. In particular, we show that in R2, the Steiner centre
has eccentricity approximately 1.1153 and maximum velocity 4/π. In R3, we
provide a lower bound of approximately 1.2017 on the eccentricity of the Steiner
centre and show that its maximum velocity is 3/2.

Triangle Centres (Sec. 4.7)
Sec. 4.7 briefly explores additional common functions that might initially suggest
themselves as candidate centre functions but upon examination exhibit either
discontinuity, high eccentricity, or inability to generalize to greater than three
clients, making them poor centre functions.

Convex Combinations (Sec. 4.8)
Sec. 4.8 examines convex combinations of centre functions. In particular, a
convex combination of a set of centre functions defines a new centre function
whose maximum velocity and approximation factor can be bounded in terms
of the maximum velocities and approximation factors of the component centre
functions.

Evaluation (Sec. 4.9)
Sec. 4.9 summarizes the results derived in Ch. 4 by comparison of the Steiner
centre, the rectilinear 1-centre, the centre of mass, and convex combinations of
these in terms of their approximation of the Euclidean 1-centre. The primary
measures for evaluating the quality of each centre function are eccentricity and
maximum velocity (inversely related to stability) but also include consideration
of whether each centre function generalizes to higher dimensions and whether
it preserves various properties of invariance and consistency.

54



4.2. PROPERTIES OF THE MOBILE EUCLIDEAN 1-CENTRE
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Figure 4.1: illustration in support of Obs. 4.1

4.2 Properties of the Mobile Euclidean
1-Centre

This section briefly explores the continuity and velocity of the mobile Euclidean
1-centre. Refer to Sec. 2.3.2 for the static definition of the Euclidean 1-centre.

We begin by verifying that the motion of the mobile Euclidean 1-centre is
continuous. Although it seems unlikely that this result is new, the author was
unable to find its proof in the literature. For completeness, the result is proved
formally here.

Observation 4.1. The mobile Euclidean 1-centre, Ξd, is continuous.

Proof. Assume the mobile Euclidean 1-centre, Ξd, is discontinuous. Therefore,
there exists a time interval T = [0, tf ], an instant t1 ∈ (0, tf ), a fixed positive
integer d, and a set of mobile clients P in Rd defined over T such that the motion
of Ξd is discontinuous at t1. By Def. 3.3, this implies

∃ǫ > 0, ∀δ > 0, ∃t2 ∈ (t1 − δ, t1 + δ), ||Ξd(P (t1)) − Ξd(P (t2))|| ≥ ǫ. (4.1)

Let r1 denote the Euclidean radius of P (t1). Let ǫ > 0 be fixed such that
Eq. (4.1) holds. Choose any δ ∈ (0,

√
r2
1 + ǫ2 − r1). Choose t2 ∈ (t1 − δ, t1 + δ)

such that Eq. (4.1) holds. Let r2 denote the Euclidean radius of P (t2). Recall
that the Euclidean 1-centre of a set of clients is unique. Therefore Ξd(P (t1))
and Ξd(P (t2)), the respective centres of the minimum enclosing hyperspheres
of P (t1) and P (t2), are two distinct points that lie at least ǫ apart from each
other. See Fig. 4.1A.

Let l be the line that passes through Ξd(P (t1)) and Ξd(P (t2)). Let H1 and
H2 be the hyperplanes perpendicular to line l that pass through Ξd(P (t1)) and
Ξd(P (t2)), respectively. Let H+

2 denote the half-space induced by H2 that lies
opposite Ξd(P (t1)). See Fig. 4.1B.

Case 1. Assume r2 ≥ r1. There must be some client p in P whose position

at time t2 lies both in H+
2 and on the minimum enclosing hypersphere of P (t2).

We bound the displacement of p by

||p(t1) − p(t2)|| ≤ |t1 − t2| < δ <
√

r2
1 + ǫ2 − r1 ≤

√
r2
2 + ǫ2 − r1. (4.2)
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Figure 4.2: illustrations supporting Thm. 4.2 (reproduced from [BBKS00])

Since p lies in H+
2 and r2 ≥ r1,

||Ξd(P (t1)) − p(t2)|| ≥
√

r2
2 + ǫ2. (4.3)

See Fig. 4.1C. By the triangle inequality,

||Ξd(P (t1)) − p(t2)|| ≤ ||Ξd(P (t1)) − p(t1)|| + ||p(t1) − p(t2)||
≤ r1 + ||p(t1) − p(t2)||

<
√

r2
2 + ǫ2, by Eq. (4.2). (4.4)

Eqs. (4.3) and (4.4) derive a contradiction; our assumption must be false and
the mobile Euclidean 1-centre, Ξd, must be continuous.

Case 2. Assume r2 < r1. The argument is analogous to Case 1, except we
reverse t1 and t2.

Although the motion of the mobile Euclidean 1-centre is continuous, Bereg
et al. demonstrate that its velocity is unbounded in two or more dimensions.
Specifically,

Theorem 4.2 (Bereg et al. 2006 [BBKS06]). For any velocity v ≥ 0 there is a
set of three sites s1, s2, s3 in Rd, d ≥ 2 such that a unit velocity motion of two
of the sites induces an instantaneous velocity greater than v of the Euclidean
1-center.

An example of a set of three mobile clients that realizes Thm. 4.2 is displayed
in Fig. 4.2A. Bereg et al. also give a similar example using four mobile clients
displayed in Fig. 4.2B.

As immediate consequence of Thm. 4.2, no bounded-velocity facility function
can follow a trajectory that remains within an arbitrarily-small ǫ-neighbourhood
around Ξd(P (t)) for d ≥ 2.

When d = 1, the mobile Euclidean 1-centre moves with at most unit velocity
relative to the velocity of clients.
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Observation 4.3. The one-dimensional mobile Euclidean 1-centre, Ξ1, has
maximum velocity 1. Furthermore, this velocity is realizable.

Proof. Choose any time interval T and any finite set of mobile clients P in R

defined over T .

∀t1, t2 ∈ T, ||Ξ1(P (t1)) − Ξ1(P (t2))||

=

∣∣∣∣
∣∣∣∣
1

2

(
min

p∈P (t1)
p + max

q∈P (t1)
q

)
− 1

2

(
min

r∈P (t2)
r + max

s∈P (t2)
s

)∣∣∣∣
∣∣∣∣

≤1

2

∣∣∣∣
∣∣∣∣ min
p∈P (t1)

p − min
q∈P (t2)

q
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∣∣∣∣+
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∣∣∣∣ max
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q

∣∣∣∣
∣∣∣∣

≤max
p∈P

||p(t1) − p(t2)||

≤|t1 − t2|.

The bound is realized when the endpoints of P move with unit velocity in a
common direction.

4.3 Comparison Measures

This section expands on the comparison measures defined in Ch. 3 in terms
specific to centre functions. We examine bounds on the relationship between
eccentricity and maximum velocity and enumerate additional properties nat-
urally associated with notions of centrality. Due to their relevance to the
topics of this section, we refer to several results from the work of Bereg et
al. [BBKS00, BBKS06].

4.3.1 Bounds on Eccentricity and Maximum Velocity

We are motivated to define centre functions that approximate the Euclidean
1-centre in the sense that they come close to minimizing Expr. (2.5) and yet
have bounded maximum velocity. Thus, we examine centre functions with the
twofold objective of minimizing both eccentricity and maximum velocity.

Let P denote a finite set of clients. The simplest definition of a centre
function Υd(P ) (that is not independent of P ) simply assigns Υ2(P ) = p, for
some client p ∈ P . Of course, the velocity of Υd cannot exceed that of client p,
and thus its maximum velocity is one. Since all clients of P must be contained
within the minimum enclosing hypersphere of P , the distance from p to any
client q ∈ P is at most the diameter of the hypersphere, namely, twice the
Euclidean radius. This bound is tight; the worst case is realized when Υd(P )
lies opposite Ξd(P ) from some client q ∈ P and the line segment pq forms a
diameter of the minimum enclosing hypersphere of P . See the example for
d = 2 in Fig. 4.3. Therefore, Υd is 2-eccentric.

In fact, as demonstrated by Bereg et al., a similar property holds for any
centre function on P contained within the convex hull of P :
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Figure 4.3: Centre function Υ2(P ) = p has eccentricity 2 and maximum velocity
1, where p is a client in P .

Lemma 4.4 (Bereg et al. 2006 [BBKS06]). Let f be the initial position of a
facility in Rd.

1. If f is contained in the convex hull of P then there is an efficiently main-
tained unit velocity-bounded motion for f that guarantees a 2-approximation
of the Euclidean 1-center [of P ].

2. If f lies outside of the convex hull of P then no constant approximation
factor can be guaranteed for any unit velocity-bounded motion for f .

This sets an upper bound for the eccentricity factor λ; any reasonable
bounded-velocity λ-eccentric centre function should have an eccentricity fac-
tor λ ≤ 2. Furthermore, since the Euclidean 1-centre is defined as the point
that minimizes Expr. (2.5), the eccentricity of any centre function must be at
least 1.

As for maximum velocity, Bereg et al. show the following:

Theorem 4.5 (Bereg et al. 2006 [BBKS06]). There exist arbitrarily large sets
P of mobile sites in Rd, d ≥ 2, with velocities bounded by 1, such that no mobile
facility that moves with velocity at most 1 can maintain a λ-approximation of
the Euclidean 1-center of P , for λ < 2.

Thm. 4.5 implies that any centre function with maximum velocity at most
one has eccentricity at least two. It is straightforward to show that if a centre
function has maximum velocity less than one, then its eccentricity must be
infinite.

Since our goal is the identification of bounded-velocity centre functions, this
sets an upper bound for the range of maximum velocities for centre functions
we consider; any reasonable bounded-velocity λ-eccentric centre function will
have maximum velocity vmax ≥ 1.
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Figure 4.4: v∗(λ) defines a theoretical lower bound on the maximum velocity of
a centre function Υd with eccentricity λ. Although its behaviour is understood,
the precise value of v∗(λ) is unknown.

In summary, centre functions that define candidates for good bounded-
velocity approximations of the mobile Euclidean 1-centre have eccentricity in
the range λ ∈ [1, 2] and maximum velocity in the range vmax ∈ [1,∞); a good
centre function will have eccentricity and maximum velocity both close to 1.

4.3.2 Maximum Velocity as a Function of Eccentricity

Reducing eccentricity increases maximum velocity and vice-versa. The challenge
lies in understanding the trade-off between the degree of eccentricity (in the
range [1, 2]) and the maximum velocity (in the range [1,∞)). To express the
actual correlation between vmax and λ, we define a function v∗ over all centre
functions Υd and all sets of clients P . For any fixed λ ∈ [1, 2], let v∗(λ) denote
the lowest maximum velocity over all centre functions with eccentricity λ. This
defines a function v∗ : [1, 2] → [1,∞), where v∗(2) = 1 and limλ→1 v∗(λ) = ∞.
Thus, the maximum velocity of any centre function Υd with eccentricity λ is at
least v∗(λ). While the precise value of function v∗(λ) for any fixed λ ∈ (1, 2)
remains unknown, the asymptotic behaviour of v∗(λ) is understood, as shown
by Bereg et al.:

Theorem 4.6 (Bereg et al. 2006 [BBKS06]). For every ǫ > 0, any (1 + ǫ)-
approximate mobile Euclidean 1-center has velocity at least 1/(8

√
ǫ) in the worst

case.

In terms of function v∗, Thm. 4.6 implies

v∗(λ) ≥ 1

8
√

λ − 1
, (4.5)

59



CHAPTER 4. MOBILE EUCLIDEAN 1-CENTRE

since λ = 1 + ǫ. See Fig. 4.4. Since any centre function must have at least
unit velocity, the lower bound implied by Thm. 4.6 is only valid in the range
λ ∈ [1, 65/64]. This follows directly from Eq. (4.5):

1

8
√

λ − 1
≥ 1 ⇔ λ ≤ 65

64
. (4.6)

Although this lower bound may not be realizable, Thm. 4.6 implies that
no bounded-velocity λ-approximate centre function is possible for an arbitrary
λ ≥ 1 and a fixed vmax that is independent of λ. We refer to this lower bound
again in Sec. 4.9, upon comparing the eccentricity and maximum velocity of
various centre functions.

Bereg et al. consider the strategy of always moving the centre function to-
ward the current position of the Euclidean 1-centre. The corresponding rela-
tionship between maximum velocity and eccentricity for this strategy leads to
the following upper bound on v∗ in R2:

Theorem 4.7 (Bereg et al. 2006 [BBKS06]). For any ǫ > 0 there is a strategy
for moving a facility such that (i) the location of the facility provides an approx-
imation of the Euclidean 1-center of a set P of points in R2 that is never worse
than 1 + ǫ, and (ii) the velocity of the facility never exceeds

(2 + ǫ)(1 + ǫ)√
2ǫ + ǫ2

. (4.7)

In terms of λ, Thm. 4.7 implies

v∗(λ) ≤ λ

√
λ + 1

λ − 1
, (4.8)

when the set of clients, P , lies in R2. See Fig. 4.4. Eq. (4.8) achieves a local
minimum at λ = 1

2 (1 +
√

5) ≈ 1.61803. Thus, the range over which Eq. (4.8) is

decreasing corresponds to values λ ∈ (1, 1
2 (
√

5 + 1)).

The bounds on function v∗ given in Eqs. (4.5) and (4.8) are by no means
tight; in particular, the centre functions we examine provide data points much
closer to the true value of v∗(λ) than the upper bound of Eq. (4.8).

Observation 4.8. Function v∗ is non-increasing.

Proof. Suppose v∗ is not non-increasing. That is, v∗(λ′) > v∗(λ) for some
1 < λ < λ′. Let Υd be a centre function with eccentricity λ and maximum
velocity v∗(λ) (such a function must exist by the definition of v∗). Similarly, let
Υ′
d be a centre function with eccentricity λ′ and maximum velocity v∗(λ′). Since

Υd is λ-eccentric and λ′ > λ, Υd is also λ′-eccentric. Therefore, v∗(λ′) ≤ v∗(λ),
contradicting our original assumption.
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Figure 4.5: Point p is an extreme point of set P .

4.3.3 Additional Notions of Centrality

Although eccentricity and maximum velocity define the two principal measures
by which we evaluate centre functions, the following define additional natural
properties for a centre function Υd, all of which are properties exhibited by the
Euclidean 1-centre:

1. Υd(P ) should depend only on the extreme points of P (see Def. 4.1).

2. Υd(P ) should be invariant under rotation, uniform scaling, reflection, and
translation.

3. If P resides in a (d−i)-flat in Rd, then the d-dimensional definition, Υd(P ),
should coincide with the (d − i)-dimensional definition, Υd−i(P ).

For each centre function Υd examined, we evaluate the fitness of Υd and
compare it against other centre functions primarily in terms of its eccentricity
and maximum velocity. In addition, to further understand the behaviour of Υd,
we also determine whether each of the properties listed above also holds for Υd.

Since its definition recurs frequently, we formalize the notion of an extreme
point of a set of clients. A (d − 1)-dimensional hyperplane H partitions Rd

into three regions: H itself and the two open connected components of Rd−H,
which we denote by H+ and H−.

Definition 4.1. A point p is an extreme point of the set P in Rd if and only
if for some (d − 1)-dimensional hyperplane H and associated half-space H+, p
satisfies P ∩ H+ = {p}.

Note that the extreme points of P are just the vertices of CH(P ), where
CH(A) denotes the convex hull of a set A in Rd. See Fig. 4.5.

4.4 Rectilinear 1-Centre

This section examines properties of the mobile rectilinear 1-centre as an approx-
imation to the mobile Euclidean 1-centre. Refer to Sec. 2.5.1 for a definition of
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Figure 4.6: example realizing the eccentricity and maximum velocity of the
rectilinear 1-centre (reproduced from [BBKS00])

the rectilinear 1-centre.
Recall that the rectilinear 1-centre of P , denoted Rd(P ), is a point that

minimizes the maximum Chebyshev (ℓ∞) distances from any client in P to
Rd(P ). Given that its maximum velocity is bounded, this property suggests
the rectilinear 1-centre as a natural candidate for providing an approximation
of the Euclidean 1-centre.

As mentioned in Sec. 2.5.1, it is straightforward to demonstrate that the
rectilinear 1-centre is invariant under translation and scaling, but not under
rotation or reflection. Also, the rectilinear 1-centre depends only on the extreme
points of P and its definition is consistent across dimensions.

4.4.1 Rectilinear 1-Centre: Eccentricity

As shown by Bereg et al. [BBKS00], the rectilinear 1-centre in R2 has eccentricity
(1 +

√
2)/2 ≈ 1.2071. The worst-case eccentricity is achieved by the following

example. Let p1 = (1 + 1/
√

2, 1 + 1/
√

2), p2 = (1, 0), and p3 = (0, 1) [BBKS00].
See Fig. 4.6A. We generalize this result to Rd:

Theorem 4.9. The d-dimensional rectilinear 1-centre, Rd, is 1
2 (1+

√
d)-eccentric.

Proof. Choose any d ≥ 1. Assume P is a set of clients in Rd that maximizes the
eccentricity of Rd. Since Rd is invariant under translation, assume the bounding
box of P is BB(P ) = [0, x1] × . . . × [0, xd], for some x = (x1, . . . , xd) ∈ [0,∞)d.
Every face of BB(P ) must be supported by the position of some client p ∈ P .
The rectilinear 1-centre of P is located at Rd(P ) = x/2.

Let a ∈ P be a furthest client from Rd(P ). Since Rd is invariant under
reflection, assume ai > Rd(P )i for all 1 ≤ i ≤ d. That is, a lies in the region
[Rd(P )1, x1]× . . .× [Rd(P )d, xd]. Let D denote the region [0, a1]× . . . × [0, ad].
Let P ′ = D ∩ P . Observe that a must lie in a corner of BB(P ) (that is,
D = BB(P )) otherwise, the maximum distance from Rd(P

′) to any client of P ′

would exceed the maximum distance from Rd(P ) to any client of P while the
Euclidean radius of P ′ would be less than or equal to that of P . Consequently,
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Figure 4.7: illustrations supporting Thm. 4.9

the eccentricity of P ′ would be greater than the eccentricity of P , contradicting
our assumption. See Fig. 4.7A.

Client a supports the faces of BB(P ) that are not adjacent to the origin.
The remaining faces of BB(P ) must be supported by other clients of P . Observe
that a supporting client bi must be perpendicular to Ξd(P ) with respect to the
face, otherwise, moving bi to the perpendicular position b′i would reduce the
Euclidean radius while the maximum distance from Rd(P ) to any client of P
remained constant. Again, the eccentricity of P ′ would be greater than the
eccentricity of P , contradicting our assumption. See Fig. 4.7B. Without loss of
generality, we may scale P such that the coordinates of each supporting point,
bi, are

bi = (1, . . . , 1︸ ︷︷ ︸
i−1

, 0, 1, . . . , 1︸ ︷︷ ︸
d−i

).

The maximum distance from Rd(P ) to any client of P is 1
2 ||x||. Let r denote

the Euclidean radius of P . For every dimension i, Ξd(P ) lies a distance r from
point bi. Therefore, Ξd(P ) lies a distance xi − r from the opposite face of the
bounding box. See Fig. 4.7C. The distance from Ξd(P ) to a also corresponds
to the Euclidean radius, r. Consequently,

r2 = ||Ξd(P ) − a||2

=
d∑

i=1

(xi − r)2,

⇔ 0 = (d − 1)r2 − 2r
d∑

i=1

xi +
d∑

i=1

x2
i

= (d − 1)r2 − 2r||x||1 + ||x||2.

Solving for r gives

r =
||x||2

||x||1 ±
√
||x||21 − (d − 1)||x||2

. (4.9)
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The plus/minus in Eq. (4.9) must be plus since by assuming it is minus we
derive the following contradiction,

r =
||x||2

||x||1 −
√

||x||21 − (d − 1)||x||2
≥ ||x||2

||x||1
=

( ||x||
||x||1

)
||x|| >

1

2
||x||.

Since the Euclidean radius cannot be greater than the maximum distance from
Rd(P ) to any client of P , the sign must be plus. The eccentricity, λ, of Rd(P ) is
given by the ratio of the the Euclidean radius and the maximum distance from
Rd(P ) to any client of P . That is,

λ =
||x||
2r

=
||x||

(
||x||1 +

√
||x||21 − (d − 1)||x||2

)

2||x||2

=
||x||1 +

√
||x||21 − (d − 1)||x||2

2||x||

=
1

2


 ||x||1

||x|| +

√[ ||x||1
||x||

]2
− d + 1


 . (4.10)

Since all values are non-negative, λ is maximized if and only if ||x||1/||x|| is
maximized. To locate this maximum, we examine the partial derivatives of
||x||1/||x|| with respect to xi for all 1 ≤ i ≤ d.

∂

∂xi

||x||1
||x|| = 0,

⇒

(
∂
∂xi

||x||1
)
||x|| − ||x||1

(
∂
∂xi

||x||
)

||x||2 = 0,

⇒ 1

||x|| −
xi||x||1
||x||3 = 0,

⇒ xi =
||x||2
||x||1

. (4.11)

Since Eq. (4.11) must hold for all 1 ≤ i ≤ d, it must be the case that x1 = . . . =
xd. Consequently, ||x||1/||x|| =

√
d and Eq. (4.10) becomes

λ =
1

2
(
√

d + 1).

The bound on the eccentricity of the rectilinear 1-centre is tight. Thus,

Corollary 4.10. . The d-dimensional rectilinear 1-centre, Rd, cannot guaran-
tee λ-eccentricity for any λ < 1

2 (
√

d + 1).
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Figure 4.8: In R3, the rectilinear 1-centre may lie outside the convex hull.

Proof. The result follows from the example derived in the proof of Thm. 4.9
which achieves eccentricity 1

2 (
√

d + 1).

As a consequence of Thm. 4.9, observe that in higher dimensions, the recti-
linear 1-centre is quite eccentric, more so than any fixed client of P or any client
contained within the convex hull of P (these both have eccentricity at most 2
by Lem. 4.4). Specifically, Thm. 4.9 implies that when d = 9, R9 is 2-eccentric
and when d > 9, Rd has eccentricity greater than 2. This is because although
Rd ∈ CH(P ) in R and R2, the rectilinear 1-centre may lie outside the convex
hull in Rd for d ≥ 3. We formalize this observation with an example in R3.

Observation 4.11. For some sets of clients P in Rd, the rectilinear 1-centre
of P lies outside the convex hull of P .

Proof. Let d = 3 and let P = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}. Let H−

denote the half-space induced by the clients {(0, 0, 1), (0, 1, 0), (1, 0, 0)} with
corresponding equation x + y + z − 1 ≤ 0. See Fig. 4.8. The convex hull
of P is simply CH(P ) = H− ∩ [0, 1]3. The rectilinear 1-centre of P lies at
R3(P ) = 1

2 (1, 1, 1). Since 1
2 + 1

2 + 1
2 − 1 = 1

2 > 0, R3(P ) 6∈ CH(P ).

4.4.2 Rectilinear 1-Centre: Maximum Velocity

Bereg et al. give the following tight bound on the velocity of the d-dimensional
rectilinear 1-centre:

Observation 4.12 (Bereg et al. 2000 [BBKS00]). For any instance of the mobile
1-center problem in Rd, d ≥ 1 there is a rectilinear 1-center whose velocity is
bounded by

√
d. Furthermore, there is an instance of the problem with a unique

solution moving with velocity
√

d.

An example in R2 that achieves velocity
√

2 is given by four clients, p4, . . . ,
p7, such that each edge of the bounding box contains one client in its interior.
Pairs of clients opposite each other move in a common direction perpendicular
to the adjacent edge [BBKS00]. See Fig. 4.6B. This example is easily generalized
to higher dimensions.
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4.5 Centre of Mass

This section discusses properties of the centre of mass as an approximation to
the mobile Euclidean 1-centre. Refer to Sec. 2.5.2 for the definition of the centre
of mass.

The centre of mass of a set of clients P , denoted Cd(P ), is commonly used
to define a point that is “central” to P . The centre of mass performs rea-
sonably well in the mobile setting as a bounded-velocity approximation of the
Euclidean 1-centre. By Lem. 4.4, assigning Υd(P ) to be any client p ∈ P de-
fines a 2-eccentric centre function with maximum velocity one. As we show in
Sec. 4.5, defining Υd to be the average position of clients in P improves neither
eccentricity nor maximum velocity.

Unlike centre functions whose definitions depend only on the extreme points
of P , the centre of mass assigns equal importance (hence its name) to every client
of P . The invariance of the centre of mass under similarity transformations is
straightforward to demonstrate. Also, the definition of the centre of mass is
consistent across dimensions.

4.5.1 Centre of Mass: Eccentricity

Since Cd(P ) is a convex combination of the positions of clients of P , Cd(P )
must lie in the convex hull of P . Consequently, Cd has eccentricity at most
2 by Lem. 4.4. More precisely, Bereg et al. give the following bound on the
eccentricity of the d-dimensional centre of mass:

Lemma 4.13 (Bereg et al. 2006 [BBKS06]). The centre of mass of a set of n
sites P in Rd, d ≥ 1, provides a (2− 2

n )-approximation of the Euclidean 1-center
of P .

This bound is tight:

Corollary 4.14. The d-dimensional centre of mass, Cd, cannot guarantee λ-
eccentricity for any λ < 2.

Proof. The result follows from Thm. 4.5 and Cor. 4.15.

The worst case is realized even in one dimension by n − 1 clients located at
the origin and a single client located at any fixed distance away from the origin.

4.5.2 Centre of Mass: Maximum Velocity

The maximum velocity of the centre of mass is an immediate consequence of a
result of Bereg et al. [BBKS06], which we mention in our discussion of convex
combinations of centre functions in Sec. 4.8.

Corollary 4.15. The d-dimensional mobile centre of mass, Cd, has maximum
velocity 1.

Proof. The result follows from Obs. 4.32.
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The bound on maximum velocity is tight.

Observation 4.16. The d-dimensional mobile centre of mass cannot guarantee
relative velocity less than 1.

Proof. When all clients of P move with unit velocity in a common direction,
the velocity of the centre of mass is exactly one.

4.6 Steiner Centre

The Steiner centre is named after Jakob Steiner who first introduced this point in
the late nineteenth century [Ste81]. The original definition of the Steiner centre
was phrased in terms of projection and integration, leading to the definition
in Sec. 4.6.2. A second, fundamentally different definition, phrased in terms
of Gaussian weights given by turn angles at the extreme points leads to the
definition in Sec. 4.6.1. The equivalence of these two definitions was shown by
Shephard [She66]. The dual definitions allow for numerous properties to be
established; the definition by Gaussian weights lends itself to implementation
within a kinetic data structure while the definition by projection allows the
demonstration of bounds on eccentricity and maximum velocity.

The properties of the mobile Steiner centre compare very well against those
of other mobile centre functions and suggest the Steiner centre as a natural
choice for a bounded-velocity approximation to the mobile Euclidean 1-centre.

Synonyms for the Steiner centre include the Steiner curvature centroid [Buc80,
Hon95], Steiner point [Grü67, Sal66, She64, She66, She68], Kimberling triangle
centre X(1115) [Kim], Gaussian centre [DK03, DK04], and projection centre
[DK04].

The Steiner centre of a static set of clients can be found in O(n log n) time
in R2 and R3 by direct implementation of the definition by Gaussian weights
described below. This time complexity derives from finding the convex hull of
the client set, requiring Θ(n log h) time in R2 [KS86] and R3, [Cha96], where h
denotes the number of clients on the convex hull boundary. Developing efficient
algorithms for maintaining the mobile Steiner centre require us to examine the
m-hull of a set of clients, an approximation of the two-dimensional convex hull
which is detailed Sec. 8.2.2. In this section we focus on examining the quality
of the Steiner centre as an approximation of the mobile Euclidean 1-centre and
we postpone algorithmic considerations until Ch. 8.

4.6.1 Definition by Gaussian Weights

Euclidean space, specifically, R, R2, and R3, define the most common settings
for a variety of geometric problems including centre functions. Whereas the
centre problem is simpler in one dimension (even the Euclidean 1-centre has
maximum velocity one in R), the more interesting characteristics of a centre
function are of exhibited in R2 and R3.
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p

π−α αp
p

Figure 4.9: The turn angle at vertex p on the convex hull of P defines the
two-dimensional Gaussian weight of p, w2(p) = π − αp.

In this section we motivate defining a centre function using Gaussian weights,
namely, the Steiner centre, first for a finite set P in R2, and then, more generally,
for any bounded set P in R2. We then generalize the definitions to R and
R3. As will be discussed in Sec. 8.2, the simple and intuitive definition of the
Steiner centre by Gaussian weights will prove effective in efficiently calculating
the position of a mobile facility that balances low maximum velocity and low
eccentricity.

Steiner Centre Definition by Gaussian Weights in Two Dimensions
The simplest setting in which to examine the problem of finding the Euclidean
1-centre is R. In this domain, the Euclidean 1-centre of a finite set of clients P
in R satisfies

Ξ1(P ) =
1

2

(
min
p∈P

p + max
q∈P

q

)
. (4.12)

Given a finite set of clients P in R, Ξ1(P ) is the average of the two extreme
points of P . The same is true in any dimension; Ξd(P ) is determined by the
extreme points of P . In two or more dimensions the mean of the extreme
points of P is discontinuous and provides a poor approximation (eccentricity
2) to the Euclidean 1-centre. The discontinuity of such a centre function Υ2

becomes evident whenever the motion of clients in P alters the composition of
the set of extreme points. For the same reason, any centre function defined
as a fixed weighted average of the extreme points of P is also discontinuous.
Nevertheless, while the mean of the extrema does not provide a robust centre
function, Eq. (4.12) suggests other possible generalizations to higher dimensions.
By choosing weights that depend on the degree of extremity of individual clients
it is possible to ensure not only continuity but also a low upper bound on
maximum velocity.

For clarity, Defs. 4.2, 4.3, 4.5, and 4.6 assume |P | ≥ 2. In the case when
|P | = 1 (that is, P = {p}, for some p) we simply define the Steiner centre of P
to be Γd(P ) = p.

Definition 4.2. Let P in R2 be a finite set of clients with |P | ≥ 2. Let VP
denote the set of extreme points of P . For every p ∈ VP , let αp denote the
interior angle formed on the convex hull boundary at p. The two-dimensional
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Figure 4.10: the Steiner centre Γ2(P ) of the set P = {p1, . . . , p6}

Gaussian weight of p is

w2(p) =

{
π − αp if p ∈ VP
0 if p ∈ P − VP .

(4.13)

For p ∈ VP , w2(p) corresponds to the turn angle at p on CH(P ). Conse-
quently,

∑
p∈P w2(p) = 2π. See Fig. 4.9. Note, w2(p) > 0 if and only if p is an

extreme point of P . Expressed in terms of Gaussian weight, the Steiner centre
is defined as the normalized weighted centre of mass of P , with weights specified
by the Gaussian weights of P .

Definition 4.3. Let P in R2 be a finite set of clients with |P | ≥ 2. The two-
dimensional Steiner centre of P is the normalized weighted mean of P :

Γ2(P ) =
1

2π

∑

p∈P
w2(p)p, (4.14)

where w2(p) is the two-dimensional Gaussian weight of client p ∈ P .

For example, let P = {p1, . . . , p6} = {(−2,−1), (2,−1), (2, 1), (0, 1), (−1,−1),
(1, 0)}, respectively. See Fig. 4.10. Since w2(p) = π−αp, clients p1, . . . , p6 have
weights 3π/4, π/2, π/2, π/4, 0, and 0, respectively. The Steiner centre of P ,
Γ2(P ), lies in position (1/4,−1/4). The Euclidean 1-centre of P , Ξ2(P ), lies at
the origin.

Since the Steiner centre of P depends only on the extreme points of P , Γ2(P )
remains well defined for infinite bounded sets P provided the set of extreme
points is finite (for example, a polygonal region P ). When the set of extreme
points is infinite, the interior angle of clients on the convex hull is not well
defined since distances between neighbouring clients may be infinitesimal. Thus,
we provide a generalized definition of the Steiner centre equivalent to Def. 4.3.

Let ext(P, θ) denote an extreme point of set P in direction (cos θ, sin θ).
That is, p = ext(P, θ) if and only if there exists a half-plane H+ with outer
normal (cos θ, sin θ) such that P ∩ H+ = {p}. Note, the extreme point in
a given direction θ may not exist (if it does exist, then it is unique by the
above definition). We select a unique extreme point for every θ by defining
Ext(P, θ) = limφ→θ+ ext(P, φ).
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p

α

β

γ

Figure 4.11: alternative definition for the Gaussian weight of p

Thus, just as we defined the continuous Euclidean 1-centre and the contin-
uous centre of mass in Sec. 2.5.3, we now define the continuous Steiner centre
of any bounded set of clients P :

Definition 4.4. Let P in R2 be a bounded set of clients. The two-dimensional
continuous Steiner centre of P is

Γ2(P ) =
1

2π

∫ 2π

0

Ext(P, θ) dθ. (4.15)

Eq. (4.15) is easily shown to be equivalent to Def. 4.3 for any finite set P .

Observation 4.17. Given a finite set P in R2, the Steiner centre of P coincides
with the continuous Steiner centre of P .

Proof. Let p be an extreme point of P such that α and β define the angles of the
edges adjacent to p relative to the x-axis. See Fig. 4.11. The Gaussian weight
of p multiplied by its position is

w2(p)p = (π − γ)p = (β − α)p =

∫ β

α

p dθ =

∫ β

α

Ext(P, θ) dθ.

The Gaussian weight formulation of Steiner centre exhibits several desir-
able properties of a bounded-velocity centre function. The Steiner centre is
defined solely in terms of the geometry of the boundary of the convex hull of
P . Small changes in the convex hull result in small changes in the weights
of clients. Specifically, if a client p moves continuously, then the weight of p
changes continuously, even when p moves along, joins, or leaves the convex hull
boundary. This continuous change in weights results in continuity in the mo-
tion of the Steiner centre by smoothly blending the contribution of each client.
Furthermore, as proved in Sec. 4.6.3, the relative position of the Steiner centre
is invariant under similarity transformations. Specifically, it is straightforward
to show that Γ2(g(P )) = g(Γ2(P )), where g : R2 → R2 is any translation, uni-
form scaling, rotation, or reflection for any bounded set of clients P in R2. The
quality of Γ2 as a bounded-velocity centre function is evaluated in terms of ec-
centricity and maximum velocity in Secs. 4.6.4 and 4.6.5 and compared against
other centre functions in Sec. 4.9.

See Secs. 8.2.1 through 8.2.3 for a description of algorithms for maintaining
the mobile Steiner centre in two dimensions.
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Figure 4.12: The plane angles at vertex p on the convex hull of P define the
three-dimensional Gaussian weight of p, w3(p).

Steiner Centre Definition by Gaussian Weights in Three Dimensions
In three dimensions, the Steiner centre of a set of clients P in R3 is again defined
as a weighted mean. This time, however, a client p ∈ VP is adjacent to a set of
faces on the boundary of the convex hull of P ; the three-dimensional Gaussian
weight of p is defined in terms of the angles formed at the faces that meet at
p. See Fig. 4.12. Again, the turn angle at p (corresponding to the measure
of the space of all supporting half-spaces of p) is directly proportional to the
contribution of p to Γ3(P ).

Definition 4.5. Let P in R3 be a finite set of clients with |P | ≥ 2. Let VP
denote the set of extreme points of P . For every p ∈ VP , let Fp denote the set of
faces that meet at p. For every face fj ∈ Fp, let αp,j denote the interior plane
angle on fj at p. The three-dimensional Gaussian weight of p is

w3(p) =





2π −
∑

fj∈Fp

αp,j if p ∈ VP

0 if p ∈ P − VP .

(4.16)

The sum of the plane angles at a client p ∈ VP ranges from 2π (when p is
coplanar with its neighbours) and approaches a limit of 0 (when the neighbours
of p approach collinearity). By Euler’s theorem, the three-dimensional Gaussian
weights of any arrangement of clients sum to 4π. Thus, in three dimensions we
normalize by 1/4π.

Definition 4.6. Let P in R3 be a finite set of clients with |P | ≥ 2. The three-
dimensional Steiner centre of P is the normalized weighted mean of P :

Γ3(P ) =
1

4π

∑

p∈P
w3(p)p, (4.17)

where w3(p) is the three-dimensional Gaussian weight of client p ∈ P .

As we did in R2, the definition of the Steiner centre generalizes to any
bounded set of clients P in R3. Let ext(P, θ, φ) denote an extreme point of a
nonempty and bounded set P ∈ P(R3) in direction (cos θ sinφ, sin θ sin φ, cos φ).
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A B C D

P2
CH(P2)

P3

CH(P3)

Figure 4.13: sets P2 in R2 and P3 in R3 and their corresponding 2- and 3-
polytopes, CH(P2) and CH(P3).

That is, p = ext(P, θ, φ) if and only if there exists a half-plane H+ ⊆ R3 with
outer normal (cos θ sin φ, sin θ sin φ, cos φ) such that P ∩ H+ = {p}. Again,
the extreme point in a given direction may not exist (if it does exist, then it is
unique by the above definition). We select a unique extreme point for every pair
θ ∈ [0, 2π) and φ ∈ [0, π) by defining Ext(P, θ, φ) = limα→θ+,β→φ+ ext(P, α, β).

Definition 4.7. Let P in R3 be a bounded set of clients. The three-dimensional
continuous Steiner centre of P is

Γ3(P ) =
1

4π

∫ 2π

0

∫ π

0

sinφExt(P, θ, φ) dθ. (4.18)

The factor sin φ is required for uniform integration over points on a sphere.

Steiner Centre Definition in One Dimension
A set of collinear client positions P can be viewed as a degenerate set of points
in R2 whose convex hull (a line segment) has two extreme points, each with
interior angle 0. This leads to a one-dimensional definition of Γ1 that assigns
equal weight to the extreme points of P . Thus,

Definition 4.8. Let P in R be a bounded set of clients. The one-dimensional
Steiner centre of P is

Γ1(P ) =
1

2

(
min
p∈P

p + max
p∈P

p

)
. (4.19)

Observe that Γ1(P ) = Ξ1(P ).

Correspondence between Gaussian Weights and the Gauss Map
The Gauss map (normal map) provides an alternative interpretation for Gaus-
sian weights. Since a Gauss map is typically defined on a polytope, we begin
our discussion of Gauss maps by first introducing the polytope as an alternative
to a set of points as an input parameter for some centre functions.

When Υd is one of the Euclidean 1-centre, the rectilinear 1-centre, or the
Steiner centre, Υd(P ) = Υd(CH(P )) for any finite set of clients P in Rd. This
property is not true of the centre of mass since its definition includes points in
the interior of CH(P ).
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Figure 4.14: correspondence between Gaussian weights and the Gauss map in
R2

Definition 4.9. A d-polytope is the convex hull of a finite set of points in
Rd. We refer simply to a polytope if d is understood to be arbitrary.

Def. 4.9 implies that a polytope P is nonempty, bounded, closed, convex,
and has a finite number of extreme points. See Fig. 4.13.

The two-dimensional Gauss map of a 2-polytope P is the set of normals to
edges of P projected from the origin as vertices on the unit circle. See [Car76]
and [Got96] for discussions of the Gauss map. Given a finite set of clients P in
R2, the Gauss map GP of CH(P ) divides the unit circle into sectors such that
the Gaussian weight of each extreme point of P is given by the length of its
corresponding arc in GP or, equivalently, the corresponding sector angle. The
Gaussian weight of client p ∈ VP corresponds to the angular difference between
the normals of the edges incident on p. The example in Fig. 4.14B displays the
Gauss map of the set of clients P from Fig. 4.14A.

Similarly, the Gauss map in R3 can be used to interpret three-dimensional
Gaussian weights. The three-dimensional Gauss map GP of a 3-polytope P is
the set of normals to faces of P projected from the origin onto the unit sphere.
GP divides the unit sphere into spherical sectors such that the Gaussian weight
of each client p ∈ VP is given by the surface area of its corresponding spherical
polygon in GP .

For example, let P = {a, b, c, d} be a regular tetrahedron. At each client in
P , three faces meet, each forming a plane angle of π/3. Every client p ∈ P has
Gaussian weight w3(P ) = 2π−(3 ·π/3) = π. Observe that the spherical polygon

A B
3

w (d)

b

d

c

a

Figure 4.15: the Gauss map in three dimensions
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corresponds to one quarter of the surface area of the unit sphere, an area equal
to π. In this example, the Steiner centre coincides with the Euclidean 1-centre.
See Fig. 4.15.

This equivalence is immediate in two dimensions. In three dimensions, the
Gaussian weight of a vertex p ∈ VP of degree k is equal to the area of the
corresponding k-sided spherical polygon as given by Girard’s formula for the area
of a spherical polygon. Plane angle θp,i at vertex p on the 3-polytope corresponds
to interior angle π − θp,i on the spherical polygon. Thus, the Gaussian weight
of client p, w3(p), is equivalent to the corresponding surface area, A(p), on GP :

w3(p) = 2π −
k∑

j=1

θp,j =




k∑

j=1

(π − θp,j)


− (k − 2)π = A(p), (4.20)

where θp,j are the plane angles at client p on the original 3-polytope.

Steiner Centre Definition by Gaussian Weights in Higher Dimensions

Just as the Steiner centre’s definition was generalized from R2 to R3, a similar
extension to R4 or Rd is possible by defining the appropriate higher-dimensional
generalization of Gaussian weights. Where two-dimensional Gaussian weight
corresponds to the turn angle and the three-dimensional Gaussian weight cor-
responds to the solid turn angle, a four-dimensional Gaussian weight could be
defined in terms of turn angles at the extreme points of a 4-polytope, also called
a polychoron. Just as the Gauss map provided an alternative interpretation for
Gaussian weights in R2 and R3, the four-dimensional Gauss map provides a
simple analogue for turn angles in R4, where the Gaussian weight of a client
corresponds to a volume on the boundary of the unit hypersphere S3. For the
remainder of the chapter, we restrict our attention to the Steiner centre in R,
R2, and R3. See Sec. 4.6.2 for a similar discussion on the generalization to
higher dimensions of the Steiner centre’s definition by projection.

4.6.2 Definition by Projection

Sec. 4.6.1 introduced the definition of the Steiner centre by Gaussian weights.
The second definition which we now provide is by projection and integration over
the positions of clients, first for a finite set in R2, and then in R and R3. As will
become evident in Secs. 4.6.4, and 4.6.5, this second definition by projection
lends itself to proving bounds on the eccentricity and maximum velocity of the
Steiner centre.

Steiner Centre Definition by Projection in Two Dimensions

In one dimension, the Euclidean 1-centre of a finite set of clients P is simply

Ξ1(P ) =
1

2

(
min
p∈P

p + max
q∈P

q

)
. (4.21)
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Figure 4.16: defining the Steiner centre Γ2 by projection

That is, Ξ1(P ) is the average of the two extreme points of P . As discussed
in Sec. 4.6.1, while the mean of the extrema does not provide a robust centre
function, Eq. (4.21) suggests other possible generalizations to higher dimensions.

One possibility is to project client positions onto a line through the origin,
to find the one-dimensional Euclidean 1-centre of the projection, and to average
these one-dimensional Euclidean 1-centres for all lines through the origin.

Let line lθ be the line through the origin parallel to the unit vector uθ =
(cos θ, sin θ). Expressed in slope-intercept form, lθ is the line y = tan θ x. Given
a finite set of clients P in R2 and an angle θ ∈ [0, π), let Pθ denote the projection
of P onto the line lθ. See Fig. 4.16A. That is,

Pθ = {uθ〈p, uθ〉 | p ∈ P}. (4.22)

The midpoint of Pθ is just the Euclidean 1-centre of Pθ,

mid(Pθ) =
uθ
2

(
min
p∈P

〈p, uθ〉 + max
q∈P

〈q, uθ〉
)

= Ξ2(Pθ). (4.23)

See Fig. 4.16B. Let p ∈ R2 be any fixed client. The average over all projections
of p onto lines lθ is

1

π

∫ π

0

uθ〈p, uθ〉 dθ =
p

2
.

See Fig. 4.16C. Equivalently, if P = {p},

p =
2

π

∫ π

0

uθ〈p, uθ〉 dθ =
2

π

∫ π

0

mid(Pθ) dθ.

This suggests the following definition of a centre function, shown to be equiv-
alent to Def. 4.3 by Shephard [She66]:

Definition 4.10. Let P in R2 be a finite set of clients. The two-dimensional
Steiner centre of P is

Γ2(P ) =
2

π

∫ π

0

mid(Pθ) dθ, (4.24)

where mid(Pθ) is the midpoint of the projection of P onto line y = tan θ x.

75



CHAPTER 4. MOBILE EUCLIDEAN 1-CENTRE

θ=0

θ=π/4
A B

θ
Pθ+π/2 Pθ

P
P

Figure 4.17: illustrations supporting Lem. 4.18

This second definition of the Steiner centre of P can be interpreted in terms
of bounding boxes of P . The bounding box of P with orientation θ is simply
CH(Pθ) + CH(Pθ+π/2), where addition denotes the Minkowski sum. Its centre
is the point mid(Pθ) + mid(Pθ+π/2). See Fig. 4.17. Hence,

Lemma 4.18. The Steiner centre of a set of clients P in R2, Γ2(P ), is equiv-
alent to the average of the centres of all bounding boxes of P .

Proof.

Γ2(P ) =
2

π

∫ π

0

mid(Pθ) dθ

=
2

π

[∫ π/2

0

mid(Pθ) dθ +

∫ π

π/2

mid(Pθ) dθ

]

=
2

π

∫ π/2

0

[
mid(Pθ) + mid(Pθ+π/2)

]
dθ.

Observe that the minimum of Pθ corresponds to the maximum of Pθ+π.
Specifically, we can rewrite Eq. (4.24) as

Γ2(P ) =
2

π

∫ π

0

mid(Pθ) dθ

=
2

π

∫ π

0

uθ
2

(
min
p∈P

〈p, uθ〉 + max
q∈P

〈q, uθ〉
)

dθ

=
1

π

∫ 2π

0

uθ · max
q∈P

〈q, uθ〉 dθ. (4.25)

The latter, Eq. (4.25), is used in the proof of Thm. 4.20.

Steiner Centre Definition by Projection in Three Dimensions
In three dimensions, we express the Steiner centre by projection in terms of
spherical coordinates. Let lθ,φ be the line through the origin parallel to the unit
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Figure 4.18: In R3, the Steiner centre is defined in terms of spherical coordinates,
parameterized by θ and φ.

vector uθ,φ = (cos θ sinφ, sin θ sin φ, cos φ). See Fig. 4.18. Let Pθ,φ and mid(Pθ,φ)
be the natural generalizations of Pθ and mid(Pθ) to spherical coordinates in R3,
respectively. Thus,

Pθ,φ = {uθ,φ〈p, uθ,φ〉 | p ∈ P} (4.26)

and

mid(Pθ,φ) =
uθ,φ
2

(
min
p∈P

〈p, uθ,φ〉 + max
q∈P

〈q, uθ,φ〉
)

= Ξ3(Pθ,φ). (4.27)

Let p ∈ R3 be any fixed point. The average over all projections of p onto all
lines lθ,φ is

1

2π

∫ π

0

∫ π

0

sin φ · p dφ dθ =
p

3
. (4.28)

The factor sinφ is required for uniform integration over points on a sphere.
The factor 1/2π normalizes over the range of the integration as shown by∫ π
0

∫ π
0

sinφ dφ dθ = 2π. Adding a factor of three returns p instead of p/3,
suggesting the following definition for a centre function:

Definition 4.11. Let P in R3 be a finite set of clients. The three-dimensional
Steiner centre of P is

Γ3(P ) =
3

2π

∫ π

0

∫ π

0

sinφmid(Pθ,φ) dφ dθ, (4.29)

where mid(Pθ,φ) is the midpoint of the projection of P onto the line through the
origin parallel to uθ,φ = (cos θ sin φ, sin θ sinφ, cos φ).

This definition is the natural analogue of the two-dimensional projection
centre, expressing Γ3(P ) as the average midpoint over all projections of P onto
lines lθ,φ.
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Steiner Centre Definition by Projection in Higher Dimensions
The definition of the Steiner centre by projection has a natural generalization
to Rd. We simply integrate the midpoint of the projection of P onto all lines
through the origin and normalize by the volume of the unit hypersphere.

Definition 4.12. Let P in Rd be a finite set of clients. Given a fixed d ∈ N,
the d-dimensional Steiner centre of P is

Γd(P ) =

d

∫

u∈Sd−1

mid(Pu) du
∫

u∈Sd−1

1 du

, (4.30)

where Sd−1 = {x ∈ Rd | ||x|| = 1} is the unit hypersphere and mid(Pu) is the
midpoint of the projection of P onto the line through the origin parallel to vector
u.

Again, we focus mainly on the definition of the Steiner centre in R2 and R3.

4.6.3 Properties of the Steiner Centre

To our knowledge, previous to our work, neither had the Steiner centre been
evaluated as a stable approximation to the Euclidean 1-centre nor had its quality
in defining the position of a mobile facility been examined. However, several
useful related properties of the Steiner centre have been established which we
mention here.

The Steiner centre is local [AF90]. That is, Γd(P ) ∈ CH(P ). As is necessary
for any bounded-velocity centre function, Γd is continuous [She64, She68].

When Γd is defined over polytopes P and Q, their respective Steiner centres
are invariant under addition [She68]. That is, Γd(P ) + Γd(Q) = Γd(P + Q),
where P + Q denotes the Minkowski sum of sets P and Q. Furthermore, Γd
is invariant under similarity transformations [She68]. Thus, for any similarity
transformation f : Rd → Rd, Γd(f(P )) = f(Γd(P )).

Sallee [Sal66] was the first to establish a relationship on the convex decom-
position of a polytope. Given polytopes P1, . . . , Pn such that P = P1 ∪ . . .∪Pn
is also a polytope, then

Γd(P ) =
∑

Γd(Pi)−
∑

i<j

Γd(Pi ∩Pj) + . . . + (−1)n−1Γd(P1 ∩ . . .∩Pn). (4.31)

Related to this idea, Shephard [She66] shows a relationship by a decomposition
of a polytope P into its j-faces. That is, Γd(P ) can be defined in terms of the
Steiner centres of the faces, edges, and vertices of P (in an arbitrary dimension
d):

(1 + (−1)d−1)Γd(P ) =
∑

Γd(F
0
i ) −

∑
Γd(F

1
i ) + . . . + (−1)d−1

∑
Γd(F

d−1
i ),

(4.32)
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where F j
i are the j-faces of P .

It is straightforward to show that the definition of Γd is consistent across
dimensions. Finally, observe that Γd(P ) remains well defined when P is any
nonempty and bounded region in Rd.

4.6.4 Steiner Centre: Eccentricity

In this section we prove that the eccentricity of the Steiner centre is at most λ ≈
1.1153 in R2. We show that this maximum is achieved when the extreme points
form an arc opposite an isolated point on the circle as displayed in Fig. 4.20B,
where α = 0 and β = γ ≈ 0.8105. We generalize this worst-case example to R3

to provide a lower bound of λ ≈ 1.2017 on the eccentricity of the Steiner centre
in three dimensions.

Recall that the worst-case eccentricity of a centre function Υd is defined
solely in terms of the position of Υd relative to the positions of the clients and
of the corresponding Euclidean radius. That is, bounds on the eccentricity of
Υd are independent of motion and are realized by the instantaneous position of
a set of mobile clients. As such, we examine the set of positions P (t0) of a set
of clients at some instant t0 ∈ T . The value of t0 is unimportant; for simplicity,
we write simply P to denote P (t0) throughout Sec. 4.6.4

Eccentricity of the Steiner Centre in Two Dimensions
We first derive the eccentricity of the Steiner centre in R2.

Lemma 4.19. Among all closed sets of clients P in R2 with Euclidean radius
r > 0, the worst-case eccentricity of Γ2 is realized when the extreme points of P
consist of an arc A and an isolated point m on the circle C with radius r and
centre Ξ2(P ).

Proof. Since Γ2(P ) = Γ2(CH(P )) and maxp∈P ||Γ2(P ) − p|| is realized at an
extreme point of P , we can assume that P is a convex set. Let m ∈ P be a
furthest client from Γ2(P ). Let ax (respectively, ay) denote the x-coordinate
(respectively, y-coordinate) of a point a ∈ R2. Since Γ2 is invariant under
rotation and translation, without loss of generality, we can further assume that
my = Γ2(P )y and mx ≥ Γ2(P )x. Since maxp∈P ||Γ2(P ) − p|| ≥ r > 0, the line
induced by m and Γ2(P ) is well defined.

For p ∈ P , let

p′ =

{
left translation of p to C if p 6= m
right translation of p to C if p = m

. (4.33)

Let set P ′ = {p′ | p ∈ P}. Observe that every point in P ′ corresponds to a
horizontal translation of some point in P . See Fig. 4.19. The x-coordinate of
the Steiner centre of P ′ is given by

Γ2(P
′)x =

2

π

∫ π

0

mid(P ′
θ)x dθ. (4.34)
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Figure 4.19: illustrations supporting Lem. 4.19

Since all clients of P ′ − {m′} are left translations of clients in P ,

mid(P ′
θ)x ≤ mid(Pθ)x +

m′
x − mx

2
, (4.35)

for any θ ∈ [0, π]. Therefore,

Γ2(P
′)x ≤ Γ2(P )x + (m′

x − mx), (4.36a)

and hence
m′
x − Γ2(P

′)x ≥ mx − Γ2(P )x. (4.36b)

Since mx ≥ Γ2(P )x and m′
x ≥ Γ2(P

′)x,

|m′
x − Γ2(P

′)x| ≥ |mx − Γ2(P )x|. (4.37)

Therefore,

||m′ − Γ2(P
′)|| ≥ |m′

x − Γ2(P
′)x| ≥ |mx − Γ2(P )x| = ||m − Γ2(P )||. (4.38)

Since all points of P ′ lie within the minimum enclosing circle of P , the Euclidean
radius of P ′ is at most the Euclidean radius of P . Therefore, Eq. (4.38) implies
that the eccentricity of P ′ is at least as great as the eccentricity of P . The
extreme points of set P ′ consist of an arc of C opposite the isolated point
m′.

Theorem 4.20. The two-dimensional Steiner centre Γ2 has eccentricity λ ≈
1.1153.

Proof. It follows from Lem. 4.19 that to understand the eccentricity of Γ2 it
suffices to study point sets P formed by an arc A of a circle C and an isolated
point m on C. Since Γ2 is preserved by translation, reflection, rotation, and
uniform scaling, we can assume C is the unit circle centred at the origin such
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Figure 4.20: Thm. 4.20: maximizing the eccentricity of the Steiner centre

that m lies in the first quadrant and the line induced by m and Γ2(P ) lies par-
allel to the x-axis. See Fig. 4.20A. Thus, point sets of interest are completely
characterized by three parameters which specify the angles α, β, and γ formed,
respectively, by the position of m relative to the positive x-axis and the end-
points of A relative to the negative x-axis. See Fig. 4.20B. Let Pα,β,γ denote
such a set of points. To find a point set that realizes the worst-case eccentricity
of Γ2 we need only maximize ||Γ2(Pα,β,γ) − m||. Since Γ2(Pα,β,γ)y = my and
Γ2(Pα,β,γ)x ≤ mx, this corresponds to maximizing mx − Γ2(Pα,β,γ)x.

The Steiner centre of Pα,β,γ is straightforward to calculate by examination
of the various cases for which specific extreme points of Pα,β,γ remain extreme
in Pθ. The coordinates of the extreme points of P are m = (cos α, sin α), b =
(− cos β, sin β), c = (− cos γ,− sin γ), and uθ = (cos θ, sin θ), for θ ∈ [π−β, π+γ].

Table 4.1 divides the range of integration, θ ∈ [0, 2π], into intervals for which
each of the points m, b, c, and uθ induce a maximum of Pθ.

interval of θ arg max
p∈P

〈p, uθ〉

[0, (π + α − β)/2] m
[(π + α − β)/2, π − β] b
[π − β, π + γ] uθ
[π + γ, (3π + α + γ)/2] c
[(3π + α + γ)/2, 2π] m

Table 4.1: case analysis of extreme points in Γ2(Pα,β,γ) in Thm. 4.20
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The x-coordinate of the Steiner centre of Pα,β,γ is given by

Γ2(Pα,β,γ)x =
1

π

∫ 2π

0

cos θ · max
p∈P

〈uθ, p〉 dθ

=
1

π

[∫ (π+α−β)/2

0

cos θ〈uθ,m〉 dθ +

∫ π−β

(π+α−β)/2

cos θ〈uθ, b〉 dθ

+

∫ π+γ

π−β
cos θ〈uθ, uθ〉 dθ +

∫ (3π+α+γ)/2

π+γ

cos θ〈uθ, c〉 dθ

+

∫ 2π

(3π+α+γ)/2

cos θ〈uθ,m〉 dθ

]

=
1

4π
[−2 sin β − 2 sin γ − (π − α − β) cos β

−(π + α − γ) cos γ + (2π − γ − β) cos α] . (4.39)

Let f denote the function f(α, β, γ) = mx − Γ2(Pα,β,γ)x. Values of α, β,
and γ that define a local maximum of f must satisfy the following conditions:

∂

∂α
f =

∂

∂β
f =

∂

∂γ
f = 0.

Specifically,

∂

∂β
f =

1

4π
[cos β − (π − α − β) sin β + cos α] = 0, (4.40a)

∂

∂γ
f =

1

4π
[cos γ − (π + α − γ) sin γ + cos α] = 0, (4.40b)

and
∂

∂α
f =

1

4π
[cos γ − cos β − (2π + β + γ) sin α] = 0. (4.40c)

We now show that the constraints imposed by Eqs. (4.40a) through (4.40c)
imply that for (α, β, γ) ∈ [0, π/2]3, f has only one local (and hence global)
maximum occurring at α = 0 and β = γ ≈ 0.81047.

Since α, β, and γ lie in the interval [0, π/2], the term −(2π + β + γ) sin α
in Eq. (4.40c) is nonpositive, meaning that cos γ − cos β ≥ 0 and, consequently,
γ ≤ β. Furthermore, in order for the unit circle to define the minimum enclosing
circle of Pα,β,γ , line segment cm must pass below the origin, implying that
γ ≥ α. See Fig. 4.20B. These constraints impose an ordering on the angles:
0 ≤ α ≤ γ ≤ β ≤ π/2.

We bound the value of α. Solving for sinα in Eq. (4.40c) gives

sin α =
cos γ − cos β

2π + β + γ

≤ 1

2π
.

82



4.6. STEINER CENTRE

Therefore,

0 ≤ α ≤ arcsin

(
1

2π

)
≈ 0.159835 <

3π

50
. (4.41)

We derive an upper bound on β using this bound on α. By Eq. (4.40a),

0 = cos β − (π − α − β) sin β + cos α,

≤ cos β −
(

47π

50
− β

)
sin β + 1, since α ∈

[
0,

3π

50

]
. (4.42)

Let g(β) = cos β−(47π/50−β) sin β+1. Observe that g′(β) ≤ 0 for β ∈ [0, π/2].
Furthermore, g(1) < 0. Consequently, g(β) < 0 for all β ∈ [1, π/2]. Since g(β)
must be nonnegative by Eq. (4.42), it follows that γ ≤ β < 1.

We now take a linear combination of Eqs. (4.40a), (4.40b), and (4.40c).

4π

(
∂

∂γ
f − ∂

∂β
f − ∂

∂α
f

)
= 0,

⇒(2π + β + γ) sin α − (π + α − γ) sin γ + (π − α − β) sin β = 0,

⇒β sin α − α sin β︸ ︷︷ ︸
t1

+ γ sinα − α sin γ︸ ︷︷ ︸
t2

+ (π − β) sin β − (π − γ) sin γ︸ ︷︷ ︸
t3

+2π sinα︸ ︷︷ ︸
t4

= 0. (4.43)

We examine terms t1 through t4 from Eq. (4.43). Let h(x) = x/ sin x.
Observe that limx→0 h′(x) = 0 and h′′(x) ≥ 0 for x ∈ [0, π/2]. Thus, h(x) is
nondecreasing on the interval [0, π/2], meaning that for any 0 ≤ α ≤ γ ≤ β ≤
π/2,

β

sinβ
≥ α

sin α
and

γ

sin γ
≥ α

sin α
. (4.44)

Therefore, terms t1 and t2 in Eq. (4.43) are nonnegative.
Let i(x) = (π − x) sin x. Observe that i′′(x) ≤ 0 for x ∈ [0, π/2] and

i′(1) > 0. Therefore, i(x) is nondecreasing on the interval [0, 1]. Consequently,
since 0 ≤ γ ≤ β < 1, we get

(π − β) sin β − (π − γ) sin γ ≥ 0. (4.45)

Therefore, term t3 in Eq. (4.43) is nonnegative. Since terms t1, t2, and t3 are
nonnegative and Eq. (4.43) is equal to zero, term t4 must be nonpositive. Thus,

2π sinα ≤ 0 ⇒ α = 0. (4.46)

Furthermore, by Eq. (4.40c),

cos γ − cos β = 0 ⇒ γ = β, (4.47a)

and by Eq. (4.40a),
cos β − (π − β) sin β + 1 = 0. (4.47b)
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Eq. (4.47b) has a single root on β ∈ [0, π/2]. This can be seen by the fact that
its derivative is nonpositive and its second derivative is strictly positive on this
interval. This root occurs near β = 0.81047. These values are substituted into
f(α, β, γ) to give

sup
(α,β,γ)∈[0,π/2]3

||Γ(Pα,β,γ) − m|| ≈ 1.1153. (4.48)

Since the Euclidean radius of P is one, this implies the eccentricity of the Steiner
centre is also approximately 1.1153.

It follows that the bound on the eccentricity of Γ2 is tight.

Corollary 4.21. The two-dimensional Steiner centre, Γ2, cannot guarantee
λ-eccentricity for any λ < 1.1153.

Proof. The result follows from the worst-case example derived in the proof of
Thm. 4.20 which achieves eccentricity λ ≈ 1.1153.

Eccentricity of the Steiner Centre in Three Dimensions
The Steiner centre of a set of clients in R3 whose positions are coplanar coincides
with the corresponding two-dimensional definition of the Steiner centre in the
plane. Consequently, the eccentricity of Γ3 is at least that of Γ2, namely, 1.1153.
In fact, in this section we show it is at least 1.2017. This lower bound on
eccentricity is achieved by generalizing the worst-case example from R2 to R3.
Although the bound is conjectured to be tight in R3, the techniques used to
prove the upper bound in R2 do not immediately generalize to R3.

Theorem 4.22. The three-dimensional Steiner centre, Γ3, cannot guarantee
λ-eccentricity for any λ less than

λ <
405 + 51

√
17

512
≈ 1.2017. (4.49)

Proof. Let S denote the unit sphere centred at the origin. Let a = (0, 0,−1).
Let T denote conic region with lower apex at point a and central axis that
coincides with the z-axis. Let P denote a set of clients whose convex hull is
the intersection of sphere S with conic region T . See Figs. 4.21A and 4.21B.
That is, P is the convex hull of a spherical cap and its opposite pole. Let C
denote the circle at which the boundaries of S and T intersect. Let b1 de-
note a client on C and let d denote the pole opposite a, d = (0, 0, 1). Let
α denote angle ∠dob1, where o = (0, 0, 0). Assume α ∈ [0, π/3]. In terms
of α, b1 = (sin α cos θ, sin α sin θ, cos α), for some θ. Let b2 denote the reflec-
tion of b1 across the z-axis, b2 = (− sin α cos θ,− sin α sin θ, cos α). Finally, let
c1 = (sin φ cos θ, sin φ sin θ, cos φ) and c2 = (− sin φ cos θ,− sin φ sin θ, cos φ) de-
note an arbitrary client on the the boundary of CH(P ) ∩ S and its reflection
across the z-axis (where φ ∈ [0, α] is variable). See Fig. 4.21B.

For a given θ, Tab. 4.2 divides the range of integration, φ ∈ [0, π), into sub-
ranges for which specific points of P induce the extrema of Pθ,φ. See Fig. 4.21B.
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Figure 4.21: illustrations supporting Thm. 4.22

The Steiner centre of P lies at

Γ3(P ) =
3

2π

∫ π

0

∫ π

0

sinφmid(Pθ,φ) dφ dθ

=
3

2π

∫ π

0

[∫ α

0

sin φ · 1

2
(uθ,φ〈uθ,φ, c1〉 + uθ,φ〈uθ,φ, a〉) dφ

+

∫ (π−α)/2

α

sin φ · 1

2
(uθ,φ〈uθ,φ, b1〉 + uθ,φ〈uθ,φ, a〉) dφ

+

∫ (π+α)/2

(π−α)/2

sin φ · 1

2
(uθ,φ〈uθ,φ, b1〉 + uθ,φ〈uθ,φ, b2〉) dφ

+

∫ π−α

(π+α)/2

sin φ · 1

2
(uθ,φ〈uθ,φ, a〉 + uθ,φ〈uθ,φ, b2〉) dφ

+

∫ π

π−α
sin φ · 1

2
(uθ,φ〈uθ,φ, a〉 + uθ,φ〈uθ,φ, c2〉) dφ

]
dθ

=
(
0, 0, cos2

(α

2

) [
cos2

(α

2

)
− 1 + sin

(α

2

)])
.

Observe that a is the furthest client from Γ3(P ).

||Γ3(P )− a|| = Γ3(P )z − az = 1 + cos2
(α

2

) [
cos2

(α

2

)
− 1 + sin

(α

2

)]
. (4.50)

interval of φ arg min
p∈P

〈p, uθ,φ〉 arg max
p∈P

〈p, uθ,φ〉

[0, α] c1 a
[α, (π − α)/2] b1 a
[(π − α)/2, (π + α)/2] b1 b2

[(π + α)/2, π − α] a b2

[π − α, π] a c2

Table 4.2: case analysis of extreme points in Γ3(P ) in Thm. 4.22

85



CHAPTER 4. MOBILE EUCLIDEAN 1-CENTRE

The angle α that maximizes Eq. (4.50) is found by differentiating.

∂

∂α
||Γ3(P ) − a|| = 0,

⇒ 1

2
cos
(α

2

) [
2 sin

(α

2

)
+ 3 cos2

(α

2

)
− 4 sin

(α

2

)
cos2

(α

2

)
− 2
]

= 0,

⇒ sin
(α

2

)
∈
{

1,
−1 ±

√
17

8
, π

}
.

Since α ∈ [0, π/3], therefore,

sin
(α

2

)
=

−1 +
√

17

8

⇒ α = 2arcsin

(
−1 +

√
17

8

)
(4.51)

⇒ ≈ 0.8021.

Since P is contained within the unit sphere and both (0, 0, 1) and (0, 0,−1) are
clients in P , the Euclidean radius of P is 1. Consequently, the eccentricity of
Γ3 is bounded from below by

max
p∈P

||Γ3(P ) − p||

max
s∈P

||Ξ3(P ) − s|| = max
p∈P

||Γ3(P ) − p||

= ||Γ3(P ) − a||

= 1 + cos2
(α

2

) [
cos2

(α

2

)
− 1 + sin

(α

2

)]
, by Eq. (4.50),

=
405 + 51

√
17

512
, by Eq. (4.51),

≈ 1.2017.

Since Γ3(P ) ∈ CH(P ), Lem. 4.4 implies an upper bound of 2 on the eccen-
tricity of Γ3. The lower bound from Thm. 4.22 is conjectured to be tight.

Conjecture 4.23. The three-dimensional Steiner centre, Γ3, has eccentricity

405 + 51
√

17

512
≈ 1.2017.

4.6.5 Steiner Centre: Maximum Velocity

In this section we derive the maximum velocity of the Steiner centre and show it
is at most 4/π in R2 and 3/2 in R3. In addition, we provide worst-case examples
that realize each of these bounds.
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Closely related to our definition of stability (see Sec. 3.5), Alt et al. [AAR97]
define the quality of a reference point using Hausdorff distance and show that
the quality of the Steiner centre is 4/π in R2 and 3/2 in R3, matching our
respective bounds on the maximum velocity of the Steiner centre. Our definition
of stability lends itself better to the notion of a perturbation of a set of clients
and allows us to exploit the inverse relationship between stability and maximum
velocity (see Obs. 3.1). Our more inclusive definition allows for a broader set
of centre functions to be considered (for example, the centre of mass). For
completeness, we include our proofs of the maximum velocity of the Steiner
centre.

Maximum Velocity of the Steiner Centre in Two Dimensions
We first bound the maximum velocity of the Steiner centre in two dimensions
and provide an example that realizes this velocity, showing the bound is tight.

Theorem 4.24. The two-dimensional mobile Steiner centre, Γ2, has maximum
velocity 4/π.

Proof. Choose any time interval T and any set of mobile clients P in R2 defined
over T . Choose any t1, t2 ∈ T . Since Γ2 is invariant under rotation, without
loss of generality assume Γ2(P (t1))y = Γ2(P (t2))y. We bound the maximum
velocity of Γ2 from above:

||Γ2(P (t1)) − Γ2(P (t2))|| = |Γ2(P (t1))x − Γ2(P (t2))x|

=

∣∣∣∣
2

π

∫ π

0

mid(P (t1)θ)x dθ − 2

π

∫ π

0

mid(P (t2)θ)x dθ

∣∣∣∣

=
2

π

∣∣∣∣
∫ π

0

mid(P (t1)θ)x − mid(P (t2)θ)x dθ

∣∣∣∣

≤ 2

π

∫ π

0

|mid(P (t1)θ)x − mid(P (t2)θ)x| dθ

=
2

π

∫ π

0

| cos θ| · ||mid(P (t1)θ) − mid(P (t2)θ)|| dθ

≤ 2

π

∫ π

0

| cos θ| · max
p∈P

||p(t1) − p(t2)|| dθ, (4.52a)

since the velocity of mid(Pθ) is at most the velocity of the endpoints of Pθ,

≤ 2

π

∫ π

0

| cos θ| · |t1 − t2| dθ, (4.52b)

since client p has at most unit velocity,

=
2

π
|t1 − t2|

∫ π

0

| cos θ| dθ

=
4

π
|t1 − t2|. (4.52c)
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Figure 4.22: illustrations supporting Thm. 4.25

Therefore,

∀t1, t2 ∈ T, ||Γ2(P (t1)) − Γ2(P (t2))|| ≤
4

π
|t1 − t2|, (4.53)

for any set of mobile clients P in R2.

The following example shows that the bound on maximum velocity is tight.

Theorem 4.25. The two-dimensional mobile Steiner centre cannot guarantee
relative velocity less than 4/π.

Proof. Let t1 = 0. Let P be a set of clients with initial positions given by
P (t1) = {(cos θ, sin θ) | 0 ≤ θ < 2π}. That is, P (t1) is the set of points on the
unit circle centred at the origin. Let t2 > 0 be fixed and let function f : R2 → R2

be defined by

f(p) =

{
(1 + t2)p if py ≥ 0
(1 − t2)p if py < 0

. (4.54)

Let set P (t2) = f(P (t1)). Thus, P (t2) corresponds a perturbation of P (t1) such
that points on or above the x-axis are scaled outward by t2 and points below
are scaled inward by t2. See Fig. 4.22A.

For every θ ∈ [0, π],

mid(P (t1)θ) =
1

2
[uθ + (−uθ)] = (0, 0). (4.55)

Consequently, Γ2(P (t1)) = (0, 0). The midpoint of P (t2)θ can be described
by three cases. The simplest case occurs when one extremum of P (t2)θ lies
on the outer semicircle and the second extremum lies on inner semicircle. For
example, see points a and b in Fig. 4.22A. The second case occurs for angles θ
near zero; in this case, one extremum of P (t2)θ is defined by the projection of
one endpoint of the outer semicircle onto line lθ whereas the other extremum
remains on the outer semicircle. For example, see points c and d in Fig. 4.22B.
The final case is analogous to the second case and occurs for angles θ near π.
The angles θ for which a transition occurs from one case to the next are given

by α = arccos
(

1−t2
1+t2

)
and β = π − α = arccos

(
t2−1
1+t2

)
. See Fig. 4.22C.
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The Steiner centre Γ2(P (t2)) is defined in terms of mid(P (t2)θ). We examine
the value mid(P (t2)θ) over the three intervals, [0, α], [α, β], and [β, π]. For
θ ∈ [0, α],

mid(P (t2)θ) =
1

2
[uθ〈−(1 + t2, 0), uθ〉 + uθ(1 + t2)] =

uθ(1 + t2)(1 − cos θ)

2
.

(4.56a)
For θ ∈ [α, β],

mid(P (t2)θ) =
1

2
[(1 + t2)uθ + (1 − t2)(−uθ)] = t2 · uθ. (4.56b)

Finally, for θ ∈ [β, π],

mid(P (t2)θ) =
1

2
[uθ(1+t2)+uθ〈(1+t2, 0), uθ〉] =

uθ(1 + t2)(1 + cos θ)

2
. (4.56c)

The Steiner centre of set P (t2) is

Γ2(P (t2)) =
2

π

∫ π

0

mid(P (t2)θ) dθ

=
2

π

[∫ α

0

mid(P (t2)θ) dθ +

∫ β

α

mid(P (t2)θ) dθ +

∫ π

β

mid(P (t2)θ) dθ

]

=
2

π

[
1 + t2

2

∫ α

0

uθ(1 − cos θ) dθ + ǫ

∫ β

α

uθ dθ

+
1 + t2

2

∫ π

β

uθ(1 + cos θ) dθ

]
,

by Eqs. (4.56a) through (4.56c),

=
2

π

[(√
t2(1 + 3t2)

2(1 + t2)
− 1 + t2

4
arccos α,

t22
1 + t2

)
+

(
0,

2t2(1 − t2)

1 + t2

)

+

(
−
√

t2(1 + 3t2)

2(1 + t2)
+

1 + t2
4

arccos α,
t22

1 + t2

)]

=

(
0,

4t2
π(1 + t2)

)
. (4.57)

The maximum velocity of Γ2 must be at least as great as the average velocity
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of P for any value of t2. Therefore,

vmax ≥ lim
t2→0

||Γ2(P (t1)) − Γ2(P (t2))||
|t1 − t2|

= lim
t2→0

1

t2
||Γ2(P (t2))||

= lim
t2→0

1

t2

∣∣∣∣
∣∣∣∣
(

0,
4t2

π(1 + t2)

)∣∣∣∣
∣∣∣∣

= lim
t2→0

4

π(1 + t2)

=
4

π
, (4.58)

where P (t1) and P (t2) are as described above.

It follows from Thms. 4.24 and 4.25 that the maximum velocity of Γ2 is 4/π
and that this velocity is realizable.

Maximum Velocity of the Steiner Centre in Three Dimensions
Using a technique similar to that used in two dimensions, we bound the maxi-
mum velocity of the Steiner centre in three dimensions and provide an example
that realizes this velocity, showing the bound is tight.

Theorem 4.26. The three-dimensional mobile Steiner centre, Γ3, has maxi-
mum velocity 3/2.

Proof. Choose any time interval T and any set of mobile clients P in R3 defined
over T . Choose any t1, t2 ∈ T . Since Γ3 is invariant under rotation, without
loss of generality assume Γ3(P (t1))y = Γ3(P (t2))y and Γ3(P (t1))z = Γ3(P (t2))z.
We bound the maximum velocity of Γ3 from above:

||Γ3(P (t1)) − Γ3(P (t2))||
=|Γ3(P (t1))x − Γ3(P (t2))x|

=

∣∣∣∣
3

2π

∫ π

0

∫ π

0

sinφmid(P (t1)θ,φ)x dφ dθ

− 3

2π

∫ π

0

∫ π

0

sinφmid(P (t2)θ,φ)x dφ dθ

∣∣∣∣

=
3

2π

∣∣∣∣
∫ π

0

∫ π

0

sin φ[mid(P (t1)θ,φ)x − mid(P (t2)θ,φ)x] dφ dθ

∣∣∣∣

≤ 3

2π

∫ π

0

∫ π

0

| sin φ[mid(P (t1)θ,φ)x − mid(P (t2)θ,φ)x]| dφ dθ

=
3

2π

∫ π

0

∫ π

0

sin φ|mid(P (t1)θ,φ)x − mid(P (t2)θ,φ)x| dφ dθ,

(4.59a)
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since φ ∈ [0, π] implies sinφ ≥ 0,

=
3

2π

∫ π

0

∫ π

0

sin2 φ| cos θ| · ||mid(P (t1)θ,φ) − mid(P (t2)θ,φ)|| dφ dθ

≤ 3

2π

∫ π

0

∫ π

0

sin2 φ| cos θ| · max
p∈P

||p(t1) − p(t2)|| dφ dθ, (4.59b)

since the velocity of mid(Pθ,φ) is at most the velocity of the endpoints of Pθ,φ,

≤ 3

2π

∫ π

0

∫ π

0

sin2 φ| cos θ| · |t1 − t2| dφ dθ, (4.59c)

since client p has at most unit velocity,

=
3

2π
|t1 − t2|

∫ π

0

∫ π

0

sin2 φ| cos θ| dφ dθ

=
3

2
|t1 − t2|. (4.59d)

Therefore,

∀t1, t2 ∈ T, ||Γ3(P (t1)) − Γ3(P (t2))|| ≤
3

2
|t1 − t2|, (4.60)

for any set of mobile clients P in R3.

The following example shows that our bound on maximum velocity is tight.

Theorem 4.27. The three-dimensional mobile Steiner centre cannot guarantee
relative velocity less than 3/2.

Proof. Let P = {uθ,φ | 0 ≤ θ < 2π, 0 ≤ φ < π} denote the set of clients
on the unit sphere centred at the origin. Let t2 > 0 be fixed and let function
f : R3 → R3 be defined by

f(a, b, c) =

{
(1 + t2)(a, b, c) if c ≥ 0
(1 − t2)(a, b, c) if c < 0

. (4.61)

Let set P (t2) = f(P (t1)). P (t2) corresponds to a perturbation of P (t1) such
that points on or above the xy-plane are scaled outward by t2 and points below
the xy-plane are scaled inward by t2. See Fig. 4.23A. For every θ ∈ [0, π] and
every φ ∈ [0, π],

mid(P (t1)θ,φ) =
1

2
[uθ,φ + (−uθ,φ)] = (0, 0, 0). (4.62)

Consequently, Γ3(P (t1)) = (0, 0, 0). The midpoint of P (t2)θ,φ can be described
by four cases. The first two cases occurs when one extremum of P (t2)θ,φ lies
on the outer hemisphere and the second extremum lies on the inner hemisphere
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Figure 4.23: illustrations supporting Thm. 4.27

(φ near 0 or φ near π). For example, see points a and b in Fig. 4.23A. Observe
that a = −(1 + t2)uθ,φ and b = (1 − t2)uθ,φ. The third case occurs for angles
φ near π/2 when φ < π/2; in this case, one extremum of P (t2)θ,φ is defined by
the projection of one endpoint of the outer hemisphere onto line lθ,φ whereas
the other extremum remains on the outer outer hemisphere. For example, see
points c and d in Fig. 4.23B. Observe that c = uθ,φ〈−(1 + t2)uθ,π/2, uθ,φ〉 =
−(1+t2) sin φ ·uθ,φ and d = (1+t2)uθ,φ. The final case is analogous to the third
case and occurs for angles φ near π/2 when φ ≥ π/2. The angles φ for which a

transition occurs from one case to the next are given by α = π
2 − arccos

(
1−t2
1+t2

)
,

π/2, and β = π − α = π
2 + arccos

(
1−t2
1+t2

)
. See Fig. 4.23C.

The Steiner centre Γ3(P (t2)) is defined in terms of mid(P (t2)θ,φ). We ex-
amine the value mid(P (t2)θ,φ) over the four intervals: φ ∈ [0, α), φ ∈ [α, π/2),
φ ∈ [π/2, β), and φ ∈ [β, π). For φ ∈ [0, α),

mid(P (t2)θ,φ) =
1

2

[
(1 + t2)uθ,φ + (1 − t2)(−uθ,φ)

]

= t2 · uθ,φ. (4.63a)

For φ ∈ [α, π/2),

mid(P (t2)θ,φ) =
1

2

[
uθ,φ〈−(1 + t2)uθ,π/2, uθ,φ〉 + uθ,φ(1 + t2)

]

=
uθ,φ(1 + t2)(1 − sin φ)

2
. (4.63b)

For φ ∈ [π/2, β],

mid(P (t2)θ,φ) =
1

2

[
− uθ,φ(1 + t2) + uθ,φ〈(1 + t2)uθ,π/2, uθ,φ〉

]

=
uθ,φ(1 + t2)(sin φ − 1)

2
. (4.63c)

Finally, for φ ∈ [β, π),

mid(P (t2)θ,φ) =
1

2

[
(1 − t2)uθ,φ + (1 + t2)(−uθ,φ)

]

= −t2 · uθ,φ. (4.63d)
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The Steiner centre of P (t2) is

Γ3(P (t2)) =
3

2π

∫ π

0

∫ π

0

sin φmid(P (t2)θ,φ) dφ dθ

=
3

2π

∫ π

0

[∫ α

0

sin φmid(P (t2)θ,φ) dφ +

∫ π/2

α

sin φmid(P (t2)θ,φ) dφ

+

∫ β

π/2

sin φmid(P (t2)θ,φ) dφ +

∫ π

β

sinφmid(P (t2)θ,φ) dφ

]
dθ

=
3

2π

∫ π

0

[
t2

(∫ α

0

sin φ · uθ,φ dφ −
∫ π/2

β

sin φ · uθ,φ dφ

)

+
1 + t2

2

(∫ π/2

α

sinφ(1 − sinφ)uθ,φ dφ −
∫ β

π/2

sinφ(1 − sin φ)uθ,φ dφ

)]
dθ,

by Eqs. (4.63a) through (4.63d),

=

(
0, 0,

t2(t
2
2 + 3)

2(1 + t2)2

)
. (4.64)

The maximum velocity of Γ3 must be at least as great as the average velocity
of P for any value of t2. Therefore,

vmax ≥ lim
t2→0

||Γ3(P (t1)) − Γ3(P (t2))||
|t1 − t2|

= lim
t2→0

1

t2
||Γ2(P (t2))||

= lim
t2→0

1

t2

∣∣∣∣
∣∣∣∣
(

0,
t2(t

2
2 + 3)

2(1 + t2)2

)∣∣∣∣
∣∣∣∣

= lim
t2→0

t22 + 3

2(1 + t2)2

=
3

2
, (4.65)

where P (t1) and P (t2) are as described above.

It follows from Thms. 4.26 and 4.27 that the maximum velocity of Γ3 is 3/2
and that this velocity is realizable.

4.7 Triangle Centres

An extensive set of triangle centres exists. These are not necessarily centre
functions in the sense of defining a point that is somehow central to a triangle.
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Figure 4.24: the least squares point of a triangle and its generalization to a
polygon

Rather, the term triangle centre refers to a function on three clients in the
plane that returns a fourth point, also in the plane. In this section we discuss
three triangle centres that initially suggest themselves as potentially good centre
functions: the least squares point, the incentre, and the orthocentre.

Kimberling provides a very extensive catalogue of triangle centres [Kim98,
Kim]. At last check, the collection included 3053 triangle centres. Common
triangle centres include the Euclidean 1-centre of a triangle (Kimberling trian-
gle centre X(3)), the Euclidean 1-median of the vertices of triangle (Kimberling
triangle centre X(13)) and the centre of mass of the vertices of a triangle (Kim-
berling triangle centre X(2)). Yiu [Yiu04] and Weisstein [Wei] provide overviews
of common triangle centres.

We briefly examine some of the more common triangle centres, those whose
definitions permit generalization to the mobile setting such that the position of
the triangle centre potentially identifies a centre function with low eccentricity.
For each we evaluate the maximum velocity and whether the definition gener-
alizes to greater than three clients. Although the triangle centres we examine
possess interesting geometric properties, it is straightforward to demonstrate
that each results in either high eccentricity or discontinuous motion.

4.7.1 Least Squares Point

According to Honsberger, the least squares point, also known as Lemoine point,
Grebe point, symmedian, and Kimberling triangle centre X(6) [Kim98], is “one
of the crown jewels of modern geometry” [Hon95, p. 53]. Winkler [Win79]
mentions its significance in reducing numerical error in navigation. The least
squares point of a triangle T in R2 is the unique point that minimizes the sum
of the squares of the distances to the three edges of T . See Fig. 4.24A.

When triangle T becomes elongated (see Fig. 4.24B) its least squares point
approaches the boundary of T and the eccentricity approaches 2. Although
the least squares point has a natural generalization to a sets containing greater
than three clients [Tha03], the point is easily seen to be discontinuous (and,
consequently, has unbounded velocity) when clients of P join or leave the convex
hull boundary of P . See Fig. 4.24C.
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Figure 4.25: the incentre of a triangle and its generalization to a polygon

4.7.2 Incentre

The incentre of a triangle T in R2 is the unique point that lies an equal distance
from each of the edges of T . Conversely to the Euclidean 1-centre which defines
the centre of the smallest circle that encloses the convex hull of P , the incentre is
the centre of largest circle contained within the convex hull of P (when |P | = 3).
See Fig. 4.25A. The incentre is Kimberling triangle centre X(1) [Kim98].

Like the least squares point, the eccentricity of the incentre is easily seen to
be 2. See Fig. 4.25B. When |P | > 3, two generalizations are possible. The first
is to locate a point that is equidistant from the edges of the convex hull of P .
Such a point may not exist (for example, see the trapezoid in Fig. 4.25C). The
second is to locate the centre of the largest circle contained within the convex
hull of P . This second point is not unique (see Fig. 4.25D).

Finally, observe that with either of these definitions, as was the case with
the least squares point, any change in the composition of the convex hull may
cause a discontinuity in the position of the incentre of P .

4.7.3 Orthocentre

The orthocentre of a triangle T in R2 is the intersection of the altitudes of
T , where the altitude of an edge is the shortest line segment from that edge
to the opposite vertex. The notion of altitudes does not suggest any natural
generalization to greater than three clients. The orthocentre is Kimberling
triangle centre X(4) [Kim98].

4.8 Convex Combinations

A new centre function can be defined by a convex combination of existing centre
functions. This section examines the eccentricity and maximum velocity of
the resulting convex combination in terms of the eccentricities and maximum
velocities of the component centre functions.

Bereg et al. [BBKS06] refer to a mixing strategy in R2 in which a centre
function Υ2 is defined as a convex combination of the rectilinear 1-centre and
the centre of mass. That is, Υ2(P ) = kR2(P )+(1−k)C2(P ) for some k ∈ [0, 1].
They show the corresponding bound on the eccentricity of Υ2, λ ≤ k(1+

√
2)/2+

(1−k)2 [BBKS06]. In Thms. 4.30 and 4.33 and Cors. 4.31 and 4.34, we generalize
this notion to any convex combination of centre functions in any dimension and
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derive bounds on the eccentricity and maximum velocity of the resulting convex
combination.

4.8.1 Euclidean Norm of a Convex Combination

We first examine the Euclidean norm of the convex combination of two points
in Rd.

Lemma 4.28. Let a and b be arbitrary points in Rd. Let k ∈ [0, 1]. The
Euclidean norms of a, b, and ka + (1 − k)b are related by

||ka + (1 − k)b|| ≤ k||a|| + (1 − k)||b||. (4.66)

Proof.

||ka + (1 − k)b||2 = 〈ka + (1 − k)b, ka + (1 − k)b〉
= k2〈a, a〉 + (1 − k)2〈b, b〉 + 2k(1 − k)〈a, b〉
= k2〈a, a〉 + (1 − k)2〈b, b〉 + 2k(1 − k)||a|| · ||b|| cos θ

≤ k2〈a, a〉 + (1 − k)2〈b, b〉 + 2k(1 − k)||a|| · ||b||
= k2||a||2 + (1 − k)2||b||2 + 2k(1 − k)||a|| · ||b||

=
[
k||a|| + (1 − k)||b||

]2
,

where θ is the angle between vectors a and b. Since the Euclidean norm is
non-negative and k ∈ [0, 1], this gives

||ka + (1 − k)b|| ≤ k||a|| + (1 − k)||b||.

Corollary 4.29. Let c, d, and p be arbitrary points in Rd. Let k ∈ [0, 1]. The
Euclidean norms of c, d, and kc + (1 − k)d are related by

||p − [kc + (1 − k)d]|| ≤ k||p − c|| + (1 − k)||p − d||. (4.67)

Proof. Since Lem. 4.28 holds for all a and b in Rd, it must hold for a = p−c and
b = p − d. Eq. (4.67) follows upon substitution of these values into Eq. (4.66),
giving a generalization that corresponds to invariance under translation. See
Fig. 4.26A.

4.8.2 Convex Combinations: Eccentricity

We show that the eccentricity of a convex combination can be bounded by the
corresponding convex combination of the eccentricities of its component centre
functions.
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Figure 4.26: illustrations supporting Cor. 4.29 and Thm. 4.30.

Theorem 4.30. Let Xd and Yd be centre functions in Rd that are invariant
under translation. Let k ∈ [0, 1]. Let Zd(P ) = kXd(P ) + (1 − k)Yd(P ) define a
third centre function. Let λX and λY denote the respective eccentricities of Xd

and Yd. Centre function Zd is λZ-eccentric, where

λZ = kλX + (1 − k)λY .

Proof. Choose any set of client positions P in Rd.

max
p∈P

||Zd(P ) − p||

max
r∈P

||Ξd(P ) − r|| =

max
p∈P

||[kXd(P ) + (1 − k)Yd(P )] − p||

max
r∈P

||Ξd(P ) − r||

≤
max
p∈P

[
k||Xd(P ) − p|| + (1 − k)||Yd(P ) − p||

]

max
r∈P

||Ξd(P ) − r|| ,

by Cor. (4.29),

≤
k

[
max
s∈P

||Xd(P ) − s||
]

+ (1 − k)

[
max
t∈P

||Yd(P ) − t||
]

max
r∈P

||Ξd(P ) − r||

=k
max
s∈P

||Xd(P ) − s||
max
r∈P

||Ξd(P ) − r|| + (1 − k)
max
t∈P

||Yd(P ) − t||
max
r∈P

||Ξd(P ) − r||

≤kλX + (1 − k)λY ,

by Def. 3.5. Therefore,

∀P, max
p∈P

||Zd(P ) − p|| ≤ [kλX + (1 − k)λY ]max
r∈P

||Ξd(P ) − r||.

Corollary 4.31. Given n ∈ Z+, for every 1 ≤ i ≤ n, let Xi
d : P(Rd) → Rd

denote a centre function that is invariant under translation and let ki ∈ [0, 1]
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such that
∑n
i=1 ki = 1. Let Zd denote the centre function defined by

Zd(P ) =

n∑

i=1

kiX
i
d(P ).

For each i, let λi denote the eccentricity of Xi
d. Zd is λZ-eccentric where

λZ =

n∑

i=1

kiλi.

Proof. The result follows by induction on n using Thm. 4.30.

4.8.3 Convex Combinations: Maximum Velocity

The analogous relationship for maximum velocity follows from the definition
of velocity. That is, the maximum velocity of a convex combination can be
bounded by the corresponding convex combination of the maximum velocities
of its component centre functions. Since the derivation is independent of the
optimization function and depends only on velocity, the result applies to any
approximation function (as opposed to only centre functions).

We first reproduce a related result by Bereg et al.:

Observation 4.32 (Bereg et al. 2006 [BBKS06]). Let α1, α2, . . . , αn be fixed
numbers such that αi ≥ 0 for all i and

∑n
i=1 αi = 1. If all of the sites, s1, . . . , sn,

move with velocity at most 1, then the point p defined as the convex combination∑n
i=1 αisi of the sites moves with velocity at most 1.

Obs. 4.32 implies that if approximation functions X1
d through Xn

d have ve-
locity at most one, then any convex combination of X1

d through Xn
d also has

maximum velocity at most 1. In Thm. 4.33 and Cor. 4.34 we demonstrate that
a more general relationship holds for convex combinations.

Theorem 4.33. Let Xd and Yd be centre functions in Rd that are invariant
under translation. Let k ∈ [0, 1]. Let Zd(P ) = kXd(P ) + (1 − k)Yd(P ) define a
third approximation function. Let vX , vY , and vZ denote the respective maxi-
mum velocities of Xd, Yd, and Zd. Zd has maximum velocity at most vZ , where

vZ = kvX + (1 − k)vY . (4.68)

Proof. Choose any time interval T and any set of mobile clients P in Rd defined
over T . Choose any t1, t2 ∈ T .

||Z[P (t1)] − Z[P (t2)]||
|t1 − t2|

=
||kX[P (t1)] + (1 − k)Y [P (t1)] − kX[P (t2)] − (1 − k)Y [P (t2)]||

|t1 − t2|

≤ k
||X[P (t1)] − X[P (t2)]||

|t1 − t2|
+ (1 − k)

||Y [P (t1)] − Y [P (t2)]||
|t1 − t2|

,
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by Lem. 4.28,

≤ kvX + (1 − k)vY ,

by Def. 3.4. Therefore,

∀t1, t2 ∈ T, ||Z[P (t1)] − Z[P (t2)]|| ≤ [kvX + (1 − k)vY ]|t1 − t2|.

Cor. 4.34 is the generalization of Thm. 4.33 analogous to Cor. 4.31.

Corollary 4.34. Given n ∈ Z+, for every 1 ≤ i ≤ n, let Xi
d denote an ap-

proximation function in Rd that is invariant under translation and let ki ∈ [0, 1]
such that

∑n
i=1 ki = 1. Let Zd denote an approximation function defined by

Zd(P ) =

n∑

i=1

kiX
i
d(P ).

Let vi denote the maximum velocity of Xi
d and let vZ denote the maximum

velocity of Zd. Zd has maximum velocity at most vZ , where

vZ =

n∑

i=1

kivi.

Proof. The result follows by induction on n using Thm. 4.33.

4.8.4 Using Convex Combinations to Compare Centre
Functions

Thms. 4.30 and 4.33 allow us to evaluate the significance of a centre function’s
eccentricity and maximum velocity. That is, if we have three centre functions
Υ1
d, Υ2

d, and Υ3
d such that their respective maximum velocities are sorted in

increasing order, we can define a fourth centre function Υ4
d by a convex com-

bination of Υ1
d and Υ3

d such that the maximum velocity of Υ4
d matches that of

Υ2
d. Comparing the eccentricities of Υ2

d and Υ4
d helps determine whether Υ2

d is
beneficial as a centre function. In Sec. 4.9, we use this technique to compare
the Steiner centre against a convex combination of the centre of mass and the
rectilinear 1-centre.

4.9 Evaluation

In Secs. 4.4 through 4.8 we explored candidate functions for defining bounded-
velocity approximations of the mobile Euclidean 1-centre. In this section we
compare these various centre functions against each other, in terms of eccentric-
ity, maximum velocity, independence of non-extreme client positions, invariance
under similarity transformations, and consistency of definition across dimen-
sions.
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Those centre functions which we identified as good bounded-velocity approx-
imations of the mobile Euclidean 1-centre are the rectilinear 1-centre, the centre
of mass, and the Steiner centre. To these we add the centre function defined by
a client p in P (see Sec. 4.3.1), three triangle centres (the least squares point, the
incentre, and the orthocentre), as well as a convex combination of the rectilinear
1-centre and the centre of mass which we discuss below.

Rectilinear 1-Centre

In Sec. 4.4 we examined the rectilinear 1-centre, Rd. In Rd, we showed a tight
bound of 1

2 (1 +
√

d) on the eccentricity of Rd and we referred to a result of

Bereg et al. [BBKS06] showing a tight bound of
√

d on its maximum velocity.
As mentioned in Sec. 2.5.1, Rd is not invariant under rotation or reflection. It
is, however, invariant under translation and scaling. The definition of Rd is
consistent across dimensions. Finally, Rd(P ) is induced by the extreme points
of P .

Centre of Mass

In Sec. 4.5 we examined the centre of mass, Cd. In Rd, we referred to results
of Bereg et al. [BBKS06] showing tight bounds of 2 on the eccentricity of Cd
and 1 on its maximum velocity. We observed that Cd(P ) is not defined exclu-
sively in terms of extreme points of P ; rather, Cd(P ) assigns uniform weight to
all clients in P . As mentioned in Sec. 2.5.2. Cd is invariant under similarity
transformations and its definition is consistent across dimensions.

Steiner Centre

In Sec. 4.6 we examined two definitions of Steiner centre, Γd, first by Gaussian
weights and then by projection. In R2, we showed tight bounds of approximately
1.1153 on the eccentricity of Γ2 and 4/π on its maximum velocity. In R3, we
showed a lower bound of approximately 1.2017 and an upper bound of 2 on
the eccentricity of Γ3 as well as a tight bound of 3/2 on its maximum velocity.
The definition of Γd by Gaussian weights assigns a weight of zero to all clients
in the interior of the convex hull; thus, Γd(P ) is defined exclusively by the
extreme points of P . We observed that the definition of Γd is consistent across
dimensions. Finally, we referred to a result of Shephard [She68] who showed the
invariance of Γd under similarity transformations.

Triangle Centres

In Sec. 4.7 we evaluated three triangle centres (the least squares point, the
incentre, and the orthocentre) each of which fails to define a suitable candidate
for a bounded-velocity centre function due either to discontinuity in its motions
or lack of a natural definition for greater than three clients.
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Convex Combinations
In Sec. 4.8 we presented a discussion of convex combinations of centre func-
tions, including results on bounding the eccentricity and maximum velocity of
a convex combination in terms of the eccentricities and maximum velocities of
its component centre functions. We now examine specific convex combinations
involving the centre functions described above.

Any convex combination Υd that includes the Euclidean 1-centre as a com-
ponent of non-zero weight, regardless of the combination of centre functions
that completes the definition of Υd, results in unbounded velocity for Υd. Con-
sequently, we consider only convex combination whose composition does not
include Ξd.

The maximum velocity of Rd is greater than that of the Steiner centre while
the maximum velocity of Cd less than that of the Steiner centre. Thus, we
consider the convex combination of Rd and Cd given by kRd(P )+ (1−k)Cd(P )
for some k ∈ [0, 1]. We select values of k such that the maximum velocity of
kRd(P ) + (1 − k)Cd(P ) is equal to 4/π in R2 and equal to 3/2 in R3, allowing
us to compare the convex combination directly against the Steiner centre for a
fixed maximum velocity. The specific values of k are given by solving for k2 and
k3 in

k2

√
2 + (1 − k2) =

4

π
, in R2,

and k3

√
3 + (1 − k3) =

3

2
, in R3.

Solving for these values gives k2 = (4 − π)/[π(
√

2 − 1)] ≈ 0.6597 and k3 =
1/[2(

√
3−1)] ≈ 0.6831. The corresponding bounds on the approximation factors

are

k2
1 +

√
2

2
+ 2(1 − k2) =

(4 + 3π)
√

2 − 12 − π

2π(
√

2 − 1)
≈ 1.4770, in R2,

and k3
1 +

√
3

2
+ 2(1 − k3) =

9
√

3 − 11

4(
√

3 − 1)
≈ 1.5670, in R3.

Finally, since Rd is neither invariant under rotation nor reflection, it follows
that these properties do not hold for any convex combination whose composition
includes Rd. Similarly, since the definition of Cd(P ) does not depend exclusively
on the positions of the extreme points of P , it follows that this property does
not hold for any convex combination whose composition includes Cd.

Comparison of Centre Functions
The values for the eccentricity and maximum velocity of these various centre
functions are displayed in Tab. 4.3 for R2 and in Tab. 4.4 for R3.

First, observe that the convex combination k2R2 + (1 − k2)C2 is more ec-
centric than Γ2 for the same maximum velocity. That is, the Steiner centre
provides a better approximation of the Euclidean 1-centre than does the corre-
sponding convex combination of C2 and R2, even though both have the same
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centre function eccentricity maximum velocity
Euclidean 1-centre Ξ2 λ = 1 vmax = ∞
single client p ∈ P p λ = 2 vmax = 1
centre of mass C2 λ = 2 vmax = 1

rectilinear 1-centre R2 λ = (1 +
√

2)/2 ≈ 1.2071 vmax =
√

2 ≈ 1.4142
Steiner centre Γ2 λ ≈ 1.1153 vmax = 4/π ≈ 1.2732
convex combination λ ≤ 1.4770 vmax ≤ 4/π ≈ 1.2732
of R2 and C2

Table 4.3: comparing centre functions in R2

centre function eccentricity maximum velocity
Euclidean 1-centre Ξ3 λ = 1 vmax = ∞
single client p ∈ P p λ = 2 vmax = 1
centre of mass C3 λ = 2 vmax = 1

rectilinear 1-centre R3 λ = (1 +
√

3)/2 ≈ 1.3660 vmax =
√

3 ≈ 1.7320
Steiner centre Γ3 1.2017 ≤ λ ≤ 2 vmax = 1.5
convex combination λ ≤ 1.5670 vmax ≤ 1.5
of R3 and C3

Table 4.4: comparing centre functions in R3

maximum velocity. As for the rectilinear 1-centre, the Steiner centre has both
lower eccentricity and lower maximum velocity in R2. Since the lowest possible
eccentricity is one, the difference in the eccentricities of R2 and Γ2 in R2 from
1.2071 to 1.1153 corresponds to a relative improvement of 44.3%. Similarly,
since any bounded-velocity approximation must have velocity at least one, the
difference in the maximum velocities of R2 and Γ2 in R2 from 1.4142 to 1.2732
corresponds to a relative improvement of 34.0%.

Bereg et al. [BBKS06] suggested a centre function that always moves toward
the current position of the Euclidean 1-centre (see Sec. 4.3.2). If such a centre
function maintains eccentricity at most 1.1153 then the corresponding upper
bound on its maximum velocity is approximately 4.7771 (the value of Expr. 4.7
when ǫ = 0.1153). This value is far greater than the maximum velocity of the
Steiner centre.

Experimentation suggests that the Steiner centre performs well not only in
the worst case but also in the average case. Empirical evidence is provided in
Sec. 8.4.2 in the form of test results from simulations of sets of 6 clients and
16 clients for which the eccentricities and velocities of the Euclidean 1-centre,
centre of mass, rectilinear 1-centre, and Steiner centre of a set of mobile clients
are measured over 10000 time units. See Figs. 8.9 and 8.10.

All centre functions mentioned in this section are defined consistently across
dimensions; that is, the position of Υd(P ) coincides with Υd−1(P ) when the
positions of clients in P lie in a (d − 1)-dimensional flat. All centre functions
mentioned are invariant under similarity transformations except for the rectilin-
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ear 1-centre and its convex combinations which are not invariant under rotation
or reflection. Finally, the centre of mass and its convex combinations are the
only centre functions whose definitions depend on non-extreme points.
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Chapter 5

Mobile Euclidean 1-Median

5.1 Introduction

5.1.1 Chapter Objectives

Chapter 5 examines various bounded-velocity approximations to the Euclidean
1-median. Our exploration of approximation functions (referred to as median
functions in the context of the Euclidean 1-median) leads us to consider the cen-
tre of mass, the rectilinear 1-median, and the projection median (a new median
function which we now introduce), along with convex and linear combinations
of these, for which we examine the maximum velocity and approximation factor.
Kinetic algorithms for maintaining these various mobile median functions are
discussed in Ch. 8; for now we focus on their respective qualities as approxima-
tion functions.

The main contribution of this chapter is the definition of the projection me-
dian, which we show reasonably balances the conflicting goals of approximating
the Euclidean median sum while maintaining a low maximum velocity. Sum-
maries of the chapter’s significant results and their implications are found in
Secs. 5.1.2 and 5.9.

5.1.2 Chapter Overview

Below is a summary of the sections presented in this chapter.

Properties of the Mobile Euclidean 1-Median (Sec. 5.2)
Sec. 5.2 briefly examines additional properties of the mobile Euclidean 1-median.
Specifically, we show that the motion of the mobile Euclidean 1-median is dis-
continuous, which implies that its velocity is unbounded.

Comparison Measures (Sec. 5.3)
Sec. 5.3 expands on the measures of approximation factor and maximum velocity
and explores bounds on their relationship in terms specific to the approximation
of the Euclidean 1-median. Additional natural properties of medians are also
considered.

Rectilinear 1-Median (Sec. 5.4)
Sec. 5.4 analyzes the properties of the mobile rectilinear 1-median, Sd, in terms
of its approximation of the Euclidean 1-median. The rectilinear 1-median of
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P minimizes the sum of the rectilinear (ℓ1) distances between itself and clients
in P , suggesting it as a candidate for approximating the Euclidean 1-median.
In particular, we generalize a result of Bereg et al. [BBKS00] to show that in
Rd, the rectilinear 1-median has approximation factor of

√
d. We show that

the rectilinear 1-median cannot guarantee an approximation factor lower than
(1 +

√
d − 1)/

√
d. In R2, the upper and lower bounds coincide to give a tight

bound of
√

2. The bounds diverge in Rd for d ≥ 3. Unlike the Euclidean 1-
median whose motion is discontinuous, the motion of the rectilinear 1-median
is both continuous and has bounded velocity. We show a tight bound of

√
d on

the maximum velocity of the rectilinear 1-median in Rd.

Centre of Mass (Sec. 5.5)
Sec. 5.5 analyzes the properties of the mobile centre of mass, Cd, in terms of its
approximation of the Euclidean 1-median. The centre of mass is a point that
minimizes the sum of the squared Euclidean distances between itself and clients
in P , suggesting it as a candidate for approximating the Euclidean 1-median.
We show that the centre of mass provides a (2− 2

n )-approximation in Rd, where
n = |P |. We refer to results of Bereg et al. [BBKS06] mentioned in Sec. 4.5.2
showing that the centre of mass has maximum velocity 1 in Rd.

Projection Median (Sec. 5.6)
Sec. 5.6 introduces the projection median, Πd, as a new median function defined
in terms of projection of client positions onto a line through the origin and
integration of the one-dimensional median of the projected point set over all
such lines. A significant portion of Ch. 5 consists of the derivations of the
approximation factor and maximum velocity of the projection median in two
and three dimensions. In particular, we show an upper bound of 4/π and a lower
bound of

√
4/π2 + 1 on the approximation factor of the projection median in

R2. It follows that the lower bound also applies in higher dimensions. We show
tight bounds on the maximum velocity of the projection median of 4/π in R2

and 3/2 in R3.

Convex Combinations (Sec. 5.7)
Sec. 5.7 examines convex combinations of median functions. In particular, a
convex combination of a set of median functions defines a new median function
whose maximum velocity and approximation factor can be bounded in terms
of the maximum velocities and approximation factors of the component median
functions.

Gaussian Median (Sec. 5.8)
Exploiting the success of the Steiner centre at defining a good approximation of
the Euclidean 1-centre, Sec. 5.8 introduces the Gaussian median, Gd, a normal-
ized weighted mean of the client positions, using a weighting function inversely
related to the Gaussian weight defined in Sec. 4.6. We show the Gaussian me-
dian can be defined by a linear combination of the Steiner centre and the centre
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of mass. Also, we show that for |P | ≤ 4, the Gaussian median coincides with
the projection median in R2 and R3. We derive a lower bound of 3/2 on the ap-
proximation factor of G2. Finally, we establish upper bounds on the maximum
velocity of the Gaussian median of 3 + 8/π in R2 and 6 in R3.

Evaluation (Sec. 5.9)
Sec. 5.9 summarizes the results derived in Ch. 5 by comparison of the projection
median, the rectilinear 1-median, the centre of mass, and convex combinations
of these in terms of their approximation of the Euclidean 1-median. The primary
measures for evaluating the quality of each median function are approximation
factor and maximum velocity (inversely related to stability) but also include
consideration of whether each median function generalizes to higher dimensions
and whether it preserves various properties of invariance and consistency.

5.2 Properties of the Mobile Euclidean
1-Median

This section briefly explores the discontinuity of the mobile Euclidean 1-median.
Refer to Sec. 2.4.2 for the static definition of the Euclidean 1-median.

Theorem 5.1. The mobile Euclidean 1-median is discontinuous in two or more
dimensions.

Proof. Choose any ǫ > 0. Let P (0) = {(0, 0), (0, 0), (1, 0), (1, ǫ)} and let P (ǫ) =
{(0, 0), (0, ǫ), (1, 0), (1, 0)}. Since |P | = 4 and two clients of P (0) coincide at
(0, 0), M2(P (0)) = (0, 0) [KM97]. Similarly, M2(P (ǫ)) = (1, 0). Since

∀δ > 0,∃t ∈ (0, δ), ||Υ2(P (0)) − Υ2(P (t))|| = 1, (5.1)

it follows that the Euclidean 1-median is not continuous by Def. 3.3.

As an immediate consequence of Thm. 5.1, no fixed upper bound exists on
the maximum velocity of the Euclidean 1-median. Furthermore, no bounded-
velocity facility function can follow a trajectory that remains within an arbitrarily-
small ǫ-neighbourhood around Md(P (t)) for d ≥ 2.

In one dimension, the median is both continuous and moves with at most
unit velocity:

Observation 5.2. The one-dimensional mobile Euclidean 1-median, Md, has
maximum velocity 1. Furthermore, this velocity is realizable.

Proof. The median is defined as the ⌈|P |/2⌉nd largest client in P when |P | is odd
and as the the midpoint of the (|P |/2)nd and (|P |/2 + 1)st largest clients in P
when |P | is even. Each of these moves with at most unit velocity. Furthermore,
this property is maintained when two or more clients coincide or cross. The
upper bound follows from Obs. 4.32. The bound is realized when all clients
move with unit velocity in a common direction.
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5.3 Comparison Measures

This section expands on the comparison measures defined in Ch. 3 in terms
specific to median functions. We examine bounds on the relationship between
approximation factor and maximum velocity and enumerate additional proper-
ties naturally associated with notions of medians.

5.3.1 Bounds on Approximation Factor and Maximum
Velocity

We are motivated to define alternative median functions that approximate the
Euclidean 1-median in the sense that they come close to minimizing Expr. (2.9)
and yet have lower maximum velocity. Thus, we examine median functions with
the twofold objective of minimizing both approximation factor and maximum
velocity.

As discussed in Ch. 4, Bereg et al. [BBKS06] show that any point located
within the convex hull of the set of client positions defines a centre function
with approximation factor (eccentricity) at most two. This property holds for
centre functions, since the Euclidean 1-centre of a set of clients P is induced by
a subset of the extreme points of P . The corresponding property is not true
of the Euclidean 1-median. Consequently, a median function whose position is
defined to coincide with the position of a particular client cannot guarantee any
fixed approximation factor:

Observation 5.3. Let P denote a finite multiset of clients in Rd. Let median
function Υd(P (t)) = p(t), where p is a fixed client in P . Median function Υd

cannot guarantee any fixed approximation factor of the Euclidean 1-median.

Proof. Let n− 1 clients be located at the origin and let client p be located at a
distance d away from the origin, for some d > 0. The Euclidean 1-median of P
lies at the origin and the Euclidean median sum is d. The sum of the distances
from Υd(P ) to the clients of P is (n − 1)d. The corresponding approximation
factor is n − 1. As such, Υd cannot guarantee any fixed approximation factor
(that is independent of |P |).

Consequently, we consider median functions with approximation factors in
the range [1,∞) and maximum velocities in the range [1,∞).

5.3.2 Approximation Factor as a Function of Maximum
Velocity

Of course, as was the case for centre functions, the maximum velocity and
approximation factor of a median function are correlated. As we show formally
in Thm. 5.4, no median function can ensure any fixed maximum velocity while
also guaranteeing an arbitrarily-close approximation of the Euclidean median
sum. That is, no λ-approximation of the Euclidean 1-median is possible for an
arbitrary λ > 1 and a fixed vmax > 1 that is independent of λ.

108



5.3. COMPARISON MEASURES

ε

ε

ε

ε

1/2−ε/2κ 1/2−ε/2κ

a b

c

d e

f

gh

ε/2κ 1/2 1/2 ε/2κ

P P’

A B

Figure 5.1: illustration in support of Thm. 5.4

Theorem 5.4. For every vmax > 0, if Υd is a median function with maximum
velocity vmax, then there exists some λ0 > 1 such that Υd cannot guarantee an
approximation factor less than λ0.

Proof. Choose any vmax > 0, any ǫ ∈ (0, 1/vmax), and any median function
Υd with maximum velocity vmax. Let P (0) = {(0, 0), (0, 0), (1, ǫ), (1,−ǫ)} and
let P (ǫ) = {(0, ǫ), (0,−ǫ), (1, 0), (1, 0)}. Let d = (1/2 − ǫvmax/2, 0) and let
h = (1/2 + ǫvmax/2, 0). See Figs. 5.1A and 5.1B.

Since |P | = 4 and two points of P coincide at (0, 0), M2(P (0)) = (0, 0)
[KM97]. Similarly, M2(P (ǫ)) = (1, 0). The Euclidean median sum of P (0)
(and, by symmetry, P (ǫ)) is 2

√
1 + ǫ2.

By Def. 3.4,

||Υd(P (0)) − Υd(P (ǫ))|| ≤ ǫvmax. (5.2)

Let px denote the x-coordinate of p, for any point p in Rd. Consequently,
either Υd(P (0))x ≥ dx or Υd(P (ǫ))x ≤ hx. Without loss of generality, assume
Υd(P (0))x ≥ dx.

It is straightforward to show that for any point d′, where d′x ≥ dx,
∑
p∈P (0) ||d′x−

p|| ≥∑p∈P (0) ||dx − p||. Therefore,

∑

p∈P (0)

||Υd(P (0)) − p|| ≥
∑

p∈P (0)

||d − p||

=2

(
1

2
− ǫvmax

2

)
+ 2

√

ǫ2 +

(
1

2
+

ǫvmax

2

)2

. (5.3)

By Def. 3.5, if Υd is a λ-approximation, then

λ ≥
∑
p∈P ||Υd(P ) − p||

∑
q∈P ||M2(P ) − q||

≥
1
2 − ǫvmax

2 +

√
ǫ2 +

(
1
2 + ǫvmax

2

)2
√

1 + ǫ2
, by Eq. (5.3). (5.4)

Let λ1 denote the righthand value in Eq. (5.4). It is straightforward to show
that λ1 > 1 for any ǫ ∈ (0, 1/vmax). Therefore, for any λ0 ∈ (1, λ1), Υd is not a
λ0-approximation of the Euclidean 1-median.
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Figure 5.2: Eq. (5.4): a lower bound on λ as a function of vmax

Although it is possible to solve for a positive value of ǫ that maximizes
the final expression in Eq. (5.4) in terms of an arbitrary vmax, the resulting ǫ
has a complex representation involving numerous cubic roots and terms up to
O(v9

max) for which no simple representation was found. Not surprisingly, upon
substituting this maximizing value for ǫ into Eq. (5.4), the resulting expression
is even more complex. The resulting function is displayed in Fig. 5.2. As such,
these expressions are not reproduced here; Eq. (5.4) suffices to prove that the
approximation factor increases as the velocity decreases.

Reducing the approximation factor increases the maximum velocity and vice-
versa. The challenge lies in understanding the trade-off between the degree of
approximation factor (in the range [1,∞)) and the maximum velocity (also in
the range [1,∞)). Thm. 5.4 implies that no bounded-velocity λ-approximate
median function is possible for an arbitrary λ ≥ 1 and a fixed vmax that is
independent of λ.

5.3.3 Additional Properties of Median Functions

Although approximation factor and maximum velocity define the principal mea-
sures by which we evaluate median functions, the following define additional
natural properties for a median function Υd, both of which are properties ex-
hibited by the Euclidean 1-median:

1. Υd(P ) should be invariant under rotation, uniform scaling, reflection, and
translation.

2. If P resides in a (d−i)-flat in Rd, then the d-dimensional definition, Υd(P ),
should coincide with the (d − i)-dimensional definition, Υd−i(P ).
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For each median function Υd examined, we evaluate the fitness of Υd and
compare it against other median functions primarily in terms its approximation
factor and maximum velocity. In addition, to further understand the behaviour
of Υd, we also determine whether each of the properties listed above also holds
for Υd.

5.4 Rectilinear 1-Median

This section discusses properties of the rectilinear 1-median as an approximation
to the mobile Euclidean 1-median. Refer to Sec. 2.5.1 for the definition of the
rectilinear k-median.

Recall that the rectilinear 1-median of P , denoted Sd(P ), is a point that
minimizes the sum of the rectilinear (ℓ1) distances to the positions of clients
in P . Given that its maximum velocity is bounded, this property suggests the
rectilinear 1-median as a natural candidate for providing an approximation of
the Euclidean 1-median.

The invariance of the rectilinear 1-median under similarity transformations is
straightforward to demonstrate. Also, the definition of the rectilinear 1-median
is defined consistently across dimensions.

5.4.1 Rectilinear 1-Median: Approximation Factor

Bereg et al. [BBKS00] show that the rectilinear 1-median provides a
√

2-approximation
of the Euclidean 1-median in R2. We show this bound is tight in the following
example.

Observation 5.5. The two-dimensional rectilinear 1-median, S2, cannot guar-
antee a λ-approximation of the Euclidean 1-median for any λ <

√
2.

Proof. Let 2k clients lie at (1, 0), let k+1 points lie at (0, 1), and let k+1 clients
lie at (0,−1). See Fig. 5.3. The unique rectilinear 1-median of P lies at (0, 0).
Since the clients of P are not collinear, the position of the Euclidean 1-median
of P is also unique. Consequently, by the symmetry of P and the invariance of
M2(P ) under reflection, M2(P ) must lie on the x-axis. The Euclidean median
sum of P is

f(x) = 2k|1 − x| + 2(k + 1)
√

x2 + 1, (5.5)

where x = M2(P )x. To find the value of x that minimizes Eq. (5.5), we set its
derivative to zero. Since x ∈ [0, 1], we replace |1 − x| by (1 − x):

∂f(x)

∂x
= 0

⇔ −2k +
2x(k + 1)√

x2 + 1
= 0

⇔ x =
k√

2k + 1
(5.6)
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Figure 5.3: example realizing the approximation factor of the rectilinear 1-
median in R2

It is straightforward to confirm that Eq. (5.6) is increasing for k > 0 by examin-
ing its derivative with respect to k. Consequently, Eq. (5.6) implies that x = 1
if and only if k = 1 +

√
2. Therefore, for any k ≥ 3, Eq. (5.5) is minimized by

some x ≥ 1. Since M2(P )x ∈ [0, 1], for any k ≥ 3, Eq. (5.5) is minimized at
M2(P )x = 1. Consequently, the Euclidean 1-median of P lies at (1, 0).

We obtain the following lower bound on the approximation factor of S2:

λ ≥ lim
k→∞

∑
p∈P ||p − S2(P )||

∑
q∈P ||q − M2(P )||

= lim
k→∞

2(k + 1) + 2k

2(k + 1)
√

2

= lim
k→∞

2k + 1

(k + 1)
√

2

=
√

2.

We generalize the result of Bereg et al. to Rd using an analogous proof.

Theorem 5.6. The d-dimensional rectilinear 1-median, Sd, provides a
√

d-
approximation of the Euclidean 1-median.

Proof. By Def. 2.10, the rectilinear 1-median of P is a point Sd(P ) that mini-
mizes

∑

p∈P
||p − Sd(P )||1. (5.7)

Similarly, by Def. 2.7, the Euclidean 1-median of P is a point Md(P ) that
minimizes

∑

p∈P
||p − Md(P )||. (5.8)
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Figure 5.4: example realizing the lower bound of the approximation factor on
the rectilinear 1-median in R3

For any x ∈ Rd, ||x|| ≤ ||x||1 ≤
√

d||x||. Consequently,

∑

p∈P
||p − Md(P )|| ≤

∑

p∈P
||p − Md(P )||1

≤
∑

p∈P
||p − Sd(P )||1

≤
√

d
∑

p∈P
||p − Sd(P )||.

By generalizing the example from the proof of Obs. 5.5 to Rd, we show a
lower bound of (1 +

√
d − 1)/

√
d on the approximation factor of the rectilinear

1-median in Rd. When d = 2, the lower bound matches the upper bound of
√

2
shown in Thm. 5.6.

Theorem 5.7. The d-dimensional rectilinear 1-median, Sd, cannot guarantee
a λ-approximation of the Euclidean 1-median for any

λ <
1 +

√
d − 1√
d

. (5.9)

Proof. Case 1. Assume d = 1. In R, S1(P ) and M1(P ) coincide. In this case,
Eq. (5.9) holds since the rectilinear median sum and the Euclidean median sum
are equal.

Case 2. Assume d ≥ 2. Let k + 1 clients lie at (0,±1, . . . ,±1) for all 2d−1

combinations of ±1. Let 2d−1k clients lie at (1, 0, . . . , 0). See Fig. 5.4. The
unique rectilinear 1-median of P lies at (0, . . . , 0). Since the clients of P are
not collinear, the position of the Euclidean 1-median of P is also unique. Con-
sequently, by the symmetry of P and the invariance of Md(P ) under reflection,
Md(P ) must lie on the x-axis; that is Md(P ) = (Md(P )x, 0, . . . , 0). The Eu-
clidean median sum of P is

2d−1k|1 − Md(P )x| + 2d−1(k + 1)
√

Md(P )2x + d − 1. (5.10)
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Using an argument analogous to that used in the proof of Obs. 5.5, it is
straightforward to show that Expr. (5.10) is minimized at Md(P )x = 1 for
any k ≥ (1 +

√
d)/(d − 1). Therefore, the Euclidean 1-median of P lies at

(1, 0, . . . , 0) if k ≥ (1 +
√

d)/(d − 1). We obtain the following lower bound on
the approximation factor of Sd:

λ ≥ lim
k→∞

∑
p∈P ||p − Sd(P )||

∑
q∈P ||q − Md(P )||

= lim
k→∞

2d−1(k + 1)
√

d − 1 + 2d−1k

2d−1(k + 1)
√

d

= lim
k→∞

k(
√

d − 1 + 1) +
√

d − 1

(k + 1)
√

d

=
1 +

√
d − 1√
d

.

Although equal for d = 2, the lower bound of Thm. 5.7 and the upper bound
of Thm. 5.6 diverge as k increases. No tight bound on the approximation factor
of Sd is known for d ≥ 3.

5.4.2 Rectilinear 1-Median: Maximum Velocity

Bereg et al. [BBKS00], observe that the relative velocity of the rectilinear 1-
median of a set of mobile points in R2 is at most

√
2. Furthermore, this bound

is tight. This observation is straightforward to generalize to Rd.

Observation 5.8. The d-dimensional mobile rectilinear 1-median, Sd, has
maximum velocity

√
d.

Proof. As shown by Bajaj [Baj84] and as observed by Bereg et al. [BBKS00], the
coordinates of Sd(P ) correspond to the one-dimensional 1-median of the clients
of P with respect to each dimension. In the worst case, distinct clients induce
the 1-median of P in each dimension, where the corresponding client moves
with unit velocity in a direction parallel to the dimensional axis, resulting in
a velocity of

√
d of the rectilinear 1-median. See the example in Fig. 5.5 for

d = 2.

Corollary 5.9. The d-dimensional rectilinear 1-median, Sd, cannot guarantee
relative velocity less than

√
d.

Proof. The example described in the proof of Obs. 5.8 is realizable.
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p
1

p
2

S (P)
2

Figure 5.5: The rectilinear 1-median has maximum velocity
√

2 in R2 when
clients p1 and p2 move with unit velocity in directions parallel to the y and
x-axes, respectively.

5.5 Centre of Mass

This section discusses properties of the centre of mass as an approximation to
the mobile Euclidean 1-median. Refer to Sec. 2.5.2 for the definition of the
centre of mass.

Recall that the centre of mass of P , denoted Cd(P ), is a point that minimizes
the sum of the square distances to the positions of clients in P [Sch73, Wes93].
See Sec. 2.5.2 for a derivation of this result. Given the low upper bound on its
velocity, this property suggests the centre of mass as a natural candidate for
providing an approximation of the Euclidean 1-median.

The invariance of the centre of mass under similarity transformations is
straightforward to demonstrate. Also, the definition of the centre of mass is
defined consistently across dimensions.

5.5.1 Centre of Mass: Approximation Factor

Bereg et al. [BBKS00] show that the centre of mass has approximation factor√
2(2− 2/n). Using different techniques, we now establish a tight bound of 2−

2/n on the approximation factor of the centre of mass in Thm. 5.12. Necessary
to the proof of Thm. 5.12 is Lem. 5.11 which shows that for any finite multiset
of clients P , if some client a 6= Md(P ) is moved to coincide with Md(P ), then
the Euclidean 1-median of the new multiset P ′ remains unchanged. Lems. 5.10
and 5.11 and Thm. 5.12 refer to the following definitions for P , a, x, and n. Let
P denote a finite multiset of clients in Rd such that client a 6= Md(P ) for some
a ∈ P . Let a′ = Md(P ), let P ′ = (P − {a}) ∪ {a′}, let x = ||a − a′||, and let
n = |P |. See Fig. 5.6.

Lemma 5.10. Point Md(P ) is a Euclidean 1-median of P ′.
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Figure 5.6: illustration in support of Lem. 5.11

Proof. Assume Md(P ) is not a Euclidean 1-median of P ′. Thus,

∑

p∈P ′

||p − Md(P
′)|| <

∑

p∈P ′

||p − Md(P )||. (5.11)

Therefore,

∑

p∈P
||p − Md(P

′)|| = ||a − Md(P
′)|| +

∑

p∈P−{a}
||p − Md(P

′)||

≤ x + ||a′ − Md(P
′)|| +

∑

p∈P−{a}
||p − Md(P

′)||

= x + ||a′ − Md(P
′)|| +

∑

p∈P ′−{a}
||p − Md(P

′)||

= x +
∑

p∈P ′

||p − Md(P
′)||

< x +
∑

p∈P ′

||p − Md(P )||, by our assumption,

=
∑

p∈P
||p − Md(P )||. (5.12)

Thus, Md(P ) did not minimize
∑
p∈P ||p − Md(P )||. Consequently, Md(P )

cannot be a median of P , deriving a contradiction. Therefore Md(P
′) = Md(P ).

Also necessary to the proof of Thm. 5.12 is Lem. 5.11 which relates the sum
of the distances between Cd(P ) and the clients of P to the corresponding value
for P ′.

Lemma 5.11.

∑

p∈P
||p − Cd(P )|| −

∑

p∈P ′

||p − Cd(P
′)|| ≤ 2x

(
1 − 1

n

)
. (5.13)
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Proof. Since all clients remain static except for client a, Cd(P ) − Cd(P
′) =

1
n (a−a′). See Fig. 5.6. Consequently, the distance from a to the centre of mass
changes by at most ±(x − x/n). For each of the n − 1 points in P − {a}, the
corresponding distance changes by at most ±x/n. The result follows.

Theorem 5.12. The d-dimensional centre of mass, Cd, provides a (2 − 2/n)-
approximation of the Euclidean 1-median.

Proof. Let a, a′, x, and P ′ be as defined in Lem. 5.10. Let m =
∑
p∈P ||p −

Md(P )|| and let c =
∑
p∈P ||p−Cd(P )||. Let m′ and c′ denote the corresponding

values for P ′. Assume P is a multiset of clients in Rd that maximizes the
approximation factor of Cd such that c > m(2 − 2/n). Observe that a client
a 6= Md(P ) must exist under this assumption, otherwise all clients of P would
be collocated with Md(P ) and Cd(P ). Thus,

c > m

(
2 − 2

n

)
,

⇒ cx − cm > 2mx

(
1 − 1

n

)
− cm,

since a 6= a′ and, consequently, x = ||a − a′|| > 0,

⇒ c(x − m) > m

[
2x

(
1 − 1

n

)
− c

]
,

⇒ c(m − x) < m

[
c − 2x

(
1 − 1

n

)]
,

⇒ c(m − x) < mc′,

by Lem. 5.11,

⇒ cm′ < mc′,

since Md(P ) = Md(P
′) by Lem. 5.10 and, consequently, m = m′ + x,

⇒ c

m
<

c′

m′ , (5.14)

since m and m′ are sums of non-negative terms.
This contradicts our assumption that P maximizes the approximation factor

of Cd. Therefore, c ≤ m(2 − 2/n). That is, for all finite multisets P ,

∑

p∈P
||p − Cd(P )|| ≤

(
2 − 2

n

)∑

p∈P
||p − Md(P )||,

where n = |P |.

This bound is tight:
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Corollary 5.13. The d-dimensional centre of mass, Cd, cannot guarantee a
λ-approximation of the Euclidean 1-median for any λ < 2.

Proof. The approximation bound 2−2/n is realized in any dimension d by n−1
clients located at the origin and a single client located away from the origin.
The bound 2 − 2/n approaches 2 as n increases.

5.5.2 Centre of Mass: Maximum Velocity

The velocity of the centre of mass is independent of which facility function is
being approximated; refer to Sec. 4.5.2 where the velocity of the centre of mass
is examined in the context of centre functions.

In brief, Bereg et al. [BBKS00] show that any function defined by a convex
combination of a set of mobile points moves with maximum relative velocity at
most one (Obs. 4.32). Consequently, the centre of mass has maximum velocity
one (Cor. 4.15). The bound is tight, as demonstrated by any translation of the
positions of clients in P at unit velocity (Obs. 4.16).

5.6 Projection Median

The definition of the Euclidean 1-median is a natural generalization of the one-
dimensional median to higher dimensions. Expr. (2.9), however, suggests other
possible generalizations. One possibility is to project clients onto a line through
the origin, to find the one-dimensional median of the projection, and to integrate
these one-dimensional medians for all lines through the origin. Using this idea,
which derives from the definition of the Steiner centre by projection, we define a
median function of a set of mobile clients P in Rd, which we call the projection
median of P and denote Πd(P ).

In Sec. 5.6 we show that the projection median has a low upper bound on
its maximum velocity and that it guarantees a low approximation factor of the
Euclidean 1-median. In addition, we establish the invariance of the projection
median under similarity transformations and demonstrate that its definition is
consistent across dimensions.

5.6.1 Definition

Projection Median Definition in Two Dimensions
Let lθ denote the line through the origin parallel to the unit vector uθ =
(cos θ, sin θ). Expressed in slope-intercept form, lθ is the line y = tan θ x. Given
a multiset of clients P in R2 and an angle θ ∈ [0, π), let Pθ denote the multiset
defined by the projection of P onto line lθ. See Fig. 5.7A. That is,

Pθ = {uθ〈p, uθ〉 | p ∈ P}. (5.15)

The median of Pθ is simply the Euclidean 1-median of Pθ,

med(Pθ) = M2(Pθ). (5.16)
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Figure 5.7: defining the projection median

Let p ∈ R2 be any fixed client. The average over all projections of p onto lines
lθ is

1

π

∫ π

0

uθ〈p, uθ〉 dθ =
p

2
,

suggesting an additional factor of 2 is necessary in the following definition for a
median function:

Definition 5.1. The two-dimensional projection median of a finite mul-
tiset P in R2 is

Π2(P ) =
2

π

∫ π

0

med(Pθ) dθ, (5.17)

where med(Pθ) is the median of the projection of P onto the line y = tan θ x.

If |P | is even, then Pθ may not have a unique median. In this case, let
med(Pθ) denote the midpoint of the region of points on lθ that define medians
of Pθ.

The formulation of the projection median displays some resemblance to the
Steiner centre, which can be expressed similarly to Eq. (5.17) in R2 by replac-
ing med(Pθ) with uθ

2 (minp∈P 〈p, uθ〉 + maxq∈P 〈q, uθ〉), the centre of Pθ. See
Sec. 4.6.2.

Although we focus on median functions defined over finite multisets, the def-
inition of the projection median is easily generalized to a continuous definition,
where the set of clients P is a bounded region in Rd with an associated density
function. In this case, med(Pθ) corresponds to the one-dimensional continuous
median.

The definition of the projection median can be interpreted in terms of the
rectilinear 1-median. Let dφ denote the ℓ1 norm relative to a rotation by φ of
the reference axis. That is, dφ(x) = ||fφ(x)||1, where fφ is a clockwise rotation
about the origin by φ. Let Sφ(P ) = f−1

φ (S2(fφ(P ))) denote the rectilinear 1-
median with respect to norm dφ. We show the following relationship between the
projection median of P and the rectilinear 1-medians of P relative to rotation:

Lemma 5.14.

Π2(P ) =
2

π

∫ π/2

0

Sθ(P ) dθ, (5.18)
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where Sφ(P ) denotes the rectilinear 1-median relative to a rotation by φ of the
reference axis.

Proof. The rectilinear 1-median can be defined in terms of the Euclidean 1-
medians of its respective x- and y-coordinates. The corresponding property
also holds for Sφ:

Sφ(P ) = med(Pφ) + med(Pφ+π/2).

Consequently,

Π2(P ) =
2

π

∫ π

0

med(Pθ) dθ

=
2

π

[∫ π/2

0

med(Pθ) dθ +

∫ π

π/2

med(Pθ) dθ

]

=
2

π

∫ π/2

0

med(Pθ) + med(Pθ+π/2) dθ

=
2

π

∫ π/2

0

Sθ(P ) dθ.

See Sec. 8.3.1 for a description of algorithms for maintaining the mobile
Gaussian median in two dimensions. See Sec. 8.3.2 for a description of an algo-
rithm for finding the static projection median in two dimensions and Sec. 8.3.3
for a description of algorithms for maintaining the mobile projection median in
two dimensions.

Projection Median Definition in Three Dimensions
The definition of the projection median has a natural generalization to three
dimensions, analogous to the generalization of the Steiner centre’s definition by
projection from two to three dimensions (see Sec. 4.6.2).

In three dimensions, we express the projection median in terms of spherical
coordinates. Let lθ,φ be the line through the origin parallel to the unit vector
uθ,φ = (cos θ sinφ, sin θ sin φ, cos φ). Let Pθ,φ and med(Pθ,φ) be the natural
generalizations of Pθ and med(Pθ) to spherical coordinates in R3, respectively.
Thus,

Pθ,φ = {uθ,φ〈p, uθ,φ〉 | p ∈ P} (5.19)

and
med(Pθ,φ) = Ξ3(Pθ,φ). (5.20)

Let p ∈ R3 be any fixed point. The average over all projections of p onto all
lines lθ,φ is

1

2π

∫ π

0

∫ π

0

sinφ · p dφ dθ =
p

3
. (5.21)

The factor sin φ is required for uniform integration over points on a sphere.
The factor 1/2π normalizes over the range of the integration as shown by∫ π
0

∫ π
0

sin φ dφ dθ = 2π. Adding a factor of three returns p instead of p/3,
suggesting the following definition for a median function:
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Definition 5.2. Let P in R3 be a bounded and finite set of clients. The three-
dimensional projection median of P is

Π3(P ) =
3

2π

∫ π

0

∫ π

0

sinφmed(Pθ,φ) dφ dθ, (5.22)

where med(Pθ,φ) is the median of the projection of P onto the line through the
origin parallel to uθ,φ = (cos θ sin φ, sin θ sinφ, cos φ).

This definition is the natural analogue of the two-dimensional projection
median, expressing Π3(P ) as the average median over all projections of P onto
lines lθ,φ.

Projection Median Definition in Higher Dimensions

The structures of the definition of the projection median in both R2 and R3

is motivated by the one-dimensional definition of the Euclidean 1-median. As
such, it makes sense to define the one-dimensional projection median such that

Π1(P ) = M1(P ).

The definition of the projection median has a natural generalization to Rd. We
simply integrate the median of the projection of P onto all lines through the
origin and normalize by the volume of the unit hypersphere.

Definition 5.3. Given a fixed d ∈ N and a finite multiset of clients P in Rd,
the d-dimensional projection median of P is

Πd(P ) =

d

∫

u∈Sd−1

med(Pu) du
∫

u∈Sd−1

1 du

, (5.23)

where Sd−1 = {x ∈ Rd | ||x|| = 1} is the unit hypersphere and med(Pu) is the
median of the projection of P onto the line through the origin parallel to vector
u.

We focus exclusively on the definition of the projection median in R2 and
R3.

5.6.2 Properties of the Projection Median

In this section we establish properties of the projection median relating to in-
variance under similarity transformations and consistency of definition across
dimensions.
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Projection Median Invariance

We show that the projection median is invariant under similarity transforma-
tions for any multiset of clients P in R3. By Lem. 5.18, it follows that the
projection median is also invariant under similarity transformations in R2.

Lemma 5.15. The projection median is invariant under translation and uni-
form scaling transformations in R3.

Proof. Let f : R3 → R3 denote the composition of any translation transforma-
tion g(p) = p + q and any uniform scaling transformation h(p) = ap. Thus,
function f has the form f(p) = ap + q for some a ∈ R3×3 and q ∈ R3. Function
f is an affine transformation and therefore it preserves relative ordering. Let P
be any finite multiset of clients in R3.

Π3(f(P )) =
3

2π

∫ π

0

∫ π

0

sin φmed(f(Pθ,φ)) dφ dθ

=
3

2π

∫ π

0

∫ π

0

sin φ · f(med(Pθ,φ)) dφ dθ

=
3

2π

∫ π

0

∫ π

0

sin φ[amed(Pθ,φ) + q] dφ dθ

=
3

2π

∫ π

0

∫ π

0

a sin φmed(Pθ,φ) dφ dθ +
3

2π

∫ π

0

∫ π

0

sin φ · q dφ dθ

= a

[
3

2π

∫ π

0

∫ π

0

sinφmed(Pθ,φ) dφ dθ

]
+ q

= f

(
3

2π

∫ π

0

∫ π

0

sin φmed(Pθ,φ) dφ dθ

)

= f(Π3(P )).

Lemma 5.16. The projection median is invariant under rotation transforma-
tions in R3.

Proof. Choose any α ∈ [0, 2π). Let Rα : R3 → R3 denote a rotation about the
x-axis by α. That is,

Rα(p) =




1 0 0
0 cos α sinα
0 − sin α cos α


 p,
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5.6. PROJECTION MEDIAN

for any fixed point p ∈ R3. It follows that

Π3[Rα(Pθ,φ)] =
3

2π

∫ π

0

∫ π

0

sin φmed[Rα(Pθ,φ)] dφ dθ

=
3

2π

∫ π

0

∫ π

0

sin φ Rα[med(Pθ,φ)] dφ dθ

=
3

2π

∫ π

0

∫ π

0

sin φ




1 0 0
0 cos α sin α
0 − sin α cos α


med(Pθ,φ) dφ dθ

=
3

2π

∫ π

0

∫ π

0

sin φ




med(Pθ,φ)x
cos α med(Pθ,φ)y + sin α med(Pθ,φ)z
− sin α med(Pθ,φ)y + cos α med(Pθ,φ)z


 dφ dθ

=
3

2π




1 0 0
0 cos α sin α
0 − sin α cos α



∫ π

0

∫ π

0

sinφmed(Pθ,φ) dφ dθ

= Rα[Π3(P )]. (5.24)

Analogously, Eq. (5.24) holds when the rotation is about the y-axis, Sφ, or the
z-axis, Tψ:

Sβ(p) =




cos β 0 − sin β
0 1 0

− sin β 0 cos β


 p and Tγ(p) =




cos γ sin γ 0
− sin γ cos γ 0

1 0 1


 p.

Since any rotation about the origin in R3 is defined by composition of Rα, Sβ ,
and Tγ , Eq. (5.24) holds for any rotation f : R3 → R3 about the origin in R3.
Furthermore, any arbitrary rotation in R3 is defined by composition of rotation
about the origin and translation. Thus, by Lem. 5.15 the projection median is
invariant under rotation in R3.

Lemma 5.17. The projection median is invariant under reflection transforma-
tions in R3.

Proof. For any point p = (px, py, pz) in R3, let f : R3 → R3 denote the function
f(p) = (−px, py, pz). Point f(p) corresponds to the reflection of p across the
yz-plane. For any multiset of clients P in R3,

Π3(f(P ))x =

∫ π

0

∫ π

0

sinφmed(f(Pθ))x dφ dθ

= −
∫ π

0

∫ π

0

sin φmed(Pθ)x dφ dθ

= f(Π3(P ))x. (5.25)

Since Π3(f(P ))y = f(Π3(P ))y and Π3(f(P ))z = f(Π3(P ))z, we get that Π3(f(P )) =
f(Π3(P )).

Any reflection g : R3 → R3 can be described by some composition of f with
rotation and translation transformations. It follows that the projection median
is invariant under any reflection transformations in R3.
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Consistency of Definition Across Dimensions
As one should expect, when the clients of multiset P in R3 are coplanar the two-
and three-dimensional definitions of the projection median coincide. Similarly,
when the clients of a multiset P in R2 are collinear the one-, two-, and three-
dimensional definitions of the projection median coincide.

Lemma 5.18. Let P be a finite multiset of clients in R3 such that the positions
of clients in P are coplanar. The three-dimensional projection median of P
coincides with the two-dimensional projection median of P .

Proof. Let Π2(P ) and Π3(P ) denote the respective two- and three-dimensional
projection medians of P . Since Π3 is invariant under rotation and translation,
assume P is coplanar with the plane z = 0. For any p ∈ P , p = (x, y, 0) and

∫ π

0

sinφ · uθ,φ〈(x, y, 0), uθ,φ〉 dφ =

∫ π

0

sin2 φ · uθ,φ〈(x, y), uθ〉 dφ

= 〈(x, y), uθ〉
∫ π

0

sin2 φ · uθ,φ dφ

=
4

3
uθ,π/2〈(x, y), uθ〉.

Since the median med(Pθ,φ) is defined in terms of uθ,φ〈p, uθ,φ〉, it follows that,

∫ π

0

sin φmed(Pθ,φ) dφ =
4

3
med(Pθ,π/2).

Furthermore, since {lθ,π/2 : θ ∈ [0, π]} is the set of lines through the origin in
plane z = 0, the projection Pθ,π/2 is equivalent to Pθ. Therefore,

Π3(P ) =
3

2π

∫ π

0

∫ π

0

sin φmed(Pθ,φ) dφ dθ

=
3

2π

∫ π

0

4

3
med(Pθ,π/2) dθ

=
2

π

∫ π

0

med(Pθ,π/2) dθ

=
2

π

∫ π

0

med(Pθ) dθ

= Π2(P ).

Similarly, when the clients of P in R2 are collinear, the one-, two-, and three-
dimensional definitions of the projection median coincide with the one-, two-,
and three-dimensional definition of the Euclidean 1-median.

Lemma 5.19. Let P be a finite multiset of clients in R2 such that the positions
of clients in P are collinear.

Πi(P ) = Mj(P ), ∀i, j ∈ {1, 2, 3}.
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Proof. Since Π3 and Md are invariant under translation and rotation, assume
the clients of P lie on the x-axis such that M3(P ) lies at the origin. Observe
that M1(P ) = M2(P ) = M3(P ). For any θ, med(Pθ,φ) = (0, 0, 0). Therefore,

Π3(P ) =
3

2π

∫ π

0

∫ π

0

sin φmed(Pθ,φ) dφ dθ

=
3

2π

∫ π

0

∫ π

0

(0, 0, 0) dφ dθ

= (0, 0, 0)

= M3(P ). (5.26)

By Lem. 5.18, Π3(P ) = Π2(P ). Recall that Π1(P ) = M1(P ).

5.6.3 Projection Median: Approximation Factor

In this section we prove that the approximation factor of the projection median
is at most 4/π ≈ 1.2732 in R2. By giving an example, we provide a lower bound
of
√

4/π2 + 1 ≈ 1.1854 on the approximation factor in R2.

Approximation Factor of the Projection Median in Two Dimensions
In this section we bound the approximation factor of the projection median in
two dimensions from above and below.

Theorem 5.20. The two-dimensional projection median provides a (4/π)-approximation
of the Euclidean 1-median.

Proof. Let P denote any finite multiset of clients in R2. We bound the approx-
imation factor of Π2(P ):

∑
p∈P ||Π2(P ) − p||

∑
q∈P ||M2(P ) − q||

=

∑
p∈P

∣∣∣
∣∣∣ 2π
∫ π/2
0

Sθ(P ) dθ − p
∣∣∣
∣∣∣

∑
q∈P ||M2(P ) − q|| ,

by Lem. 5.14,

=

∑
p∈P

∣∣∣
∣∣∣ 2π
∫ π/2
0

Sθ(P ) dθ − 2
π

∫ π/2
0

p dθ
∣∣∣
∣∣∣

∑
q∈P ||M2(P ) − q||

=
2

π

∑
p∈P

∣∣∣
∣∣∣
∫ π/2
0

Sθ(P ) − p dθ
∣∣∣
∣∣∣

∑
q∈P ||M2(P ) − q||

≤ 2

π

∑
p∈P

∫ π/2
0

||Sθ(P ) − p|| dθ
∑
q∈P ||M2(P ) − q|| ,
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by the △ inequality,

≤ 2

π

∑
p∈P

∫ π/2
0

dθ(Sθ(P ) − p) dθ
∑
q∈P ||M2(P ) − q|| , (5.27a)

since ∀x ||x||1 ≥ ||x|| and, similarly, ∀x∀φ dφ(x) ≥ ||x||,

=
2

π

∫ π/2
0

∑
p∈P dθ(Sθ(P ) − p) dθ

∑
q∈P ||M2(P ) − q|| ,

≤ 2

π

∫ π/2
0

∑
p∈P dθ(M2(P ) − p) dθ

∑
q∈P ||M2(P ) − q|| , (5.27b)

since Sφ(P ) minimizes the sum of the dφ distances to points of P ,

=
2

π

∑
p∈P

∫ π/2
0

dθ(M2(P ) − p) dθ
∑
q∈P ||M2(P ) − q|| ,

=
2

π

∑
p∈P

∫ π/2
0

[
| sin(θ − αp)| + | cos(θ − αp)|

]
· ||M2(P ) − p|| dθ

∑
q∈P ||M2(P ) − q|| ,

(5.27c)

where αp = arctan[(M2(P )y − py)/(M2(P )x − px)] mod π
2 (see Fig. 5.8),

=
2

π

∑
p∈P

∫ π
0
| sin(θ − αp)| · ||M2(P ) − p|| dθ
∑
q∈P ||M2(P ) − q||

=
2

π

∑
p∈P

∫ π
0
| sin θ| · ||M2(P ) − p|| dθ

∑
q∈P ||M2(P ) − q||

=
2

π

∑
p∈P ||M2(P ) − p||

∑
q∈P ||M2(P ) − q||

∫ π

0

| sin θ| dθ

=
2

π

∫ π

0

| sin θ| dθ

=
4

π
≈ 1.2732. (5.27d)

Therefore, for any finite multiset of points P in R2,

∑

p∈P
||Π2(P ) − p|| ≤ 4

π

∑

q∈P
||M2(P ) − q||. (5.28)

Although we have not shown that the bound in Eq. (5.28) is tight, we provide
the following lower bound:
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M (P)

αθ pp

2

Figure 5.8: illustration in support of Thm. 5.20: dθ(M2(P ) − p) =
[
| sin(θ −

αp)| + | cos(θ − αp)|
]
· ||M2(P ) − p||

Theorem 5.21. The two-dimensional projection median cannot guarantee an
approximation factor less than

√
4/π2 + 1 in the worst case.

Proof. Let multiset P be defined by k clients located at b = (0, 1), k clients
located at c = (0,−1), and a single client located at d = (x, 0), for some k ∈ N

and x ∈ R+. Let α = π/2 − arctan(1/x) = arctanx. See Fig. 5.9.

We first derive the position of M2(P ). Since the points of P are not collinear,
the position of the Euclidean 1-median of P is unique. Consequently, by the
symmetry of P and the invariance of M2(P ) under reflection, M2(P ) must lie
on the x-axis. The Euclidean median sum of P is

2k
√

1 + M2(P )2x + |x − M2(P )x|. (5.29)

It is straightforward to show that Expr. (5.29) is minimized at M2(P )x =
1/
√

4k2 − 1. Consequently, M2(P ) = (1/
√

4k2 − 1, 0).

α

(x,0)

b

d

c

M (P) Π (P)
2 2

(0,−1)

(0,1)

Figure 5.9: example realizing the lower bound in Thm. 5.21
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By Eq. (5.17), the projection median of P is located at

Π2(P ) =
2

π

[∫ α

0

uθ〈b, uθ〉 dθ +

∫ π−α

α

uθ〈d, uθ〉 dθ +

∫ π

π−α
uθ〈c, uθ〉 dθ

]

=
2

π

[∫ α

0

uθ sin θ dθ +

∫ π−α

α

xuθ cos θ dθ −
∫ π

π−α
uθ sin θ dθ

]

=

(
2x

π
arctan

(
1

x

)
, 0

)
. (5.30)

The approximation factor λ is at least

λ ≥ lim
x→∞
k→∞

∑
p∈P ||Π2(P ) − p||

∑
q∈P ||M2(P ) − q||

= lim
x→∞
k→∞

2k
√

4x2

π2 arctan2
(

1
x

)
+ 1 + x − 2x

π arctan
(

1
x

)

2k
√

1
4k2−1 + 1 + x − 1√

4k2−1

= lim
x→∞

√
4x2

π2
arctan2

(
1

x

)
+ 1

=

√
4

π2
+ 1

> 1.1854.

Approximation Factor of the Projection Median in Three Dimensions

It seems probable that the definition of the three-dimensional projection median
can be interpreted in terms of the rectilinear 1-median as was done in two
dimensions. If true, this equivalence may lead to a generalization of the two-
dimensional upper bound on the approximation factor of the projection median.
Should Thm. 5.20 generalize, the value corresponding to Eq. (5.27d) in R3 gives
an upper bound of 3/2. At the very least, this equivalence implies an upper
bound of

√
3 on the approximation factor of the projection median, since Π3(P )

can be defined as a convex combination of the corresponding median functions
Sθ,φ(P ), each of which has approximation factor

√
3.

As for lower bounds, the consistency of the definition of the projection me-
dian from two to three dimensions shown in Thm. 5.6.2 implies that the two-
dimensional lower bound of

√
4/π2 + 1 established in Thm. 5.21 also holds in

three dimensions.

5.6.4 Projection Median: Maximum Velocity

In this section we derive the maximum velocity of the projection median and
show it is at most 4/π in R2 and 3/2 in R3. In addition, we provide worst-case
examples that realize each of these bounds.
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θ

p

q

med(   )Pθ

Figure 5.10: example realizing the bound in Thm. 5.22

Maximum Velocity of the Projection Median in Two Dimensions

We first bound the maximum velocity of the projection median in two dimen-
sions and provide an example that realizes this velocity, showing the bound is
tight.

Theorem 5.22. The two-dimensional projection median, Π2, has maximum
velocity 4/π.

Proof. The proof is analogous to the proof of Thm. 4.24 except that Π2 replaces
Γ2, med(Pθ) replaces mid(Pθ), and Eq. (4.52a) follows since the velocity of
med(Pθ) is at most the velocity of the fastest client in Pθ.

The following example shows that the bound on maximum velocity is tight.

Theorem 5.23. The two-dimensional projection median cannot guarantee rel-
ative velocity less than 4/π.

Proof. Let P (0) be an infinite number of clients uniformly distributed on the
unit circle centred at the origin. We assign instantaneous velocity to the clients
of P at time t = 0 such that clients on or above the x-axis move right (clockwise)
in a direction tangent to the circle while clients below the x-axis move right
(counter-clockwise) in the opposite direction. See Fig. 5.10. Every client p in
P has a corresponding client in P , q = −p, opposite the origin from p. By the
symmetry of P (0), for any line through the origin, an equal density of clients
of P (0) lie on either side of the line. Thus, the midpoint of each such pair of
clients p and q defines med(Pθ) for some Pθ (corresponding to the projection
onto the line perpendicular to p − q). That is, for any θ, med(P (0)θ) = (0, 0).
Furthermore, the resulting change in the position of med(Pθ) is identical to the
change at p and q. That is, ∂

∂t med(P (0)θ) = uθ. The velocity of Π2(P (t)) at
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time t = 0 is given by

∣∣∣∣
∣∣∣∣
∂

∂t
Π2(P (t))

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣
∂

∂t

2

π

∫ π

0

med(Pθ) dθ

∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣
2

π

∫ π

0

∂

∂t
med(Pθ) dθ

∣∣∣∣
∣∣∣∣ , (5.31a)

by the Leibniz integral rule,

=

∣∣∣∣
∣∣∣∣
2

π

∫ π

0

uθ dθ

∣∣∣∣
∣∣∣∣

=

√[
2

π

∫ π

0

cos θ dθ

]2
+

[
2

π

∫ π

0

sin θ dθ

]2

=

∣∣∣∣
2

π

∫ π

0

sin θ dθ

∣∣∣∣

=
4

π
.

The resulting velocity matches the upper bound derived in Thm. 5.22.

Maximum Velocity of the Projection Median in Three Dimensions
Using a technique similar to that used in two dimensions, we bound the max-
imum velocity of the projection median in three dimensions and provide an
example that realizes this velocity, showing the bound is tight.

Theorem 5.24. The three-dimensional mobile projection median, Π3, has max-
imum velocity 3/2.

Proof. The proof is analogous to the proof of Thm. 4.26 except that Π3 replaces
Γ3, med(Pθ,φ) replaces mid(Pθ,φ), and Eq. (4.59a) follows since the velocity of
med(Pθ,φ) is at most the velocity of the fastest client in Pθ,φ.

We generalize the two-dimensional worst-case example described in Thm. 5.23
to three dimensions to show that the bound on maximum velocity in three di-
mensions is tight.

Theorem 5.25. The three-dimensional projection median cannot guarantee rel-
ative velocity less than 3/2.

Proof. Let P (0) be an infinite number of clients uniformly distributed on the
unit sphere centred at the origin. For simplicity, let P denote P (0). We assign
instantaneous velocity to the clients of P at time t = 0 such that clients move
toward the positive x-axis in a direction tangent to the surface of the sphere.
Every client p in P has a corresponding client in P , q = −p, opposite the origin
from p. By the symmetry of P , for any plane through the origin, an equal
density of clients of P lie on either side of the plane. Thus, for any θ and
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φ, med(Pθ,φ) = (0, 0, 0). Furthermore, the resulting change in the position of
med(Pθ,φ) is identical to the change at the corresponding p and q. That is,
∂
∂t med(Pθ,φ) = uθ,φ. The velocity of Π3(P (t)) at time t = 0 is given by

∣∣∣∣
∣∣∣∣
∂

∂t
Π3(P (t))

∣∣∣∣
∣∣∣∣ =
∣∣∣∣
∣∣∣∣
∂

∂t

3

2π

∫ π

0

∫ π

0

sin φmed(Pθ,φ) dφ dθ

∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣

3

2π

∫ π

0

∫ π

0

∂

∂t
sin φmed(Pθ,φ) dφ dθ

∣∣∣∣
∣∣∣∣ , (5.32a)

by the Leibniz integral rule,

=

∣∣∣∣
∣∣∣∣

3

2π

∫ π

0

∫ π

0

sinφ · uθ,φ dφ dθ

∣∣∣∣
∣∣∣∣

=

([
3

2π

∫ π

0

∫ π

0

cos θ sin2 φ dφ dθ

]2

+

[
3

2π

∫ π

0

∫ π

0

sin θ sin2 φ dφ dθ

]2

+

[
3

2π

∫ π

0

∫ π

0

cos φ sin φ dφ dθ

]2) 1
2

=

∣∣∣∣
3

2π

∫ π

0

∫ π

0

sin θ sin2 φ dφ dθ

∣∣∣∣

=
3

2
.

The resulting velocity matches the upper bound derived in Thm. 5.24.

5.6.5 Generalized Definition of the Projection Median

The structure common to both the projection median and the Steiner centre’s
definition by projection involves projecting the clients of P onto a line through

Pθ

θ

Figure 5.11: correspondence between the k-level of Pθ as a function of θ and
the generalized definition of the projection median
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the origin, finding the kth largest element along this projected set of points, and
integrating this element over all such lines through the origin. In two dimensions,
the following function captures the precise definition of the generalization of Γ2

and Π2:

Υk
d(P ) =

1

π

∫ 2π

0

m(P, θ, k) dθ, (5.33)

where m(P, θ, k) returns uθ〈pk, uθ〉, such that 〈p1, uθ〉 ≤ . . . ≤ 〈pk, uθ〉 ≤ . . . ≤
〈pn, uθ〉, for p1, . . . , pn ∈ P , and |P | = n. That is, m(P, θ, k) returns the kth
largest element of Pθ relative to the orientation of θ. Note that θ ranges from 0
to 2π; thus the kth largest element relative to θ corresponds to the (|P |−k+1)st
largest element relative to θ + π. This definition generalizes to three or more
dimensions in the same manner as we generalized the projection median and
Steiner centre by projection to higher dimensions.

When k = 1 or k = |P |, Eq. (5.33) simplifies to Eq. (4.14): the definition of
the Steiner centre by projection. Similarly, when k = ⌊|P |/2⌋ or k = ⌈|P |/2⌉,
Eq. (5.33) simplifies to Eq. (5.17): the definition of the projection median. Thus,

Υ1
d(P ) = Γd(P ) = Υ

|P |
d (P ) and Υ

⌊|P |/2⌋
d (P ) = Πd(P ) = Υ

⌈|P |/2⌉
d (P ).

The significance of the value of Eq. (5.33) remains to be understood for value
of 2 ≤ k ≤ ⌊|P |/2⌋ − 1 and ⌈|P |/2⌉ + 1 ≤ k ≤ |P | − 1. The problem can be
understood in terms of a k-level of the set of |P | functions fi : [0, 2π) → R,
given by fi = 〈uθ, pi〉, for 1 ≤ i ≤ |P |.

5.7 Convex Combinations

A new median function can be defined by a convex combination of existing
median functions. Closely related to our discussion of convex combinations of
centre functions in Sec. 4.8, this section examines the approximation factor and
maximum velocity of the resulting convex combination in terms of the approx-
imation factors and maximum velocities of the component median functions.
The results established in Sec. 5.7 are used to bound the approximation fac-
tors and maximum velocities of the Gaussian median in Sec. 5.8 and of convex
combinations of the centre of mass and the rectilinear 1-median in Sec. 5.9.

5.7.1 Convex Combinations: Approximation Factor

We show that the approximation factor of a convex combination can be bounded
by the corresponding convex combination of the approximation factors of its
component median functions.

Theorem 5.26. Let Xd and Yd denote median functions in Rd that are invari-
ant under translation. Let k ∈ [0, 1]. Let Zd(P ) = kXd(P )+(1−k)Yd(P ) define
a third median function. Let λX and λY denote the respective approximation
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factors of Xd and Yd. Median function Zd provides a λZ-approximation of the
Euclidean 1-median, where

λZ = kλX + (1 − k)λY . (5.34)

Proof. Choose any set of client positions P in Rd.
∑
p∈P ||p − Zd(P )||

∑
p∈P ||p − Md(P )|| =

∑
p∈P ||p − [kXd(P ) + (1 − k)Yd(P )]||

∑
p∈P ||p − Md(P )||

≤
∑
p∈P k||p − Xd(P )|| + (1 − k)||p − Yd(P )||

∑
p∈P ||p − Md(P )|| ,

by Cor. 4.29,

= k

∑
p∈P ||p − Xd(P )||

∑
p∈P ||p − Md(P )|| + (1 − k)

∑
p∈P ||p − Yd(P )||

∑
p∈P ||p − Md(P )||

≤ kλX + (1 − k)λY ,

by Def. 3.5. Therefore,

∀P,
∑

p∈P
||p − Zd(P )|| ≤ [kλX + (1 − k)λY ]

∑

p∈P
||p − Md(P )||.

Corollary 5.27. Given n ∈ N, for every 1 ≤ i ≤ n, let Xi
d denote a me-

dian function in Rd that is invariant under translation and let ki ∈ [0, 1] such
that

∑n
i=1 ki = 1. Let Zd denote the median function defined by Zd(P ) =∑n

i=1 kiX
i
d(P ). For each i, let λi denote the approximation factor of Xi

d. Me-
dian function Zd is a λZ-approximation of the Euclidean 1-median, where

λZ =

n∑

i=1

kiλi. (5.35)

Proof. The result follows by induction on n using Thm. 5.26.

5.7.2 Convex Combinations: Maximum Velocity

The analogous results for maximum velocity were shown in Thm. 4.33 and
Cor. 4.34 in our discussion of convex combinations of centre functions in Sec. 4.8.

5.7.3 Using Convex Combinations to Compare Median
Functions

Thms. 5.26 and 4.33 allow us to evaluate the significance of a median function’s
approximation factor and maximum velocity. That is, if we have three median
functions Υ1

d, Υ2
d, and Υ3

d such that their respective maximum velocities are
sorted in increasing order, we can define a fourth median function Υ4

d by a convex
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combination of Υ1
d and Υ3

d such that the maximum velocity of Υ4
d matches that

of Υ2
d. Comparing the approximation factors of Υ2

d and Υ4
d helps determine

whether Υ2
d is beneficial as a median function. In Sec. 5.9, we use this technique

to compare the projection median against a convex combination of the centre
of mass and of the rectilinear 1-median.

5.8 Gaussian Median

The definition of the projection median exhibits similarities in structure to the
definition of the Steiner centre by projection. As discussed in Sec. 4.6, the
Steiner centre can also be defined as a normalized weighted mean of the client
positions. Can such a generalization be applied to the projection median? In-
deed, a simple transformation of the Gaussian weight of each client (see Defs. 4.2
and 4.5) provides a useful definition for a median function. We call this new
median function the Gaussian median and briefly examine its properties in R2

and R3 in this section.

In particular, we show that the location of the Gaussian median of a multiset
of clients P coincides with the projection median of P when |P | ≤ 4 and that the
position of the Gaussian median can be defined as a linear combination of the
centre of mass and the Steiner centre. The Gaussian median is included in this
chapter not with the intent to define a competitive median function, but rather
to provide insight into properties related to the projection median, the Steiner
centre, and the centre of mass. Indeed there remains room for improvement in
the bounds on the maximum velocity and approximation factor of the Gaussian
median that follow.

5.8.1 Definition

Gaussian Median Definition in Two Dimensions

The Steiner centre of P is defined as a normalized weighted mean of clients in
P , where the weight, called Gaussian weight, of each client whose position is an
extreme point of P is proportional to the turn angle at that point on the convex
hull of P . Clients in the interior of P have weight 0.

In a sense, the notions of median and centre are opposites in client sets of
small cardinality; a centre is determined by the extreme points whereas a median
is determined by interior clients. See Fig. 5.12. To exploit this property, we
take the inverse of the Gaussian weight of each client and examine the resulting
median function:

Definition 5.4. Let P in R2 be a finite multiset of clients with |P | ≥ 3. The
two-dimensional Gaussian median of P is the normalized weighted mean
of P :

G2(P ) =
1

(|P | − 2)π

∑

p∈P
g2(p)p, (5.36)
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p1 p2 p3 p4

M1(P )

Ξ1(P )

Figure 5.12: The Euclidean 1-median is defined in terms of interior points,
M1(P ) = (p2 + p3)/2, whereas the Euclidean 1-centre is defined in terms of
extreme points, Ξ1(P ) = (p1 + p4)/2.

where g2(p) is the two-dimensional Gaussian median weight assigned to
client p ∈ P by

g2(p) =

{
αp if p ∈ VP
π if p ∈ P − VP .

,

where VP is the set of extreme points of P and αp is the interior angle formed
at p on the convex hull of P .

Observe that for all p, g2(p) = π−w2(p), where g2(p) is the Gaussian median
weight and w2 is the Gaussian weight (see Def. 4.2). The sum of the turn angles
of CH(P ) is independent of |P | whereas the sum of the interior angles of CH(P )
is (|CH(P )| − 2)π, hence the normalizing factor in Eq. (5.36).

See Sec. 8.3.1 for a description of algorithms for maintaining the mobile
Gaussian median in two dimensions.

Gaussian Median Definition in Three Dimensions

Similarly, we define the three-dimensional Gaussian median:

Definition 5.5. Let P in R3 be a finite multiset of clients with |P | ≥ 3. The
three-dimensional Gaussian median of P is the normalized weighted mean
of P :

G3(P ) =
1

(|P | − 2)2π

∑

p∈P
g3(p)p, (5.37)

where g3(p) is the three-dimensional Gaussian median weight assigned to
client p ∈ P by

g3(p) =





∑

fj∈Fp

αp,j if p ∈ VP

2π if p ∈ P − VP .

,

where VP is the set of extreme points of P , Fp denotes the set of faces that meet
at p for every p ∈ VP , and αp,j denotes the interior plane angle on fj at p for
every face fj ∈ Fp.
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A natural definition for Gd when |P | ≤ 2 assigns Gd(P ) = (p1 + p2)/2 when
P = {p1, p2} and Gd(P ) = p when P = {p}. That is, Gd(P ) = Ξd(P ) =
Md(P ) = Πd(P ) = Γd(P ) for |P | ≤ 2.

It is straightforward to show that the Gaussian median is invariant under
similarity transformations and that the three-dimensional definition of the Gaus-
sian median of a set of coplanar points coincides with the two-dimensional def-
inition.

5.8.2 Properties of the Gaussian Median

In this section we establish properties of the Gaussian median that relate its
definition to the definitions of the Steiner centre, the centre of mass, and the
projection median.

Gaussian Median Definition by a Linear Combination
The similarity in the definition of Gaussian weights and Gaussian median weights
allows the Gaussian median to be expressed in terms of the Steiner centre and
the centre of mass.

Observation 5.28. For all finite multisets P in R2 where |P | ≥ 3,

G2(P ) =
1

|P | − 2
[|P |C2(P ) − 2Γ2(P )]. (5.38)

Proof. Choose any P in R2 such that |P | ≥ 3.

G2(P ) =
1

(|P | − 2)π

∑

p∈P
g2(p)p

=
1

(|P | − 2)π

∑

p∈P
[π − w2(p)]p, by Defs. 4.2 and 5.4,

=
1

|P | − 2


∑

p∈P
p − 1

π

∑

p∈P
w2(p)p




=
1

|P | − 2

[
|P |C2(P ) − 2Γ2(P )

]
, by Defs. 4.3 and 5.4,

where g2(p) denotes the Gaussian median weight of client p and w2(p) denotes
its Gaussian weight.

The analogous property holds in three dimensions:

Observation 5.29. For all finite multisets P in R3 where |P | ≥ 3,

G3(P ) =
1

|P | − 2
[|P |C3(P ) − 2Γ3(P )]. (5.39)
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Γ
2 2

C

p3p4

p1 p2

2
ΠP(  ) P(  ) P(  )

Figure 5.13: As a consequence of Cor. 5.30 and Thm. 5.31, C2(P ) = 1
2 [Γ2(P ) +

Π2(P )] when |P | = 4.

Proof. The proof is identical to the proof of Obs. 5.28 except that the value π is
replaced by 2π and references to Defs. 4.2, 4.3, and 5.4 refer instead to Defs. 4.5,
4.6, and 5.5.

These results imply the following relationship between the projection median
and the Steiner centre:

Corollary 5.30. For any multiset P in Rd where |P | = 4 and d ≤ 3,

Cd(P ) =
1

2

[
Πd(P ) + Γd(P )

]
, (5.40)

where Cd denotes the centre of mass, Πd denotes the projection median, and Γd
denotes the Steiner centre.

Proof. The result follows from Obs. 5.28 and 5.29 and Thms. 5.31 and 5.32.

We revisit the example presented in Sec. 4.6.1. Let P = {p1, . . . , p4} =
{(−2,−1), (2,−1), (2, 1), (0, 1)}, respectively. See Fig. 5.13. The Steiner centre
of P , Γ2(P ), lies in position (1/4,−1/4), the Gaussian median of P , G2(P ),
lies in position (3/4, 1/4), and the centre of mass of P , C2(P ), lies in position
(1/2, 0). As shown in the next section, Π2(P ) = G2(P ) since |P | ≤ 4.

Gaussian Median Equivalence with Projection Median

We now prove that the projection median and the Gaussian median coincide in
R2 when |P | ≤ 4.

Theorem 5.31. For any multiset P in R2 where |P | ≤ 4,

G2(P ) = Π2(P ).

Proof. When |P | ≤ 2, G2(P ) = Π2(P ) by the definitions of G2(P ) and Π2(P ).
Therefore, choose any multiset P in R2 such that |P | ∈ {3, 4}. Observe that for
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|P | ∈ {3, 4}, med(Pθ) = [
∑
p∈Pθ

p − 2mid(Pθ)]/(|P | − 2).

Π2(P ) =
2

π

∫ π

0

med(Pθ) dθ

=
2

π

∫ π

0

1

|P | − 2


∑

p∈Pθ

p − 2mid(Pθ)


 dθ

=
1

|P | − 2


 2

π

∫ π

0

∑

p∈Pθ

p dθ − 4

π

∫ π

0

mid(Pθ) dθ




=
1

|P | − 2


 2

π

∫ π

0

∑

p∈P
uθ〈p, uθ〉 dθ − 4

π

∫ π

0

mid(Pθ) dθ




=
1

|P | − 2


∑

p∈P

(
2

π

∫ π

0

uθ〈p, uθ〉 dθ

)
− 4

π

∫ π

0

mid(Pθ) dθ




=
1

|P | − 2


∑

p∈P
p − 4

π

∫ π

0

mid(Pθ) dθ




=
1

|P | − 2

[
|P |C2(P ) − 2Γ2(P )

]
, by Defs. 2.11 and 4.3,

= G2(P ), by Obs. 5.28.

The analogous result holds in three dimensions:

Theorem 5.32. For any multiset P in R3 where |P | ≤ 4,

G3(P ) = Π3(P ).

Proof. When |P | ≤ 2, G3(P ) = Π3(P ) by the definition of G3(P ). Therefore,
choose any multiset P in R3 such that |P | ∈ {3, 4}.

Π3(P ) =
3

2π

∫ π

0

∫ π

0

sin φmed(Pθ,φ) dφ dθ

=
3

2π

∫ π

0

∫ π

0

sin φ

|P | − 2


 ∑

p∈Pθ,φ

p − 2mid(Pθ,φ)


 dφ dθ

=
1

|P | − 2


 3

2π

∫ π

0

∫ π

0

sinφ
∑

p∈Pθ,φ

p dφ dθ

− 3

π

∫ π

0

∫ π

0

sin φmid(Pθ,φ) dφ dθ

)

=
1

|P | − 2


 3

2π

∫ π

0

∫ π

0

sinφ
∑

p∈P
uθ,φ〈p, uθ,φ〉 dφ dθ − 2Γ3(P )


 ,
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by Def. 4.6,

=
1

|P | − 2


∑

p∈P

(
3

2π

∫ π

0

∫ π

0

sin φ · uθ,φ〈p, uθ,φ〉 dφ dθ

)
− 2Γ3(P )




=
1

|P | − 2


∑

p∈P
p − 2Γ3(P )




=
1

|P | − 2

[
|P |C3(P ) − 2Γ3(P )

]
, by Def. 2.11,

=G3(P ), by Obs. 5.29.

We give a counter-example to show that Thms. 5.31 and 5.32 do not gener-
alize to |P | ≥ 5.

Observation 5.33. In general, Gd(P ) 6= Πd(P ) when |P | ≥ 5.

Proof. Let P = {a, b, c, d, e} such that a = (0, 0), b = (1, 0), c = d = (4, 0), and
e = (5, 0). The median M2(P ) is located at (4, 0). Furthermore, the median of
any projection Pθ will be the projection of c = d. Therefore, Π2(P ) = (4, 0).
As for the Gaussian median, g2(a) = g2(e) = 0 and g2(b) = g2(c) = g2(d) = π.
The Gaussian median lies at

G2(P ) =
1

3π

∑

p∈P
g2(p)p =

b + c + d

3
= (3, 0) 6= Π2(P ).

Note on Equivalence with Projection Median
An alternative to Gaussian median weight as defined in Defs. 5.4 and 5.5 would
be to weight each client p in P by the fraction of turn angles θ ∈ [0, π) (re-
spectively, (θ, φ) ∈ [0, π)2) for which p induces a median of Pθ (respectively,
Pθ,φ). Such a definition, although significantly more difficult to analyze, may
lead to a generalization of the Steiner centre’s definition by Gaussian weights
that coincides with the projection median for |P | ≥ 5.

5.8.3 Gaussian Median: Approximation Factor

We briefly examine the approximation factor of the Gaussian median.

Theorem 5.34. For d ∈ {2, 3}, the d-dimensional Gaussian median, Gd, can-
not guarantee a λ-approximation of the Euclidean 1-median for any λ < 3/2.

Proof. Although the example is described in R2, it implies the same result in
R3. Let n ≥ 3 be an integer and let ǫ > 0. Let n− 2 clients be located at (0, 0).
and let one client be located at (1, 0). Let client a be located at (−ǫ, 0) and let
client b be located at (1+ ǫ, 0). The Gaussian median of P assigns equal weight
to all clients except a and b which have weight 0. The Gaussian median of P
lies at (1/(n− 2), 0). The Euclidean 1-median of P lies at (0, 0). The Euclidean
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median sum is 2 + 2ǫ and the sum of the distance from the Gaussian median of
P to the clients of P is 1 + 2ǫ + 2(n − 3)/(n − 2).

We get the following lower bound on the approximation factor of the Gaus-
sian median, λ:

sup
ǫ>0
n≥3

1 + 2ǫ +
2(n − 3)

n − 2
≤ λ(2 + 2ǫ)

⇒ lim
ǫ→0
n→∞

1 + 2ǫ +
2(n − 3)

n − 2
≤ λ(2 + 2ǫ)

⇒ λ ≥ 3

2
.

5.8.4 Gaussian Median: Maximum Velocity

We briefly examine the maximum velocity of the Gaussian median.

Theorem 5.35. The two-dimensional mobile Gaussian median, G2, has max-
imum velocity 3 + 8/π.

Proof. When |P | = 1, the velocity of G2(P (t)) matches the velocity of the single
client in P . When |P | = 2, the velocity of G2(P (t)) is at most the velocity of the
midpoint of the two clients of P . Thus, when |P | ≤ 2, the maximum velocity of
G2 is one. Assume |P | ≥ 3.

It is straightforward to generalize the proof of Lem. 4.28 to any linear com-
bination of median functions. That is, we do not require k to be in the interval
[0, 1]:

||ka + (1 − k)b|| ≤ |k| · ||a|| + |1 − k| · ||b||. (5.41)

Recall that

Gd(P (t)) =
1

|P | − 2
[|P |Cd(P (t)) − 2Γd(P (t))],

by Obs. 5.28. By Cor. 4.15, C2 has maximum velocity one and by Thm. 4.24,
Γ2 has maximum velocity 4/π. The generalization in Eq. (5.41) allows for the
corresponding generalization of Thm. 4.33. It follows that

∀t1, t2 ∈ T, ||G2(P (t1)) − G2(P (t2))|| ≤
( |P |
|P | − 2

+
2

|P | − 2

4

π

)
|t1 − t2|

≤
(

3 +
8

π

)
|t1 − t2|, (5.42)

since |P | ≥ 3.

Theorem 5.36. The three-dimensional mobile Gaussian median, G3, has max-
imum velocity 6.
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Proof. The proof is analogous to the proof of Thm. 5.35, except that the refer-
ence to Obs. 5.28. refers instead to Obs. 5.29 and the reference to Thm. 4.24
refers instead to Thm. 4.26, in which the maximum velocity of Γ3 is shown to
be 3/2. It follows that

∀t1, t2 ∈ T, ||G3(P (t1)) − G3(P (t2))|| ≤
( |P |
|P | − 2

+
3

|P | − 2

)
|t1 − t2|

≤ 6|t1 − t2|, (5.43)

since |P | ≥ 3.

The bounds shown in Thms. 5.35 and 5.36 are unlikely to be tight; they are
included to demonstrate that these values have fixed upper bounds.

5.9 Evaluation

In Secs. 5.4 through 5.8 we analyzed candidate functions whose properties are
most applicable for defining good bounded-velocity approximations of the mo-
bile Euclidean 1-median. In this section we compare these various median func-
tions against each other, in terms of approximation factor, maximum velocity,
invariance under similarity transformations, and consistency of definition across
dimensions.

Those median functions which we identified are the rectilinear 1-median, the
centre of mass, the projection median, and the Gaussian median. To these we
add the median function defined by a client p in P (see Sec. 5.3.1), and a convex
combination of the rectilinear 1-median and the centre of mass which we discuss
below.

Rectilinear 1-Median
In Sec. 5.4 we examined the rectilinear 1-median, Sd. In Rd, we showed an
upper bound of

√
d and a lower bound of (1 +

√
d − 1)/

√
d on the approxima-

tion factor of Sd. When d = 2, the upper and lower bounds coincide at
√

2.
For d ≥ 3, the bounds diverge. Still in Rd, we referred to a result of Bereg
et al. [BBKS06] showing a tight bound of

√
d on its maximum velocity. As

mentioned in Sec. 2.5.1, Sd is not invariant under under rotation or reflection.
It is, however, invariant under translation and scaling. The definition of Sd is
consistent across dimensions.

Centre of Mass
In Sec. 5.5 we examined the centre of mass, Cd. In Rd, we showed a tight
bound of 2 on the approximation factor of Cd and we referred to a result of
Bereg et al. [BBKS06] showing a tight bound of 1 on its maximum velocity. As
mentioned in Sec. 2.5.2. Cd is invariant under similarity transformations and
its definition is consistent across dimensions.
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Projection Median
In Sec. 5.6 we introduced the projection median, Πd. In R2, we showed a lower
bound of

√
4/π2 + 1 and an upper bound of 4/π on the approximation factor

of Π2 as well as a tight bound of 4/π on its maximum velocity. In R3, we
observed that the same lower bound applies on the approximation factor of Π3

and we showed a tight bound of 3/2 on its maximum velocity. We showed that
the definition of Πd is consistent across dimensions and we demonstrated the
invariance of Πd under similarity transformations.

Convex Combinations
In Sec. 5.7 we presented a discussion of convex combinations of median functions,
including results on bounding the approximation factor and maximum velocity
of a convex combination in terms of the approximation factors and maximum
velocities of its component median functions. We now examine specific convex
combinations involving the median functions described above.

Any convex combination Υd that includes the Euclidean 1-median as a com-
ponent of non-zero weight, regardless of the combination of median functions
that completes the definition of Υd, results in discontinuous motion for Υd.
Consequently, we consider only convex combinations whose composition does
not include Md.

The maximum velocity of Sd is greater than that of the projection median
while the maximum velocity of Cd less than that of the projection median. Thus,
we consider the convex combination of Sd and Cd given by kSd(P )+(1−k)Cd(P )
for some k ∈ [0, 1]. We select values of k such that the maximum velocity of
kSd(P ) + (1 − k)Cd(P ) is equal to 4/π in R2 and equal to 3/2 in R3, allowing
us to compare the convex combination directly against the projection median
for a fixed maximum velocity. The specific values of k is given by solving for k2

and k3 in

k2

√
2 + (1 − k2) =

4

π
, in R2,

and k3

√
3 + (1 − k3) =

3

2
, in R3.

Solving for these values gives k2 = (4 − π)/[π(
√

2 − 1)] ≈ 0.6597 and k3 =
1/[2(

√
3−1)] ≈ 0.6831. The corresponding bounds on the approximation factors

are

k2

√
2 + 2(1 − k2) =

√
2(4 + π) − 8

π(
√

2 − 1)
≈ 1.6136, in R2,

and k3

√
3 + 2(1 − k3) =

5
√

3 − 6

2(
√

3 − 1)
≈ 1.8170, in R3.

Finally, since Sd is neither invariant under rotation nor reflection, it follows
that these properties do not hold for any convex combination whose composition
includes Sd.
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median function approximation factor maximum velocity
Euclidean 1-median M2 λ = 1 vmax = ∞
single client p ∈ P p λ = ∞ vmax = 1
centre of mass C2 λ = 2 vmax = 1

rectilinear 1-median S2 λ =
√

2 ≈ 1.4142 vmax =
√

2 ≈ 1.4142

projection median Π2

√
4/π2 + 1 ≤ λ ≤ 4/π vmax = 4/π ≈ 1.2732

⇒ 1.1854 ≤ λ ≤ 1.2732
convex combination λ ≤ 1.6136 vmax ≤ 4/π ≈ 1.2732
of S2 and C2

Gaussian median G2 1.5 ≤ λ vmax ≤ 3 + 8/π
⇒ vmax ≤ 5.5465

Table 5.1: comparing median functions in R2

median function approximation factor maximum velocity
Euclidean 1-median M3 λ = 1 vmax = ∞
single client p ∈ P p λ = ∞ vmax = 1
centre of mass C3 λ = 2 vmax = 1

rectilinear 1-median S3 (1 +
√

2)/
√

3 ≤ λ ≤
√

3 vmax =
√

3 ≈ 1.7321
⇒ 1.3938 ≤ λ ≤ 1.7321

projection median Π3 1.1854 ≈
√

4/π2 + 1 ≤ λ vmax = 1.5
convex combination λ ≤ 1.8170 vmax ≤ 1.5
of S3 and C3

Gaussian median G3 1.5 ≤ λ vmax ≤ 6

Table 5.2: comparing median functions in R3

Gaussian Median
In Sec. 5.8 we introduced the Gaussian median, Gd, as a linear combination of
the Steiner centre, Γd, and the centre of mass, Cd. We showed that for |P | ≤ 4,
Gd(P ) and Πd(P ) coincide for d ∈ {2, 3}. In R2 and R3, we showed a lower
bound of 3/2 on the approximation factor of G2. In R2 we showed an upper
bound of 3+8/π on the maximum velocity of G2 and in R3 we showed an upper
bound of 6 on the maximum velocity of G3.

Comparison of Median Functions
The values for the approximation factor and maximum velocity of these various
median functions are displayed in Tab. 5.1 for R2 and in Tab. 5.2 for R3.

First, observe that the convex combination k2S2+(1−k2)C2 provides a worse
approximation factor than does Π2 for the same maximum velocity. That is, the
projection median provides a better approximation of the Euclidean 1-median
than does the corresponding convex combination of Cd and Sd, even though
both have the same maximum velocity. As for the rectilinear 1-median, the
projection median has both a lower approximation factor and lower maximum
velocity in R2. The upper bound on the approximation factor of the projection
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median needs to be improved before a similar claim can be made in R3. Since the
lowest possible approximation factor is one, the difference in the approximation
factors of S2 and Π2 in R2 from 1.4142 to 1.2732 corresponds to a relative
improvement of 34.0%. Similarly, since any bounded-velocity approximation
must have velocity at least one, the difference in the maximum velocities of S2

and Π2 in R2 corresponds to the same relative improvement of 34.0%.
Experimentation suggests that the projection median performs well not only

in the worst case but also in the average case. Empirical evidence is provided
in Sec. 8.4.2 in the form of test results from simulations of sets of 6 clients and
16 clients for which the approximation factors and velocities of the Euclidean 1-
median, centre of mass, rectilinear 1-median, projection median, and Gaussian
median of a set of mobile clients are measured over 10000 time units. See
Figs. 8.11 and 8.12.

All median functions mentioned in this section are defined consistently across
dimensions; that is, the position of Υd(P ) coincides with Υd−1(P ) when the po-
sitions of clients in P lie in a (d − 1)-dimensional flat. All median functions
mentioned are invariant under similarity transformations except for the rec-
tilinear 1-median and its convex combinations which are not invariant under
rotation or reflection.
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Chapter 6

Mobile Euclidean 2-Centre

6.1 Introduction

6.1.1 Chapter Objectives

Chapter 6 examines bounded-velocity approximations to the Euclidean 2-centre.
The static Euclidean 2-centre problem reduces to identifying an optimal

partition of the client set and finding a Euclidean 1-centre within each partition.
The two subproblems are not independent; rather, given a set of clients P , the
coordination of the positions of the two facilities of the Euclidean 2-centre of P
corresponds to a global minimum of the Euclidean 2-radius of P . The motion
of clients causes discontinuous changes in the optimal partition, resulting in
discontinuity in the motion of the mobile Euclidean 2-centre. This discontinuity
introduces new challenges in addition to the unbounded velocity inherited from
the mobile Euclidean 1-centre.

As a natural progression from our discussion of bounded-velocity approxi-
mations of the Euclidean 1-centre, our exploration of approximation functions
of the Euclidean 2-centre (referred to as 2-centre functions) initially leads us
to consider the rectilinear 2-centre and 2-means clustering, the respective gen-
eralizations of the rectilinear 1-centre and the centre of mass to two facilities.
We show that neither of these is continuous. Thus, we are motivated to explore
alternative methods for defining 2-centre functions, using techniques different
from those presented in Chapter 4.

Although the one-dimensional mobile Euclidean 1-centre is not unique, re-
flection can be used to define a unique bounded-velocity Euclidean 2-centre.
We employ this strategy in two or more dimensions to define reflection-based
2-centre functions, a new set of 2-centre functions which we now introduce. The
choice of a mobile function for the point of reflection is a critical factor in the
eccentricity and maximum velocity of the resulting 2-centre function. We cap-
italize on our results from Chapter 4 and consider the rectilinear 1-centre, the
Steiner centre, the Euclidean 1-centre, and the centre of mass as candidates for
the point of reflection.

The main contribution of this chapter is the definition of these reflection-
based 2-centre functions, in particular, the Steiner reflection 2-centre and the
rectilinear reflection 2-centre, which we show successfully balance the conflicting
goals of approximating the Euclidean 2-radius while maintaining a low maxi-
mum velocity.

Kinetic algorithms for maintaining these various mobile 2-centre functions
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are discussed in Ch. 8; for now we focus on their respective qualities as ap-
proximation functions. Summaries of the chapter’s significant results and their
implications are found in Secs. 6.1.2 and 6.7.

6.1.2 Chapter Overview

Below is a summary of the sections presented in this chapter.

Properties of the Mobile Euclidean 2-Centre (Sec. 6.2)
Sec. 6.2 examines additional properties of the mobile Euclidean 2-centre. Specif-
ically, we show that even in one dimension the Euclidean 2-centre (and, further-
more, any geometric 2-centre) is not unique. That is, for some sets of clients
P in Rd, two or more pairs of points in Rd realize the Euclidean 2-radius of
P , even when d = 1. We show that no one-dimensional Euclidean 2-centre can
guarantee relative velocity less than two (unlike the one-dimensional Euclidean
1-centre and 1-median that both have maximum velocity one). Furthermore, we
show that the Euclidean 2-centre is discontinuous in two or more dimensions.

Comparison Measures (Sec. 6.3)
Sec. 6.3 expands on the measures of eccentricity and maximum velocity and
explores bounds on their relationship in terms specific to the approximation
of the Euclidean 2-centre. We show that no bounded-velocity approximation
of the Euclidean 2-centre can guarantee eccentricity less than

√
2 or maximum

velocity less than 1 +
√

3/2 in two or more dimensions (unlike the Euclidean
1-centre for which bounded-velocity approximations exist for any eccentricity
λ > 1 and any maximum velocity vmax ≥ 1, although these are not necessarily
simultaneously achievable by any single centre function).

Single-Facility Approximation Functions (Sec. 6.4)
Sec. 6.4 briefly addresses 2-centre functions whose two facilities always coin-
cide. We show that such a 2-centre function cannot guarantee any bound on
eccentricity.

Rectilinear 2-Centre and 2-Means Clustering (Sec. 6.5)
Sec. 6.5 analyzes the properties of the mobile rectilinear 2-centre and the mobile
2-means clustering in terms of their approximation of the Euclidean 2-centre. As
seen in Ch. 4, both the rectilinear 1-centre and the centre of mass provide good
bounded-velocity approximations of the Euclidean 1-centre, suggesting the cor-
responding two-facility functions as candidates for approximating the Euclidean
2-centre. We show that like the Euclidean 2-centre, both the rectilinear 2-centre
and 2-means clustering are discontinuous.

Reflection-Based 2-Centre Functions (Sec. 6.6)
Sec. 6.6 introduces the idea of defining an approximation to the Euclidean 2-
centre of a set of clients P by selecting an arbitrary client p0 ∈ P and its
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reflection q across a mobile function Fd, where the position of Fd(P (t)) is central
to P (t). We examine reflection-based 2-centre functions when Fd corresponds
to the Euclidean 1-centre, the rectilinear 1-centre, the Steiner centre, and the
centre of mass.

We show general lower bounds of 2 on the eccentricity and 3 on the maximum
velocity of any reflection-based 2-centre function. When the point of reflection
is the Euclidean 1-centre (Fd = Ξd) we show unbounded velocity and a tight
bound of 4 on eccentricity in Rd. When the point of reflection is the rectilinear
1-centre (Fd = Rd) we show a tight bound of 2

√
d + 1 on maximum velocity, an

upper bound of 2
√

d on eccentricity, and a lower bound of 2
√

2 on eccentricity
in Rd. When the point of reflection is the Steiner centre (F2 = Γ2) we show
a tight bound of 8/π + 1 on maximum velocity, an upper bound of 8/π on
eccentricity, and a lower bound of 2

√
1 + 1/π2 on eccentricity in R2. Finally,

when the point of reflection is the centre of mass (Fd = Cd) we show a tight
bound of 3 on maximum velocity and unbounded eccentricity in Rd.

Evaluation (Sec. 6.7)

Sec. 6.7 summarizes the results derived in Ch. 6 by comparison of the various
2-centre functions discussed in terms of their approximation of the Euclidean
2-centre. The primary measures for evaluating the quality of each 2-centre
function are eccentricity and maximum velocity (inversely related to stability).

Bounded-Velocity Approximations of the Rectilinear 2-Centre (Sec. 6.8)

Sec. 6.8 briefly addresses the problem of identifying bounded-velocity approxi-
mations of the rectilinear 2-centre, where maximum velocity and approximation
factor are defined with respect to Chebyshev distance. We show that the recti-
linear reflection 2-centre provides a 2-approximation of the rectilinear 2-centre
when distance and velocity are measured using the Chebyshev norm.

6.2 Properties of the Mobile Euclidean
2-Centre

This section explores the existence of multiple solutions (non-uniqueness) of the
Euclidean 2-centre, establishes a tight bound of two on the maximum velocity
(and continuity) of the Euclidean 2-centre in one dimension, and demonstrates
the discontinuity (and unbounded velocity) of the mobile Euclidean 2-centre
in two or more dimensions. Refer to Sec. 2.3.3 for the static definition of the
Euclidean k-centre.

Given a set of mobile clients P in Rd, recall that a Euclidean 2-centre of P
consists of a set of two mobile facility functions which we denote Ξd(P (t)) =
{Ξ1

d(P (t)),Ξ2
d(P (t))}. Similarly, a 2-centre function of P is denoted Υd(P (t)) =

{Υ1
d(P (t)),Υ2

d(P (t))}.
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C DR B

R A

Figure 6.1: non-uniqueness of the geometric 2-centre in R and the Euclidean
2-centre in R2

6.2.1 Non-Uniqueness of the Geometric 2-Centre

The Euclidean 1-centre of a finite set of clients P in Rd is unique for any d ≥ 1.
Similarly, the Euclidean 1-median of a finite multiset of clients P in Rd is unique
for any d ≥ 1 if either |P | is odd or the clients of P are not all collinear. In
general, the Euclidean 2-centre of a finite set P , however, is not unique.

Given a set of clients, P , and a Euclidean 2-centre of P , Ξ1
d(P ) and Ξ2

d(P ), set
P can be partitioned into two subsets, P1 and P2, such that clients in partition
Pi are nearest to facility Ξid(P ), for i ∈ {1, 2}. If the Euclidean 2-radius is
achieved in one partition only, say P1, (that is, the local Euclidean radius of P1

is greater than that of P2) then there is some connected region R that intersects
P2 such that any point in R may be selected as the position of the facility to
serve clients in P2. For example, let P = {0, 1, 2}. See Figs. 6.1A and 6.1B.
The clients of P can be partitioned either as sets {{1}, {2, 3}} or {{1, 2}, {3}}.
In either case, the interval R corresponds to a set of values whose choice for the
position of the second facility does not increase the Euclidean 2-radius.

In R2, the choice for partitions might not be unique, even if both parti-
tions achieve the Euclidean 2-radius simultaneously. For example, let P =
{(1, 1), (1,−1), (−1, 1), (−1,−1)}. See Figs. 6.1C and 6.1D. Jaromczyk and
Kowaluk [JK95] show a tight bound on the worst-case possible number of am-
biguous solutions to the Euclidean 2-centre problem; specifically, for a finite set
of clients P in R2, |P | possible Euclidean 2-centre solutions may exist corre-
sponding to |P | mutually distinct partitions of P (for example, when n clients
are positioned at the vertices of a regular n-gon and n is odd).

In the mobile setting, we ask whether there exists some mobile facility
whose motion is continuous and whose velocity is bounded while maintaining
a bounded approximation factor. Since we approximate the Euclidean 2-radius
and not the exact position of the Euclidean 2-centre, the non-uniqueness of the
Euclidean 2-centre has no effect on the definition of the approximation factor
of a 2-centre function.

In one dimension, there exists a mobile Euclidean 2-centre whose motion is
continuous with maximum velocity 2. In two or more dimensions, no mobile
Euclidean 2-centre is continuous. We establish these properties formally in the
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BA

C D

Figure 6.2: one-dimensional algorithm for the mobile geometric 2-centre

next two sections.

6.2.2 Bounded Velocity in One Dimension

We begin by describing an algorithm for finding a Euclidean 2-centre of a finite
set of clients P in R. The algorithm is described for a static set of clients
but is easily generalized to the mobile setting. Although previous chapters
have focused on properties of mobility and approximation and have postponed
detailed descriptions of algorithm until Ch. 8, in this instance the location for
two facilities returned by the algorithm are used in our proofs of the maximum
velocity of the Euclidean 2-centre.

Recall that the Euclidean 2-centre and the rectilinear 2-centre are equivalent
in R (both are geometric 2-centres) since all Minkowski distance metrics are
equal in R. Therefore, the following algorithm can be used to find any one-
dimensional geometric 2-centre.

The algorithm begins by identifying the Euclidean 1-centre of P , Ξ1(P ), as
the midpoint of the extreme points of P . See Fig. 6.2B. Clients are partitioned
about Ξ1(P ). Any client whose position coincides with Ξ1(P ) may be included
in either partition arbitrarily. The extreme points of each partition are then
identified. See Fig. 6.2C. The Euclidean 2-radius of P , r, is determined by the
partition of greater diameter. Without loss of generality, assume this is the
left partition. Therefore, the location of the first facility , Ξ1

1(P ), must coincide
with the Euclidean 1-centre of the left partition. It follows that any point within
distance r from the extreme points of the right partition can be selected to define
the location of the second facility. A natural choice for selecting the position
of the second facility is to employ symmetry and define Ξ2

1(P ) by reflecting
Ξ1

1(P ) across the Euclidean 1-centre of P , Ξ1(P ). See Fig. 6.2D. This algorithm
is straightforward to implement in Θ(n) time, where n = |P |. See Ch. 8 for
mobile implementation details using a KDS.

The algorithm described above is not an approximation algorithm but, rather,
it returns the exact positions of a Euclidean 2-centre of P . As we show in
Thm. 6.3, although the Euclidean 2-centre is not unique in R, the position re-
turned by this algorithm moves continuously and with maximum velocity two
when the clients of P move continuously with maximum velocity one. Further-
more, this velocity is optimal; as we show in Thm. 6.4, in the worst-case, any
Euclidean 2-centre moves with relative velocity at least two in R.

To prove an upper bound on the maximum velocity of the Euclidean 2-centre
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in R we first prove two lemmas. In Lem. 6.1 we bound the maximum velocity of
the facility whose position is defined by reflection across the Euclidean 1-centre.
In Lem. 6.2 we bound the maximum velocity of the Euclidean 2-centre when
no clients change partitions. These lemmas are used in the proof of Thm. 6.3,
showing that the one-dimensional Euclidean 2-centre has maximum velocity
two.

Lems. 6.1 and 6.2 and Thm. 6.3 refer to the following definition for function
R : R → R. Let R[x(t)] denote the reflection of x(t) across Ξ1[P (t)]. That is,
R[x(t)] = 2Ξ1[P (t)] − x(t).

Lemma 6.1. Let P denote a set of mobile clients in R defined over a time
interval T . Let A denote a subset of P such that for every p ∈ A and every t ∈ T ,
p(t) ≤ Ξ1(P (t)). The reflection of Ξ1(A(t)) across Ξ1(P (t)) has maximum
velocity two.

Proof. We bound the velocity of R(Ξ1[A(t)]):

∀t1, t2 ∈ T, ||R(Ξ1[A(t1)]) − R(Ξ1[A(t2)])||
=||2Ξ1[P (t1)] − Ξ1[A(t1)] − 2Ξ1[P (t2)] + Ξ1[A(t2)]||

=
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∣∣∣∣ max
t∈A(t1)

t − max
u∈A(t2)

u

∣∣∣∣
∣∣∣∣

≤1

2
max
p∈P

||p(t1) − p(t2)|| + max
p∈P

||p(t1) − p(t2)||

+
1

2
max
p∈P

||p(t1) − p(t2)||

=2max
p∈P

||p(t1) − p(t2)||

≤2|t1 − t2|.
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Lemma 6.2. Let P denote a finite set of mobile clients in R defined over a time
interval T such that at any t ∈ T , no client p ∈ P (t) has a position that coincides
with Ξ1(P (t)). There exists a one-dimensional mobile geometric 2-centre of P
with maximum velocity 2.

Proof. Choose any t1, t2 ∈ T . Let the geometric 2-centres of P (t1) and P (t2)
be defined by the algorithm described above. Let A(t) and B(t) denote the
respective left and right partitions of P (t) across Ξ1[P (t)]. Without loss of
generality, assume the diameter of A(t1) is greater than or equal to the diameter
of B(t1).

Since the motion of clients is continuous, the constraint imposed on client
positions, p(t) 6= Ξ1[P (t)], implies that all clients in P remain in their respective
partitions for all t ∈ T .

Case 1. Assume the diameter of A(t2) is greater than or equal to the diam-
eter of B(t2). Thus, the position of the facility serving A(t) is given by Ξ1[A(t)]
and the position of the facility serving B(t) is given by R(Ξ1[A(t)]) for both
t = t1 and t = t2. By Obs. 4.3, ||Ξ1[A(t1)] − Ξ1[A(t2)]|| ≤ |t1 − t2| and by
Lem. 6.1, ||R(Ξ1[A(t1)]) − R(Ξ1[A(t2)])|| ≤ 2|t1 − t2|. Therefore the Euclidean
2-centre of P has maximum velocity two.

Case 2. Assume the diameter of A(t2) is less than the diameter of B(t2).
Therefore, there exists some t3 ∈ [t1, t2] such that the diameter of A(t3) is
equal to that of B(t3). Observe that Ξ1[A(t3)] = R(Ξ1[B(t3)]) and Ξ1[B(t3)] =
R(Ξ1[A(t3)]). We bound the velocity of the facility serving partition A:

∀t1, t2 ∈ T, ||Ξ1[A(t1)] − R(Ξ1[B(t2)])||
= ||Ξ1[A(t1)] − Ξ1[A(t3)] + R(Ξ1[B(t3)]) − R(Ξ1[B(t2)])||
≤ ||Ξ1[A(t1)] − Ξ1[A(t3)]|| + ||R(Ξ1[B(t3)]) − R(Ξ1[B(t2)])||
≤ |t1 − t3| + 2|t3 − t2|,

by Obs. 4.3 and Lem. 6.1,

≤ 2|t1 − t2|. (6.1)

An argument analogous to Eq. (6.1) provides the corresponding bound on the
velocity of the facility serving partition B:

∀t1, t2 ∈ T, ||R(Ξ1[B(t1)]) − Ξ1[A(t2)]|| ≤ 2|t1 − t2|.

Therefore, the Euclidean 2-centre of P has maximum velocity two.

We now remove the restriction on client positions and show this maximum
velocity holds for any set of mobile clients in R.

Theorem 6.3. There exists a one-dimensional mobile geometric 2-centre with
maximum velocity 2.

151



CHAPTER 6. MOBILE EUCLIDEAN 2-CENTRE

Proof. Choose any finite set of clients in R defined over a time interval T =
[0, tf ]. Let the geometric 2-centres of P (t) be defined by the algorithm described
above. For every t ∈ T , let A(t) and B(t) denote the respective left and right
partitions of P (t) across Ξ1[P (t)].

Let n denote the number of clients in P that change partitions at least once
over interval T . We say client p changes partitions if there exist t1, t2 ∈ T such
that p(t1) ∈ A(t1) and p(t2) ∈ B(t2). We use induction on n.

If no client in P changes partitions, then the result follows from Lem. 6.2.
Choose any k ≥ 1. Assume the one-dimensional mobile geometric 2-centre
has maximum velocity 2 when fewer than k clients change partitions. We now
prove that the one-dimensional mobile geometric 2-centre has maximum velocity
2 when k clients change partitions.

Let p ∈ P denote a client that changes partitions at least once. Without loss
of generality, assume p(t1) ∈ A(t1) and p(t2) ∈ B(t2) for some 0 ≤ t1 < t2 ≤ tf .
Let t0 ∈ [t1, t2) denote a point at which p moves from A to B. That is, assume
p(t0) ∈ A(t0) and for all δ > 0 there exists an ǫ ∈ (0, δ) such that p(t0 + ǫ) ∈
B(t0 + ǫ). Observe that p(t0) = Ξ1[P (t0)].

Let fA(t) and fB(t) denote the positions of the two facilities that serve
partitions A and B, respectively, as defined by our one-dimensional 2-centre
algorithm. Let T1 = [0, t0] and let T2 = (t0, tf ]. By our inductive hypothesis,
fA and fB each have maximum velocity 2 over intervals T1 and T2. That is,

∀t1, t2 ∈ T1, ||fA(t1) − fA(t2)|| ≤ 2|t1 − t2|, (6.2a)

and

∀t3, t4 ∈ T2, ||fA(t3) − fA(t4)|| ≤ 2|t3 − t4|. (6.2b)

The corresponding bounds hold for fB. In addition,

∀t1 ∈ T1, ||fA(t1) − fA(t0)|| ≤ 2|t1 − t0|, (6.3a)

and

∀t4 ∈ T2, lim
ǫ→0+

||fA(t0 + ǫ) − fA(t4)|| ≤ 2|t0 − t4|. (6.3b)

Again, the corresponding bounds hold for fB .

Since p(t0) ∈ A(t0) and p(t0) = Ξ1[P (t0)], the diameter of A(t0) must be
greater than the diameter of B(t0). Therefore, our algorithm locates the two
facilities at fA(t0) = Ξ1[A(t0)] and fB(t0) = R(Ξ1[A(t0)]). Similarly, for all
δ > 0 there exists an ǫ ∈ (0, δ) such that the diameter of A(t0 + ǫ) must be
less than the diameter of B(t0 + ǫ). Therefore, our algorithm locates the two
facilities at fA(t0 + ǫ) = R(Ξ1[B(t0 + ǫ)]) and fB(t0 + ǫ) = Ξ1[B(t0 + ǫ)]. Since
p(t0) = Ξ1[P (t0)], fA(t0) = limǫ→0+ fA(t0 + ǫ) and fB(t0) = limǫ→0+ fB(t0 + ǫ).
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Figure 6.3: illustration in support of Thm. 6.4

Therefore,

∀t1 ∈ T1, ∀t2 ∈ T2, ||fA(t1) − fA(t2)||
= ||fA(t1) − fA(t0) + fA(t0) − fA(t2)||
≤ ||fA(t1) − fA(t0)|| + ||fA(t0) − fA(t2)||
= lim
ǫ→0+

||fA(t1) − fA(t0)|| + ||fA(t0 + ǫ) − fA(t2)||

≤ 2|t1 − t0| + 2|t0 − t2|, by Eq. (6.3),

= 2|t1 − t2|.

The analogous bound holds for fB . Thus, the one-dimensional mobile geometric
2-centre of P has maximum velocity 2.

We show this bound is tight by providing an example.

Theorem 6.4. No one-dimensional mobile geometric 2-centre can guarantee
relative velocity less than 2.

Proof. Let P (0) = {1, 3, 7, 9} and let P (1 + ǫ) = {−ǫ, 4 + ǫ, 7, 8 + ǫ} for some
0 < ǫ ≤ 1. See Fig. 6.3. Observe that there exists a set of four mobile clients
with velocity at most one whose positions realize P (0) and P (1 + ǫ). The
Euclidean 2-radius of P (0) is easily seen to be 1 by the symmetry of P (0). The
unique set of facilities to realize the Euclidean 2-radius of P (0) is {2, 8}. The
Euclidean 1-centre of P (1+ ǫ), Ξ1(P (1+ ǫ)), lies at 4, partitioning the clients of
P (1 + ǫ) into two sets. The Euclidean 2-radius of P (1 + ǫ) is 2, realized by the
rightmost partition of P (1+ ǫ). Although multiple positions are possible for the
facility that serves the left partition, the facility serving the right partition has
a unique position at 6 + ǫ that realizes the Euclidean 2-radius of 2. Therefore,
the respective geometric 2-centres of P at times t = 0 and t = 1 + ǫ are given
by {2, 8} and {x, 6 + ǫ}, where x ≤ 4. It follows that some facility must have
moved at least 2 − ǫ. In the limit as ǫ → 0, we get a lower bound of 2 on the
velocity of the geometric 2-centre in R.

Both the Euclidean 1-centre and 1-median have maximum velocity one in one
dimension and unbounded velocity in two or more dimensions. This property
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Figure 6.4: illustration in support of Thm. 6.5

may have suggested the more general property that for a fixed k, either a) some
Euclidean k-centre (k-median) has maximum velocity one, or b) no Euclidean
k-centre (k-median) can guarantee any fixed upper bound on velocity. It is
interesting that this is indeed not the case since the tight bound of 2 on the
velocity of the one-dimensional Euclidean 2-centre shown in Thms. 6.3 and 6.4
disproves such a hypothesis.

6.2.3 Discontinuity in Two Dimensions

In two or higher dimensions, the Euclidean 2-centre is no longer continuous.
We give an example of a set of mobile clients in R2 for which no continuous
Euclidean 2-centre exists.

Theorem 6.5. The mobile d-dimensional Euclidean 2-centre is discontinuous
for d ≥ 2.

Proof. Let P = {a, b, c, d} denote a set of four mobile clients such that

a(t) =

{
(2 − t, 1) t ≤ 1
(1, t) t > 1

, b(t) =

{
(2 − t,−1) t ≤ 1
(1,−t) t > 1

,

c(t) =

{
(t − 2,−1) t ≤ 1
(−1,−t) t > 1

, and d(t) =

{
(t − 2, 1) t ≤ 1
(−1, t) t > 1

.

Observe that each client moves with unit velocity. When t < 1, the unique
Euclidean 2-centre of P (t) is {Ξ1

2(P (t)),Ξ2
2(P (t))} = {(2 − t, 0), (t − 2, 0)}.

See Fig. 6.4A. Similarly, when t > 1, the unique Euclidean 2-centre of P (t)
is {Ξ1

2(P (t)),Ξ2
2(P (t))} = {(0, t), (0,−t)}. See Fig. 6.4B. The corresponding

Euclidean 2-radius is one in both instances. It follows that

∀t1 < 1, ∀t2 > 1, ||Ξi2(P (t1)) − Ξj2(P (t2))|| ≥
√

2, (6.4)

for any combination of i and j in {1, 2}. Consequently, the Euclidean 2-centre
is discontinuous at t = 1. by Def. 3.3.
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Figure 6.5: different partitions induced by Ξ2 and Υ2

6.3 Comparison Measures

This section expands on the comparison measures defined in Ch. 3 in terms spe-
cific to bounded-velocity approximations of the Euclidean 2-centre. We examine
bounds on the relationship between eccentricity and maximum velocity. In par-
ticular, we show that if Υd is any λ-eccentric 2-centre function with maximum
velocity vmax, then λ ≥

√
2 and vmax ≥ 1 +

√
3/2.

6.3.1 Bounds on Eccentricity and Maximum Velocity

With two facilities instead of one, the definition of eccentricity (approximation
factor) includes a minimization over the set of facilities. A bounded velocity
approximation now corresponds to a pair of approximation functions Υ1

d and Υ2
d.

We say that Υd = {Υ1
d,Υ

2
d} is λ-eccentric (equivalently, Υd is a λ-approximation

of the Euclidean 2-centre) if

∀P ∈ P(Rd), max
p∈P

min
i∈{1,2}

||p − Υi
d(P )|| ≤ λ max

q∈P
min

j∈{1,2}
||q − Ξjd(P )||. (6.5)

For a fixed t ∈ T , the positions of the Euclidean 2-centre induce a partition
of the clients in P , such that each client p in P is served by the facility nearest
to p. Similarly, Υ1

d and Υ2
d induce a partition of the clients in P . These two

partitions of P are not necessarily identical. See Fig. 6.5.

Thm. 6.4 shows that even in one dimension the Euclidean 2-centre has veloc-
ity two in the worst case. In our discussion of bounded-velocity approximations
of the Euclidean 1-centre and the Euclidean 1-median, we examine approxima-
tion functions that guarantee both a fixed approximation factor and maximum
velocity as low as one (for example, the centre of mass). We now show that
velocity 1 +

√
3/2 is sometimes necessary in order to guarantee any fixed ap-

proximation factor in Rd for any d ≥ 2.

Theorem 6.6. No mobile 2-centre function in Rd with maximum velocity less
than 1 +

√
3/2 can guarantee λ-eccentricity for any fixed λ > 0 and any d ≥ 2.
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Figure 6.6: illustration in support of Thm. 6.6

Proof. Let P = {a, b, c} denote a set of three mobile clients with initial po-
sitions (at time t = 0) at the vertices of an equilateral triangle in R2 such
that any two clients in P lie a distance two from each other. Let Ra, Rb, and
Rc denote the Voronoi regions induced by a(0), b(0), and c(0), respectively.
See Fig. 6.6A. Choose any Υ1

2(P (t)) and Υ2
2(P (t)) in R2 for the positions of

the 2-centre function. The interior of at least one of Ra, Rb, or R3 must be
empty of Υ1

2(P (0)) and Υ2
2(P (0)). Without loss of generality assume Ra is

empty. Let b and c move toward each other at unit velocity until they meet
at their midpoint after one time unit. Let a move away from their midpoint
with unit velocity. See Fig. 6.6B. Thus, the Euclidean 2-radius of P (1) is zero.
If Υ2 has any fixed approximation factor, then Υ1

2(P (1)) and Υ2
2(P (1)) must

coincide with a(1) and b(1) = c(1). Two points lie nearest to a(1) along the
boundary of Ra, which we denote d and e. Since these two cases are symmet-
ric, we examine the left point, d. Let f = [a(0) + b(0)]/2. Either Υ1(P (1))
or Υ2(P (1)) must travel from the boundary of Ra to a(1) during the time
interval T = [0, 1]. This distance is at least as great as the length of the
longer edge of the right trapezoid induced by f , a(0), a(1), and d. Angle
∠da(1)b(1) = ∠fa(0)b(1) = π/6. Since ||f − a(0)|| = ||a(1) − a(0)|| = 1, it
follows that ||d − a(1)|| = 1 +

√
3/2 ≈ 1.8660.

Thus, no mobile 2-centre function in Rd with maximum velocity less than
1 +

√
3/2 can guarantee λ-eccentricity for any fixed λ > 0 and any d ≥ 2.

This property highlights a significant difference between approximations of the
Euclidean 1-centre and approximations of the Euclidean 2-centre; in particular,
we examined bounded-velocity approximations of the Euclidean 1-centre that
guarantee eccentricity 2 while only requiring unit velocity in Rd for any d ≥ 1.

With respect to eccentricity λ, Thm. 4.7 by Bereg et al. [BBKS06] show that
for every λ > 1 there is a fixed vmax ≥ 1 such that there exists an approximation
of the Euclidean 1-centre that guarantees eccentricity λ and maximum velocity
vmax in Rd for any d ≥ 1. Again, the situation differs when approximating the
Euclidean 2-centre. As we now prove, if a 2-centre function Υd is continuous

156



6.3. COMPARISON MEASURES

4R
c d

3R
a b

1R 2R 1R 2R
2

C

c d

a b

BA

c

a

d

b

1

Figure 6.7: illustration in support of Thm. 6.7

(a necessary condition for Υd to guarantee any fixed upper bound on velocity)
then Υd cannot be λ-eccentric for any λ <

√
2 in Rd for any d ≥ 2 (where λ is

independent of vmax).

Theorem 6.7. No continuous mobile 2-centre function in Rd can guarantee
λ-eccentricity for any λ <

√
2 and any d ≥ 2.

Proof. The result follows from the example described in the proof of Thm. 6.5.
If Υ2 guarantees eccentricity λ =

√
2, then for any t there exists a partition

of P (t) into two sets P1 and P2 such that Υ1
2(P (t)) is contained within the

intersection of circles of radius
√

2 centred at each of the clients in P1 and the
same holds for Υ2

2(P (t)) and P2. These circles have a fixed radius of
√

2 because
the Euclidean 2-radius remains one throughout the motion of the clients. When
t < 1 −

√
2, a unique partition of P (t) exists such that this intersection is

nonempty. We denote the corresponding regions R1 and R2. See Fig. 6.7A. The
same holds for P (t) when t > 1 +

√
2, for which we denote the corresponding

regions R3 and R4. At some point t0, Υ1
2(P (t0)) and Υ2

2((t0)) must make a
transition from regions R1 and R2 over to R3 and R4. Since the motion of Υ2

must be continuous, the transition must occur when the regions overlap. The
regions have a unique point of intersection occurring at t0 = 1 at the origin. See
Fig. 6.7B. Therefore, Υ1

2(P (1)) = Υ2
2((1)) = (0, 0). Thus, the lower bound on

eccentricity is realized at time t = 1. If the radius of the circles is decreased to
less than

√
2, then no such intersection exists.

6.3.2 Maximum Velocity as a Function of Eccentricity

In Sec. 4.3.2 we examined bounds relating the maximum velocity and eccen-
tricity of a bounded-velocity approximation of the mobile Euclidean 1-centre.
Within each partition of the client set, the Euclidean 2-centre behaves locally
like a Euclidean 1-centre problem. Although no upper bounds can be concluded
from those mentioned in Sec. 4.3.2, the lower bounds examined certainly extend
to the Euclidean 2-centre.

In particular, it follows from Thm. 4.6 by Bereg et al. [BBKS06] that any λ-
eccentric approximation of the Euclidean 1-centre has velocity at least 1/8

√
λ − 1.
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This result implies a similar bound on the maximum velocity of any λ-eccentric
approximation of the Euclidean 2-centre. However, Thm. 6.7 shows that λ ≥√

2, for which function 1/8
√

λ − 1 has value at most 1/8
√√

2 − 1 ≈ 0.1942.
Since any 2-centre function with bounded eccentricity must have vmax ≥ 1,
Thm. 4.6 does not further constrain the range of allowable maximum velocities
for 2-centre functions.

6.4 Single-Facility Approximation Functions

This section briefly discusses 2-centre functions for which both facilities coincide.
In Chs. 4 and 5 we examined several bounded-velocity approximation func-

tions for a single facility. A single facility can be used to define the positions of
two facilities whose positions coincide. We show that no single-facility function,
regardless of constraints on its velocity or continuity, can guarantee any fixed
approximation factor of the Euclidean 2-centre.

Observation 6.8. Let Υd denote any mobile facility function in Rd. Function
Υd cannot guarantee eccentricity λ for any fixed λ, for any d ≥ 1.

Proof. Let P = {0, 1} denote a set of clients in R. The unique Euclidean 2-
centre of P coincides with the two client positions of P . The corresponding
Euclidean 2-radius is zero. Let Υd(P ) lie at any point in R. The distance from
Υd(P ) to some client in P must be at least 1/2. Consequently, no λ exists that
satisfies Eq. (6.5).

Obs. 6.8 implies that no single-facility function can guarantee any approxi-
mation of a geometric 2-centre. In Sec. 7.3 we address the related question of
whether a (k+1)-facility function can provide a bounded-velocity approximation
of the geometric k-centre.

6.5 Rectilinear 2-Centre and 2-Means
Clustering

As we saw in Ch. 4, the rectilinear 1-centre and the centre of mass both provide
bounded-velocity approximations of the mobile Euclidean 1-centre. As we now
show, neither of these approximation functions generalizes to define positions of
two mobile facilities whose motion is continuous. Recall that 2-means clustering
corresponds to the two-facility generalization of the centre of mass. Refer to
Sec. 2.5.1 for a definition of the rectilinear 2-centre and to Sec. 2.5.2 for a
definition of 2-means clustering.

Corollary 6.9. The mobile 2-means clustering is discontinuous for d ≥ 2.

Proof. The result follows from the example described in the proof of Thm. 6.5.
It is straightforward to show that the 2-means clustering for this example is
unique and coincides with the Euclidean 2-centre. Consequently, the 2-means
clustering is discontinuous in Rd for d ≥ 2.
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Corollary 6.10. The mobile rectilinear 2-centre is discontinuous for d ≥ 2.

Proof. The result follows from the example described in the proof of Thm. 6.5
upon rotating the clients of P by π/4 about the origin. It is straightforward to
show that the rectilinear 2-centre for this example is unique and coincides with
the Euclidean 2-centre. Consequently, the rectilinear 2-centre is discontinuous
in Rd for d ≥ 2.

Velocity and continuity aside, the eccentricity of both the rectilinear 2-centre
and 2-means clustering coincide with their corresponding single-facility approx-
imation factors.

Observation 6.11. The d-dimensional rectilinear 2-centre has eccentricity λ =
(1+

√
d)/2. Furthermore, the d-dimensional rectilinear 2-centre cannot guaran-

tee λ-eccentricity for any λ less than (1 +
√

d)/2.

Proof. Let P denote any finite set of clients in Rd. Let Ξ1
d(P ) and Ξ2

d(P ) denote
a Euclidean 2-centre of P . Let R1

d(P ) and R2
d(P ) denote a rectilinear 2-centre of

P . Let P1 and P2 denote the partition of P induced by Ξ1
d(P ) and Ξ2

d(P ) such
that Ξ1

d(P ) is the facility closest to any client in P1 and Ξ2
d(P ) is the facility

closest to any client in P2. If any client p in P is equidistant from Ξ1
d(P ) and

Ξ2
d(P ), then assume p is assigned to either partition arbitrarily. The upper

bound follows from Thm. 4.9, since the rectilinear 2-radius cannot exceed the
maximum of the rectilinear radii of either partition relative to its respective
rectilinear 1-centre. Similarly, the lower bound follows from Cor. 4.10 by taking
two instances of a client set that realizes the eccentricity of the rectilinear 1-
centre and positioning these two sets sufficiently far apart.

Observation 6.12. The d-dimensional 2-means clustering has eccentricity 2.
Furthermore, d-dimensional 2-means clustering cannot guarantee λ-eccentricity
for any λ less than 2.

Proof. The proof is analogous to the proof of Obs. 6.11 except that references
to Thm. 4.9 and Cor. 4.10 refer instead to Lem. 4.13 and Cor. 4.14.

See Sec. 6.8 for a discussion of bounded-velocity approximations of the recti-
linear 2-centre, where maximum velocity and approximation factor are defined
with respect to Chebyshev distance.

6.6 Reflection-Based 2-Centre Functions

This section introduces reflection-based 2-centre functions. Four specific func-
tions are defined and analyzed: the Euclidean reflection 2-centre, the rectilinear
reflection 2-centre, the Steiner reflection 2-centre, and the mean reflection 2-
centre. We derive bounds on the eccentricity and maximum velocity of each or
show that none is possible.
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6.6.1 Motivation

As shown in Sec. 6.5, neither the rectilinear 2-centre nor 2-means clustering
defines a bounded-velocity 2-centre function. That is, solutions employed to
provide bounded-velocity approximations of the Euclidean 1-centre cannot be
generalized to solve the corresponding problem on two facilities.

As discussed in Ch. 4, any centre function whose position is contained within
the convex hull of P guarantees a 2-approximation of the Euclidean 1-centre (see
Lem. 4.4). In particular, when the clients of P coincide at a point a, a centre
function located within the convex hull of P will also coincide with a. A natural
strategy for finding a static approximation to the Euclidean 2-centre problem
involves partitioning the clients into two sets and subsequently identifying an
approximation to the Euclidean 1-centre of each partition. As mentioned earlier,
such strategies generalize poorly to the mobile setting because discontinuities
in the position of a mobile 2-centre function can result from changes in the
partition of the client set. Thus, a continuous mobile 2-centre function cannot
be defined in terms of partitions of the client set.

Nevertheless, if the clients of P form two obvious clusters, then a 2-centre
function Υd should position one facility close to each cluster. In particular,
when the clients of P coincide at two points a and b, the Euclidean 2-radius
of P is zero, and Υ1

d(P ) and Υ2
d(P ) must coincide with a and b in order to

guarantee any fixed upper bound on eccentricity. When this occurs, observe
that any client p0 in P and its reflection across the midpoint of P coincide with
{a, b}.

As described Sec. 6.2.2, a natural definition for the one-dimensional Eu-
clidean 2-centre of P is provided by viewing the position of the second facility
as the reflection of the first facility across the Euclidean 1-centre of P . In one
dimension, the first facility can be specified by the position of the Euclidean
1-centre of the cluster with greater diameter. This strategy does not general-
ize to higher dimensions because of the discontinuity of the Euclidean 2-centre.
Furthermore, the unbounded velocity of the Euclidean 1-centre in two or more
dimensions precludes it from being used to define a bounded-velocity facility.
Instead, we identify a mobile facility function, denoted Fd, that remains central
to P while moving under bounded velocity. A client of P , say p0, is selected
arbitrarily and the position of the first facility is set to coincide with that of p0.
The position of the second facility, q, is found by reflecting p0 across Fd. See
Fig. 6.8.

Definition 6.1. Given a finite set of mobile clients P in Rd, an arbitrarily-
selected client p0 in P , and a centre function Fd, a reflection-based 2-centre
function consists of two facility functions, Υ1

d and Υ2
d, whose positions are

given by the position of client p0(t) and its reflection across Fd(P (t)).

We refer to F as the reflection function. We select bounded-velocity
approximations of the mobile Euclidean 1-centre as natural candidates for Fd.
These include the mobile rectilinear 1-centre, the mobile Steiner centre, and
the centre of mass. For comparison, we also examine the case when Fd is the
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p0

q

Fd(P )

Figure 6.8: When the clients of P form two clusters, client p0 and its reflection
q across Fd(P ) define an approximation to the Euclidean 2-centre.

mobile Euclidean 1-centre. We refer to each of these approximation functions
respectively as the rectilinear reflection 2-centre, the Steiner reflection 2-centre,
the mean reflection 2-centre, and the Euclidean reflection 2-centre.

The definition of a particular reflection-based 2-centre function is consistent
across dimensions if the corresponding property holds for the reflection func-
tion, as is the case for the rectilinear 1-centre, the Steiner centre, the Euclidean
1-centre, and the centre of mass. In addition, invariance under similarity trans-
formations also follows if the corresponding property holds for the reflection
function, given a fixed choice for client p0. Therefore, the rectilinear reflec-
tion 2-centre is invariant under translation and uniform scaling, but not under
reflection and rotation whereas the Steiner reflection 2-centre, the Euclidean
reflection 2-centre, and the mean reflection 2-centre are invariant under all sim-
ilarity transformations.

6.6.2 Reflection-Based Approximations: Maximum
Velocity

As we now show, tight bounds on relative velocity are straightforward to estab-
lish for all four reflection-based approximations we examine. The worst case is
achieved when the reflection function Fd and the client p0 being reflected move
toward or away from each other at their respective maximum velocities.

Theorem 6.13. Let a and b denote mobile clients or mobile facility functions
with respective maximum velocities va and vb. The maximum velocity of the
reflection of a across b is 2vb + va. Furthermore, this bound is realizable if the
maximum velocities of a and b are simultaneously realizable in opposite direc-
tions.

Proof. Choose any time interval T and any va, vb > 0. Choose any functions
a : T → Rd and b : T → Rd such that

∀t1, t2 ∈ T, ||a(t1) − a(t2)|| ≤ va|t1 − t2|,

and

∀t1, t2 ∈ T, ||b(t1) − b(t2)|| ≤ vb|t1 − t2|.
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The reflection of a(t) across b(t) corresponds to the function c(t) = 2b(t)− a(t).
We bound the velocity of c:

∀t1, t2 ∈ T, ||c(t1) − c(t2)|| = ||2[b(t1) − b(t2)] − [a(t1) − a(t2)]||
≤ 2||b(t1) − b(t2)|| + ||a(t1) − a(t2)||
≤ (2vb + va)|t1 − t2|.

Therefore, the velocity of c is at most 2vb + va. As shown by the following
example, this bound is realizable in any dimension d ≥ 1.

Let a(0) = 1, a(1) = 0, b(0) = 2, and b(1) = 4. Observe that a and b
move with respective average velocities va = 1 and vb = 2 over the time interval
T = [0, 1]. The reflection of a across b lies at c(0) = 3 and c(1) = 8 corresponding
to a displacement of ||c(0) − c(1)|| = 5 = 2vb + va. Therefore, c has average
velocity 2vb + va over interval T .

Corollary 6.14. The d-dimensional Euclidean reflection 2-centre cannot guar-
antee relative velocity vmax for any fixed vmax, for any d ≥ 2.

Proof. The result follows from Thms. 4.2 and 6.13.

Corollary 6.15. The rectilinear reflection 2-centre has maximum velocity 2
√

d+
1 in Rd. Furthermore, the rectilinear reflection 2-centre cannot guarantee rela-
tive velocity less than 2

√
d + 1 in Rd, for any d ≥ 1.

Proof. The result follows from Obs. 4.12 and Thm. 6.13 because the velocity
of Rd is independent of the velocity of p0 whenever p0 not an extreme point of
P .

Corollary 6.16. The Steiner reflection 2-centre has maximum velocity 8/π +1
in R2 and 6 in R3. Furthermore, the Steiner reflection 2-centre cannot guarantee
relative velocity less than 8/π + 1 in R2 and 6 in R3.

Proof. The result follows from Thms. 4.24, 4.25, 4.26, 4.27, and 6.13 because
the velocity of Γd is independent of the velocity of p0 whenever p0 is not an
extreme point of P .

Corollary 6.17. The mean reflection 2-centre has maximum velocity 3. Fur-
thermore, the mean reflection 2-centre cannot guarantee relative velocity less
than 3 in Rd for any d ≥ 1.

Proof. The result follows from Obs. 4.16, Cor. 4.15, and Thm. 6.13. Although
the velocity of Cd is not independent of the velocity of p0, the contribution of
p0 to the velocity of Cd approaches zero as |P | increases.
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6.6.3 Reflection-Based Approximations: Lower Bounds
on Eccentricity and Maximum Velocity

We derive a lower bound on the eccentricity of any reflection-based 2-centre
function:

Observation 6.18. Any approximation function for which the position of one
facility is set to coincide with the position of a mobile client cannot guarantee
eccentricity less than two.

Proof. The result follows from the the eccentricity of a single client’s approxi-
mation of the Euclidean 1-centre described in Sec. 4.3.1. See the example for
d = 2 in Fig. 4.3.

As discussed in Sec. 4.3.1, the bound of 2 is tight. The bound on maximum
velocity follows from By Thm. 6.13:

Corollary 6.19. No λ-eccentric reflection-based 2-centre function can guaran-
tee relative velocity less than three.

Proof. A reflection-based 2-centre function Υd is defined in terms of a reflection
function Fd. If the eccentricity of Υd is bounded, then Fd must have maximum
velocity at least as great as the maximum velocity of clients. By Thm. 6.13 it
follows that no reflection-based approximation function can guarantee relative
velocity less than three.

Consequently, all reflection-based approximation functions have maximum
velocity at least three and an approximation factor of at least two.

6.6.4 Reflection Across the Euclidean 1-Centre

Although Cor. 6.14 shows that the Euclidean reflection 2-centre has unbounded
velocity in two or more dimensions, we examine its approximation factor. Per-
haps surprisingly, reflection across the Euclidean 1-centre results in a 2-centre
function with greater eccentricity and higher maximum velocity than both the
Steiner reflection 2-centre and the rectilinear reflection 2-centre.

Theorem 6.20. The two-dimensional Euclidean reflection 2-centre is 4-eccentric.

Proof. Let P denote any finite set of clients in R2. Let p0 denote a client of
P whose position corresponds to the first facility, Υ1

2(P ). Let q denote the
reflection of p0 across Ξ2(P ). The position of the second facility, Υ2

2(P ) is given
by q. Let C denote the minimum enclosing circle of P and let s denote the
radius of C.

Let Ξ1
2(P ) and Ξ2

2(P ) denote a Euclidean 2-centre of P . Let r denote the
Euclidean 2-radius of P . Let P1 and P2 denote the partition of P induced by
Ξ1

2(P ) and Ξ2
2(P ) such that Ξ1

2(P ) is the facility closest to any client in P1 and
Ξ2

2(P ) is the facility closest to any client in P2. If any client p in P is equidistant
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Figure 6.9: illustration in support of Thm. 6.20

from Ξ1
2(P ) and Ξ2

2(P ), then assume p is assigned to either partition arbitrarily.
Without loss of generality assume p0 ∈ P1. Since p0 ∈ CH(P1),

∀p ∈ P1, ||p0 − p|| ≤ 2r, (6.6)

by Lem. 4.4. Therefore, we need only to verify that ||q − p|| ≤ 4r for all clients
p ∈ P2.

Case 1. Assume C is supported by two clients a, b ∈ P that lie opposite
each other on C. Clients a and b must lie in opposite partitions, otherwise
the Euclidean 2-radius equals the Euclidean radius. Without loss of generality
assume a ∈ P1. See Fig. 6.9(1). Since b ∈ CH(P2), for all clients p ∈ P2,
||p − b|| ≤ 2r by Lem. 4.4. Observe that ||b − q|| = ||a − p0||. Therefore, by
Eq. (6.6),

∀p ∈ P2, ||p−q|| ≤ ||p−b||+ ||b−q|| ≤ 2r+ ||b−q|| = 2r+ ||a−p0|| ≤ 4r. (6.7)

Case 2. Assume no two clients in P lie opposite each other on circle C.
Let o denote the centre of C. At least three clients a, b, c ∈ P must support C
such that the angles ∠aob, ∠aoc, and ∠boc are all less than π. Without loss of
generality, assume ∠boc corresponds to the minimum of the three angles. Since
the angles sum to 2π, we get ∠boc ≤ 2π/3. Since all angles are less than π, we
get ∠aob ≥ π/3 and ∠aoc ≥ π/3. Furthermore, at least one of a, b, or c must
lie in each partition.

Case 2a. Assume a and b lie in the same partition. Therefore, c must lie
in the opposite partition. See Fig. 6.9(2A). Since π/3 ≤ ∠aob < π, it follows
that ||a − b|| ≥ s. Consequently, 2r ≥ s. The distance between any two points
contained within C is at most 2s. Therefore,

∀p ∈ P2, ||p − q|| ≤ 2s ≤ 4r. (6.8)

Since every point inside circle C lies at most 2s from any client in P , it
follows that q lies at most 2s ≤ 4r from any client in P .

Case 2b. Assume c, b ∈ P1 and a ∈ P2. See Fig. 6.9(2B). Let d denote the
point opposite a on circle C. Since ∠aob, ∠aoc, and ∠boc are all less than π,
one of c and b must lie above d and the other must lie below d on circle C.
Consequently, d ∈ MEC(P1). Therefore, for all clients p ∈ P1, ||p− d|| ≤ 2r by
Lem. 4.4. Similarly, since a ∈ CH(P2), for all clients p ∈ P2, ||p − a|| ≤ 2r by
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Lem. 4.4. Since p0 ∈ CH(P1), for all points p ∈ MEC(P1), ||p − p0|| ≤ 2r. In
particular, ||d − p0|| ≤ 2r. Observe that ||d − p0|| = ||a − q||. Thus,

∀p ∈ P2, ||p − q|| ≤ ||p − a|| + ||a − q|| = ||p − a|| + ||d − p0|| ≤ 4r. (6.9)

Case 2c. Assume c, b ∈ P2 and a ∈ P1. See Fig. 6.9(2C). Let d denote the
point opposite a on circle C. Since ∠aob, ∠aoc, and ∠boc are all less than π,
one of c and b must lie above d and the other must lie below d on circle C.
Consequently, d ∈ MEC(P2). Therefore, for all clients p ∈ P2, ||p− d|| ≤ 2r by
Lem. 4.4. Similarly, since a ∈ CH(P1) for all clients p ∈ P1, ||p − a|| ≤ 2r by
Lem. 4.4. By Eq. (6.6), ||a− p0|| ≤ 2r. Observe that ||a− p0|| = ||d− q||. Thus,

∀p ∈ P2, ||p − q|| ≤ ||p − d|| + ||d − q|| = ||p − d|| + ||a − p0|| ≤ 4r. (6.10)

Case 2d. Assume c, a ∈ P1 and b ∈ P2. This case is analogous to Case 2b
since we have not made any assumptions to differentiate a from b.

Case 2e. Assume c, a ∈ P2 and b ∈ P1. This case is analogous to Case 2c
since we have not made any assumptions to differentiate a from b.

The result follows from Eq. (6.6) through Eq. (6.10).

Theorem 6.21. The d-dimensional Euclidean reflection 2-centre cannot guar-
antee λ-eccentricity for any λ less than 4 when d ≥ 2.

Proof. Let θ ∈ (0, π/4). Let P = {p0, p1, p2, p3} where p0 = (− cos θ,− sin θ),
p1 = (−1, 0), p2 = (1, 0), and p3 = (cos θ,− sin θ). The Euclidean 1-centre of P
lies at the origin. The unique Euclidean 2-centre of P lies at (p0 + p1)/2 and
(p2 + p3)/2. Let the first facility, Υ1

2(P ), coincide with p0. Let q denote the
reflection of p0 across Ξ2(P ). The position of the second facility, Υ2

2(P ) is given
by q. See Fig. 6.10.

The Euclidean 2-radius is 1
2

√
(1 − cos θ)2 + sin2 θ = 1

2

√
2(1 − cos θ). The

furthest client from q is p2, separated by a distance of 2 sin θ. It follows that

λ ≥ lim
θ→0+

2 sin θ
1
2

√
2(1 − cos θ)

= 4

√
lim
θ→0+

sin2 θ

2(1 − cos θ)
= 4.

6.6.5 Reflection Across the Rectilinear 1-Centre

This section examines properties of the mobile rectilinear reflection 2-centre as
an approximation to the mobile Euclidean 2-centre. Refer to Sec. 2.5.1 for a
definition of the rectilinear 1-centre.

Given the unbounded velocity of the Euclidean reflection 2-centre, bounded-
velocity centre functions provide natural candidates for defining the reflection
function Fd. We first consider the the rectilinear 1-centre of P , denoted Rd(P ),
which we examined as a bounded-velocity approximation of the mobile Eu-
clidean 1-centre in Sec. 4.4. The properties of low maximum velocity and low
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Figure 6.10: illustration in support of Thm. 6.21

eccentricity exhibited by the rectilinear 1-centre suggest it as a natural candidate
for defining the point of reflection in a reflection-based 2-centre function.

In Sec. 6.6.6 we consider reflection across the Steiner centre and discover
that both the rectilinear reflection 2-centre and the Steiner reflection 2-centre
have lower eccentricity than the Euclidean reflection 2-centre.

As shown in Cor. 6.15, the d-dimensional rectilinear reflection 2-centre has
velocity 2

√
d + 1 in the worst case.

We first bound the eccentricity of the one-dimensional rectilinear reflection
2-centre in Lem. 6.22. This result allows us to derive a bound for a general d in
Rd in Thm. 6.23.

Lemma 6.22. The one-dimensional rectilinear reflection 2-centre is 2-eccentric.

Proof. Let P denote any finite set of clients in R. Let p0 denote a client of
P whose position corresponds to the first facility, Υ1

1(P ). Let q denote the
reflection of p0 across R1(P ). The position of the second facility, Υ2

1(P ) is given
by q.

Let P1 and P2 denote the partition of P induced by clients positioned respec-
tively to the left and right of Ξ1(P ). If any client p in P coincides with Ξ1(P ),
then assume p is assigned to partition P1. There exists a Euclidean 2-centre
of P , Ξ1

1(P ) and Ξ2
1(P ), such that Ξ1

1(P ) is the facility closest to any client in
P1 and Ξ2

1(P ) is the facility closest to any client in P2. Let d denote the max-
imum of the diameters P1 and P2. It follows that d = 2r, where r denotes the
Euclidean 2-radius of P . Without loss of generality, assume p0 ∈ P1. Therefore,

max
p∈P1

||p − p0|| ≤ d and max
p∈P2

||p − q|| ≤ d,

⇒ max
p∈P

min
i∈{1,2}

||p − Υi
1(P )|| ≤ 2r.
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Theorem 6.23. The d-dimensional rectilinear reflection 2-centre is 2
√

d-eccentric.

Proof. Let P denote any finite set of clients in Rd. Let p0 denote a client of P
whose position corresponds to first facility, Υ1

d(P ). Let q denote the reflection
of p0 across Rd(P ). The position of the second facility, Υ2

d(P ) is given by q.
Recall that the d-dimension rectilinear 1-centre of P is defined by finding the

one-dimensional rectilinear 1-centre of P in each dimension. That is, Rd(P )i =
R1(Pi), where Pi = {pi | p ∈ P}. Since q = 2Rd(P ) − p0, therefore qi =
2R1(Pi) − [p0]i. Consequently,

max
p∈P

min
j∈{1,2}

||p − Υj
d(P )|| = max

p∈P
min

j∈{1,2}

√√√√
d∑

i=1

|pi − Υj
d(P )i|2

≤

√√√√
d∑

i=1

[
max
p∈P

min
j∈{1,2}

|pi − Υj
d(P )i|

]2

≤

√√√√
d∑

i=1

(2ri)2,

by Lem. 6.22, where ri denotes the Euclidean 2-radius of Pi,

≤ max
1≤i≤d

√
d(2ri)2

= max
1≤i≤d

2ri
√

d

≤ 2r
√

d, (6.11)

where r denotes the Euclidean 2-radius of P .

Theorem 6.24. The two-dimensional rectilinear reflection 2-centre cannot guar-
antee λ-eccentricity for any λ less than 2

√
2.

Proof. Let P = {(−2, 0), (−2,−2), (0, 2), (2, 2)}. Let p0 = (−2, 0). The unique
Euclidean 2-centre of P has positions (−2, 1) and (1, 2). The Euclidean 2-radius
of P is 1. The rectilinear 1-centre of P , R2(P ), is located at the origin. Let
p0 = (−2, 0). The reflection of p0 across R2(P ), denoted q, is located at (2, 0).
Client a = (0, 2) lies a distance 2

√
2 from both q and p0. See Fig. 6.11A.

Although the lower bound of 2
√

2 applies in Rd for any d ≥ 2, the worst-case
example described in the proof of Thm. 6.24 does not provide an upper bound
of 2

√
d when generalized to Rd for d ≥ 3. See Fig. 6.11B.

6.6.6 Reflection Across the Steiner Centre

This section examines properties of the mobile Steiner reflection 2-centre as
an approximation to the mobile Euclidean 2-centre. Refer to Sec. 4.6 for a
definition of the Steiner centre.
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Figure 6.11: illustration in support of Thm. 6.24

We examined the Steiner centre of P , denoted Γd(P ), as a bounded-velocity
approximation of the mobile Euclidean 1-centre in Sec. 4.6. The properties
of low maximum velocity and low eccentricity exhibited by the Steiner cen-
tre suggest it as a natural candidate for defining the point of reflection in a
reflection-based 2-centre function.

As shown in Cor. 6.16, the two-dimensional Steiner reflection 2-centre has
velocity 8π+1 and the three-dimensional Steiner reflection 2-centre has velocity
6 in the worst case.

Let dφ denote the ℓ∞ norm relative to a rotation by φ of the reference axis.
That is, dφ(x) = ||fφ(x)||∞, where fφ is a clockwise rotation about the origin by
φ. Let Rφ(P ) = f−1

φ (R2(fφ(P ))) denote the rectilinear 1-centre with respect to

norm dφ. As shown in Lem. 4.18, the Steiner centre of a set of clients P in R2

can be defined as the limit of the convex combinations of the rotated rectilinear
1-centres of P . That is, Γ2(P ) = 2

π

∫ π/2
0

Rθ(P ) dθ.

Theorem 6.25. The two-dimensional Steiner reflection 2-centre is 8/π-eccentric.

Proof. Let P denote any finite set of clients in R2. Let p0 denote a client of
P whose position corresponds to the first facility, Υ1

2(P ). Let q denote the
reflection of p0 across Γ2(P ). The position of the second facility, Υ2

2(P ) is given
by q.

Let Ξ1
2(P ) and Ξ2

2(P ) denote a Euclidean 2-centre of P . Let r denote the
Euclidean 2-radius of P . Let P1 and P2 denote the partition of P induced by
Ξ1

2(P ) and Ξ2
2(P ) such that Ξ1

2(P ) is the facility closest to any client in P1 and
Ξ2

2(P ) is the facility closest to any client in P2. If any client p in P is equidistant
from Ξ1

2(P ) and Ξ2
2(P ), then assume p is assigned to either partition arbitrarily.

Without loss of generality assume p0 ∈ P1. Since p0 ∈ CH(P1),

∀p ∈ P1, ||p0 − p|| ≤ 2r, (6.12)

by Lem. 4.4. Therefore, we need only to verify that ||q − p|| ≤ (8/π)r for all
clients p ∈ P2.

As shown in the proof of Thm. 6.24 with respect to the rectilinear reflection
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2-centre, if qR = 2R2(P ) − p0, then

max
p∈P2

|px − [qR]x| ≤ 2r and max
p∈P2

|py − [qR]y| ≤ 2r.

That is, every client in P2 is contained within a box of width and height 4r
centred at qR. Let qθ = 2Rθ(P ) − p0. It follows that every client in P2 is
contained within a box of width and height 4r, whose axis is rotated by θ
relative to the x-axis, and whose centre is qθ. Consequently,

max
p∈P2

|px − [qθ]x| ≤ 2
√

2 cos(π/4 − θ)r. (6.13)

We now bound the maximum distance in the x-coordinates from any client in
P2 to q.

max
p∈P2

|px − qx| = max
p∈P2

|px − (2Γ2(P )x − [p0]x)|

= max
p∈P2

∣∣∣∣∣px −
(

2

[
2

π

∫ π/2

0

Rθ(P )x dθ

]
− [p0]x

)∣∣∣∣∣ , by Lem. 4.18,

= max
p∈P2

∣∣∣∣∣
2

π

∫ π/2

0

px − (2Rθ(P )x − [p0]x) dθ

∣∣∣∣∣

= max
p∈P2

∣∣∣∣∣
2

π

∫ π/2

0

px − [qθ]x dθ

∣∣∣∣∣

≤ max
p∈P2

2

π

∫ π/2

0

|px − [qθ]x| dθ

≤ 2

π

∫ π/2

0

max
p∈P2

|px − [qθ]x| dθ

≤ 2

π

∫ π/2

0

2
√

2 cos(π/4 − θ)r dθ, by Eq. (6.13),

=
4r
√

2

π

∫ π/2

0

cos(π/4 − θ) dθ

=
8r

π
.

The Steiner reflection 2-centre is invariant under rotation. Consequently,

max
p∈P2

|px − qx| ≤
8r

π
⇒ max

p∈P2

||p − q|| ≤ 8r

π
.

Theorem 6.26. The two-dimensional Steiner reflection 2-centre cannot guar-
antee λ-eccentricity for any λ less than 2

√
1 + 1/π2.

Proof. Let a continuous arc of clients lie on a unit semicircle centred at the
origin on the positive x-axis. Let two clients lie opposite the arc at a = (−1, 1)
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Figure 6.12: illustration in support of Thm. 6.26

and b = (1, 1). The unique Euclidean 2-centre of P lies at (0, 0) and (−1, 0).
The corresponding Euclidean 2-radius, r, is one. The Steiner centre of P lies at
(1/π − 1/2, 0). Let p0 = (0, 1) defines the position of the first facility, Υ1

d(P ).
Let q denote the reflection of p0 across Γ2(P ). Observe that q = (2/π − 1,−1).
The position of the second facility, Υ2

d(P ) is given by q. See Fig. 6.12.

The reflection of q across Γ2(P ) lies a distance
√

22 + (2/π)2 from client
a.

6.6.7 Reflection Across the Centre of Mass

Given that we examined the centre of mass as a bounded-velocity approximation
of both the Euclidean 1-centre in Sec. 4.5 and the Euclidean 1-median in Sec. 5.5,
one might naturally consider the centre of mass to define the position of the
reflection function Fd. As we show in this section, the resulting reflection-based
approximation function cannot guarantee any fixed degree of approximation.
Refer to Sec. 2.5.2 for a definition of the centre of mass.

As shown in Cor. 6.17, the d-dimensional mean reflection 2-centre has ve-
locity 3 in the worst case.

Theorem 6.27. The d-dimensional mean reflection 2-centre cannot guarantee
eccentricity λ for any fixed λ, for any d ≥ 1.

Proof. We define a set P of three clients in R. Let two clients be located at the
origin and let a single client a be located at 1. The centre of mass of P lies at
Cd(P ) = 1/3. The reflected facility has position either 1/3 or 2/3, depending on
the position of p0. The Euclidean 2-radius of P is zero. The distance from client
a to the nearest facility is at least 1/3. Consequently, no λ satisfies Eq. (6.5).

6.7 Evaluation

Following our exploration of 2-centre functions in Secs. 6.5 through 6.4, we
have identified and analyzed candidate functions most applicable to defining
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good bounded-velocity approximations of the Euclidean 2-centre. These are the
rectilinear reflection 2-centre and the Steiner reflection 2-centre. We compare
these against each other and against the Euclidean reflection 2-centre, the mean
reflection 2-centre, the rectilinear 2-centre, 2-means clustering, any two clients
in P , and single-facility centre functions.

Lower Bounds on Eccentricity and Maximum Velocity
In Sec. 6.3 we showed that if Υd is any 2-centre function with guaranteed fixed
bounds on eccentricity, λ, and maximum velocity, vmax, then λ ≥

√
2 and

vmax ≥ 1 +
√

3/2. This result may seem surprising since no such lower bounds
exist for approximations of the Euclidean 1-centre or the Euclidean 1-median.
In fact, for every λ > 1 there exists a bounded-velocity approximation of the
Euclidean 1-centre with approximation factor at most λ.

In Sec. 6.6.3 we showed that if Υd is any reflection-based 2-centre function
with guaranteed fixed bounds on eccentricity, λ, and maximum velocity, vmax,
then λ ≥ 2 and vmax3.

Rectilinear 2-Centre and 2-Means Clustering
In Sec. 6.5 we showed that although the rectilinear 2-centre and 2-means clus-
tering have eccentricity (1 +

√
2)/2 and 2, respectively, both are discontinuous

in two or more dimensions, and, consequently, cannot provide bounded-velocity
approximations of the Euclidean 2-centre in Rd for any d ≥ 2. As mentioned
in Sec. 2.5.1, the rectilinear 2-centre is not invariant under under rotation or
reflection. It is, however, invariant under translation and scaling. The 2-means
clustering is invariant under all similarity transformations. The definition of
both 2-centre functions is consistent across dimensions.

Rectilinear Reflection 2-Centre
In Sec. 6.6.5 we examined the rectilinear reflection 2-centre. In Rd, we showed
an upper bound of 2

√
d and a lower bound of 2

√
2 on the eccentricity of the

rectilinear reflection 2-centre for d ≥ 2. When d = 2, the upper and lower
bounds coincide at 2

√
2. For d ≥ 3, the bounds diverge. Still in Rd, we showed

a tight bound of 1+2
√

d on the maximum velocity of the the rectilinear reflection
2-centre for any d ≥ 1. The rectilinear reflection 2-centre is not invariant under
under rotation or reflection. It is, however, invariant under translation and
scaling. Finally, its definition is consistent across dimensions.

Steiner Reflection 2-Centre
In Sec. 6.6.6 we examined the Steiner reflection 2-centre. In R2, we showed an
upper bound of 8/π and a lower bound of 2

√
1 + 1/π2 on the eccentricity of the

Steiner reflection 2-centre. In R2 and R3, we showed tight bounds of 8/π+1 and
6, respectively, on the maximum velocity of the the Steiner reflection 2-centre.
The Steiner reflection 2-centre is invariant under similarity transformations.
Finally, its definition is consistent across dimensions.
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2-centre function eccentricity maximum velocity
Euclidean 2-centre λ = 1 vmax = ∞
rectilinear 2-centre λ = (1 +

√
2)/2 ≈ 1.2071 vmax = ∞

2-means clustering λ = 2 vmax = ∞
clients p1, p2 ∈ P λ = ∞ vmax = 1
single-facility function λ = ∞
bounded eccentricity 1 +

√
3/2 ≤ vmax

⇒ 1.8660 ≤ vmax

continuous 1.4142 ≈
√

2 ≤ λ
reflection-based 2-centre functions

point of reflection eccentricity maximum velocity
Euclidean 1-centre λ = 4 vmax = ∞
centre of mass λ = ∞ vmax = 3

rectilinear 1-centre λ = 2
√

2 ≈ 2.8284 vmax = 2
√

2 + 1 ≈ 3.8284

Steiner centre 2
√

1 + 1/π2 ≤ λ ≤ 8/π vmax = 8/π + 1 ≈ 3.5465
⇒ 2.0989 ≤ λ ≤ 2.5465

bounded eccentricity 3 ≤ vmax

any point of reflection 2 ≤ λ

Table 6.1: comparing 2-centre functions in R2

Euclidean Reflection 2-Centre

In Sec. 6.6.4 we examined the Euclidean reflection 2-centre. In R2, we showed
a tight bound of 4 on the eccentricity of the Euclidean reflection 2-centre. We
showed that the Euclidean reflection 2-centre cannot guarantee any bound on
maximum velocity in Rd for any d ≥ 2. The Euclidean reflection 2-centre is
invariant under similarity transformations. Finally, its definition is consistent
across dimensions.

Mean Reflection 2-Centre

In Sec. 6.6.7 we examined the mean reflection 2-centre. In Rd, we showed a
tight bound of 3 on the maximum velocity of the mean reflection 2-centre for
any d ≥ 1. We showed that mean reflection 2-centre cannot guarantee any
bound on eccentricity in Rd for any d ≥ 1. The mean reflection 2-centre is
invariant under similarity transformations. Finally, its definition is consistent
across dimensions.

Comparison of Approximation Functions

The values for the eccentricity and maximum velocity of these various median
functions are displayed in Tab. 6.1 for R2 and in Tab. 6.2 for R3.

A scan of Tabs. 6.1 and 6.2 reveals that only two 2-centre functions were
identified that have fixed upper bounds on both eccentricity and maximum ve-
locity: the rectilinear reflection 2-centre and the Steiner reflection 2-centre. In
R2, the upper bound on the eccentricity of the Steiner reflection is less than
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2-centre function eccentricity maximum velocity
Euclidean 2-centre λ = 1 vmax = ∞
rectilinear 2-centre λ = (1 +

√
3)/2 ≈ 1.3660 vmax = ∞

2-means clustering λ = 2 vmax = ∞
clients p1, p2 ∈ P λ = ∞ vmax = 1
single-facility function λ = ∞
bounded eccentricity 1 +

√
3/2 ≤ vmax

⇒ 1.8660 ≤ vmax

continuous 1.4142 ≈
√

2 ≤ λ
reflection-based 2-centre functions

point of reflection eccentricity maximum velocity
Euclidean 1-centre λ = 4 vmax = ∞
centre of mass λ = ∞ vmax = 3

rectilinear 1-centre 2
√

2 ≤ λ ≤ 2
√

3 vmax = 2
√

3 + 1 ≈ 4.4641
⇒ 2.8284 ≤ λ ≤ 3.4641

Steiner centre 2.0989 ≈ 2
√

1 + 1/π2 ≤ λ vmax = 6
bounded eccentricity 3 ≤ vmax

any point of reflection 2 ≤ λ

Table 6.2: comparing 2-centre functions in R3

the tight bound on the eccentricity of the rectilinear reflection 2-centre. Fur-
thermore, the maximum velocity of the Steiner reflection 2-centre is lower than
the maximum velocity of the rectilinear reflection 2-centre. Since the lowest
possible eccentricity is

√
2, the difference in the eccentricities of the rectilinear

and Steiner reflection 2-centres in R2 from 2.8284 to 2.5465 corresponds to a
relative improvement of 19.9%. Similarly, since any bounded-velocity approx-
imation must have velocity at least 1 +

√
3/2, the difference in the maximum

velocities of the rectilinear and Steiner reflection 2-centres in R2 from 3.8284 to
3.5456 corresponds to a relative improvement of 14.4%.

We were unable to show an upper bound on the eccentricity of the Steiner
reflection 2-centre in R3. The rectilinear reflection 2-centre has eccentricity in
the range [2

√
2, 2

√
d] and maximum velocity 2

√
d + 1 in Rd for d ≥ 2.

Experimentation suggests that the Steiner reflection 2-centre and the recti-
linear reflection 2-centre perform well not only in the worst case but also in the
average case. Empirical evidence is provided in Sec. 8.4.2 in the form of test
results from simulations of sets of 6 clients and 16 clients for which the eccen-
tricities and velocities of the Euclidean 2-centre, rectilinear reflection 2-centre,
and Steiner reflection 2-centre of a set of mobile clients are measured over 10000
time units. See Figs. 8.13 and 8.14.

Both the rectilinear reflection 2-centre and the Steiner reflection 2-centre
are defined consistently across dimensions; that is, {Υ1

d(P ),Υ2
d(P )} coincides

with {Υ1
d−1(P ),Υ2

d−1(P )} when the positions of clients in P lie in a (d − 1)-
dimensional flat. The reflection 2-centre is invariant under translation and uni-
form scaling but not under rotation or reflection. The Steiner reflection 2-centre
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is invariant under all similarity transformations.

6.8 Bounded-Velocity Approximations of the
Rectilinear 2-Centre

In Ch. 3 we motivated examining bounded-velocity approximations of the Eu-
clidean 1-centre, the Euclidean 1-median, and the Euclidean 2-centre. As we
show in Ch. 7, even in one dimension, no bounded-velocity approximation is
possible for any geometric k-centre for k ≥ 3. Similarly, we show that even in
one dimension, no bounded-velocity approximation is possible for any geometric
k-median for k ≥ 2. Both the rectilinear 1-centre and the rectilinear 1-median
have bounded velocity. Consequently, our examination of bounded velocity ap-
proximations in Chs. 4 through 6 has focused on objective functions defined
in terms of the Euclidean distance metric. This leaves open the problem of
defining a bounded-velocity approximation of the rectilinear 2-centre, which we
show is discontinuous in Cor. 6.10 (the discontinuity applies whether distance
is measured using Euclidean or Chebyshev distance). This question is straight-
forward to address by use of ideas developed in this chapter. As we now show,
the rectilinear reflection 2-centre provides a 2-approximation of the rectilinear
2-centre when distance and velocity are measured using the Chebyshev norm.

Recall that the Chebyshev distance between points x = (x1, . . . , xd) and
y = (y1, . . . , yd) in Rd is given by

||x − y||∞ = max
1≤i≤d

|xi − yi|.

It follows that a mobile facility Υd has maximum Chebyshev velocity vmax

if
∀t1, t2 ∈ T, ||Υd(P (t1)) − Υd(P (t2))||∞ ≤ vmax|t1 − t2|. (6.14)

We say 2-centre function Υd provides a Chebyshev λ-approximation of the
rectilinear 2-centre if

∀P ∈ P(Rd), max
p∈P

min
i∈{1,2}

||p−Υi
d(P )||∞ ≤ λ max

p∈P
min
i∈{1,2}

||p−Ri
d(P )||∞. (6.15)

Corollary 6.28. The rectilinear reflection 2-centre provides a Chebyshev 2-
approximation of the rectilinear 2-centre. Furthermore, the rectilinear reflection
2-centre cannot guarantee a Chebyshev λ-approximation of the rectilinear 2-
centre for any λ < 2.

Proof. A sufficient condition for Eq. (6.15) is provided if the corresponding
bound holds in every dimension. That is,

∀P ∈ P(Rd), ∀1 ≤ j ≤ d, max
p∈P

min
i∈{1,2}

|pj−Υi
d(P )j | ≤ λ max

p∈P
min
i∈{1,2}

|pj−Ri
d(P )j |.
(6.16)

Lem. 6.22 shows that the one-dimensional rectilinear reflection 2-centre provides
a 2-approximation of a one-dimensional geometric 2-centre. The definition of
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a Chebyshev λ-approximation coincides with that of a λ-approximation in one
dimension. Therefore, Lem. 6.22 implies Eq. (6.16) and the rectilinear reflection
2-centre provides a Chebyshev 2-approximation of the rectilinear 2-centre as
defined in Eq. (6.15). The worst case is realized when client p0 lies at a corner
of the bounding box of P .

Corollary 6.29. The rectilinear reflection 2-centre has maximum Chebyshev
velocity at most 3. Furthermore, the rectilinear reflection 2-centre cannot guar-
antee relative Chebyshev velocity less than 3.

Proof. The Chebyshev velocity of a mobile client or mobile facility is realized
in one dimension. Therefore, the Chebyshev velocity of the rectilinear 1-centre
is at most one. The result follows from Thm. 6.13.
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Chapter 7

Mobile Geometric k-Centre
and k-Median

7.1 Introduction

7.1.1 Chapter Objectives

In Ch. 3 we motivated identifying bounded-velocity approximations of the Eu-
clidean k-centre and k-median. In Chs. 4 through 6 we addressed the mobile
Euclidean 1-centre, 1-median, and 2-centre problems. For each problem we an-
alyzed existing approximation functions and/or introduced new ones, each of
which was evaluated in terms of its maximum velocity and approximation fac-
tor. In Chapter 7, we briefly address the mobile Euclidean k-centre for k ≥ 3
and the mobile Euclidean k-median for k ≥ 2.

As we show, even in one dimension, no three-facility function can guaran-
tee both continuity and a bounded approximation of the Euclidean 3-centre.
Similarly, even in one dimension, no two-facility function can guarantee both
bounded velocity and a bounded approximation of the Euclidean 2-median.
Compared to results of the previous chapters, the findings of this chapter are
modest contributions. Most of the results are straightforward observations in-
cluded for completeness. The results suggest that evaluation of potential strate-
gies for approximating the Euclidean k-centre for k ≥ 3 and the Euclidean
k-median for k ≥ 2 requires a different type of analysis, one which falls outside
the definitions of approximation considered in this thesis.

Finally, the chapter closes with a brief examination of whether these Eu-
clidean k-centre and k-median problems can be approximated by introducing
additional facilities. For example, we ask whether there exists a set of k + 1
mobile facilities that provides a bounded-velocity approximation of the mobile
Euclidean k-centre.

7.1.2 Chapter Overview

Geometric 3-Centre and Geometric 2-Median (Sec. 7.2)
Sec. 7.2 examines properties of the one-dimensional geometric 3-centre (equiva-
lent to the Euclidean 3-centre in R) and the one-dimensional geometric 2-median
(equivalent to the Euclidean 2-median in R). We demonstrate that even in one
dimension the geometric 3-centre and 2-median are discontinuous. We show
that no bounded-velocity λ-approximation is possible for either the geometric
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3-centre or the geometric 2-median in R. In each cases, given any fixed values for
λ and vmax, a counter-example can be constructed to demonstrate that no set
of three (respectively, two) mobile facilities moving with maximum velocity at
most vmax can guarantee an approximation factor of λ of the mobile geometric
3-centre (respectively, 2-median).

Additional Facilities (Sec. 7.3)

In Sec. 7.3 we relax the requirement that the number of facilities of an ap-
proximation match the number of k-centres or k-medians. We show that a
bounded-velocity approximation of the geometric 3-centre is possible with four
mobile facilities. However, this result does not generalize; we show that no
bounded-velocity approximation of the geometric k-centre is possible with k +1
mobile facilities when k ≥ 4. Similarly, we show that no bounded-velocity ap-
proximation of the geometric k-median is possible with k + 1 mobile facilities
when k ≥ 3.

7.2 Geometric 3-Centre and Geometric
2-Median

7.2.1 Properties of the Mobile 3-Centre and Mobile
2-Median

This section explores the existence of multiple solutions (non-uniqueness) of the
Euclidean 3-centre and the Euclidean 2-median and shows that both are discon-
tinuous, even in one dimension. Refer to Sec. 2.3.3 for the static definition of
the Euclidean k-centre and to Sec. 2.4.3 for the static definition of the Euclidean
k-median.

As shown in Sec. 6.2, the Euclidean 2-centre is not unique in Rd for any
d ≥ 1. This property extends to the k-centre for any k ≥ 2. An analogous proof
can be used to show that the Euclidean k-median is not unique in Rd for any
k ≥ 2 and any d ≥ 1.

With respect to continuity, we now show that both the geometric 3-centre
and 2-median are discontinuous in one dimension. Although both the Euclidean
1-median and 2-centre were shown to be discontinuous in Chs. 5 and 6 in two
or more dimensions, both problems are continuous (and have bounded velocity)
in one dimension.

Discontinuity of the Geometric 3-Centre

We first demonstrate the discontinuity of the geometric 3-centre.

Theorem 7.1. The mobile d-dimensional geometric 3-centre is discontinuous
for any d ≥ 1.
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t= 1−ε t= 1+εc=d

1ε

a b c’d’a’=b’

ε1BA

Figure 7.1: illustration in support of Thm. 7.1

Proof. Let P = {a, b, c, d} denote a set of four mobile clients such that

a(t) =

{
t − 1 if t ≤ 1
0 if t > 1

, b(t) = 0, c(t) = 1, and d(t) =

{
1 if t ≤ 1
t if t > 1

.

Observe that each client moves with at most unit velocity. Fig. 7.1 displays
P (1 − ǫ) and P (1 + ǫ) for some ǫ > 0. The geometric 3-radius of P (t) is 0
for all t. When t 6= 1, the 3-radius is realized by a unique geometric 3-centre
whose positions coincide with P (t). That is, {Ξ1

1(P (t)),Ξ2
1(P (t)),Ξ3

1(P (t))} =
{t − 1, 0, 1} for all t < 1 and {Ξ1

1(P (t)),Ξ2
1(P (t)),Ξ3

1(P (t))} = {0, 1, t} for all
t > 1. It follows that

∀t1 < 1, ∀t2 > 1, ||Ξi1(P (t1)) − Ξi1(P (t2))|| ≥ 1, (7.1)

for some i in {1, 2, 3}. Consequently, the geometric 3-centre is not continuous
by Def. 3.3.

Discontinuity of the Geometric 2-Median
Similarly, we demonstrate the discontinuity of the geometric 2-median.

Theorem 7.2. The mobile d-dimensional geometric 2-median is discontinuous
for any d ≥ 1.

Proof. Let P = {a, b, c, d} denote a set of four mobile clients such that

a(t) =

{
t − 2 if t ≤ 1
−1 if t > 1

, b(t) = c(t) = 0, and d(t) =

{
1 if t ≤ 1
t if t > 1

.

Observe that each client moves with at most unit velocity. Fig. 7.2 displays
P (1 − ǫ) and P (1 + ǫ) for some ǫ > 0. The geometric 2-median sum of P (t) is

1−εt= a b=c d t= 1+εA Ba’ d’b’=c’

M1
1 (P (1 − ǫ)) M2

1 (P (1 − ǫ)) M1
1 (P (1 + ǫ)) M2

1 (P (1 + ǫ))

Figure 7.2: illustration in support of Thm. 7.2
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1 for all t. When t 6= 1, the 2-median sum is realized by a unique geometric 2-
median given by {M1

1 (P (t)),M2
1 (P (t))} = {t−2, 0} for all t < 1 and {M1

1 (P (1+
t)),M2

1 (P (1 + t))} = {0, t} for all t > 1. It follows that

∀t1 < 1, ∀t2 > 1, ||M i
1(P (t1)) − M i

1(P (t2))|| ≥ 1, (7.2)

for some i in {1, 2}. Consequently, the geometric 2-median is not continuous by
Def. 3.3.

7.2.2 Inapproximability of the Mobile 3-Centre and
Mobile 2-Median

In this section we show that no continuous λ-approximation of the geometric 3-
centre is possible for any fixed λ > 0 and no bounded-velocity λ-approximation
of the geometric 2-median is possible for any fixed λ > 0. We prove these
results in one dimension, implying that the corresponding k-centre and j-median
problems are inapproximable in Rd for any d ≥ 1, any k ≥ 3, any j ≥ 2, and
any Minkowski distance metric.

Inapproximability of the Geometric 3-Centre
We begin by demonstrating the inapproximability of the geometric 3-centre.
The proof generalizes the example developed in the proof of Thm. 7.1.

Corollary 7.3. No continuous λ-approximation to the geometric 3-centre exists
in R, for any fixed λ.

Proof. Let P be defined as in the proof of Thm. 7.1. Choose any λ > 0. Let
Υ1

1(P (t)), Υ2
1(P (t)), and Υ3

1(P (t)) denote the positions of three facilities with
approximation factor λ. The Euclidean 3-radius of P (t) is zero for all t. It
follows that {Υ1

1(P (t)),Υ2
1(P (t)),Υ3

1(P (t))} = {t − 1, 0, 1} for all t < 1 and
{Υ1

1(P (t)),Υ2
1(P (t)),Υ3

1(P (t))} = {0, 1, t} for all t > 1. Consequently,

∀t1 < 1, ∀t2 > 1, ||Υi
1(P (t1)) − Υi

1(P (t2))|| ≥ 1, (7.3)

for some i in {1, 2, 3}. Therefore, Υ1 is not continuous by Def. 3.3.

Inapproximability of the Geometric 2-Median
We now demonstrate the inapproximability of the geometric 2-median.

Theorem 7.4. No bounded-velocity λ-approximation to the geometric 2-median
exists in R, for any fixed λ.

Proof. Choose any λ ≥ 1 and vmax ≥ 1. Choose any ǫ ∈ (0, 1/vmax). Choose an
integer k such that k > max{λ/ǫ, λ/(1 − vmaxǫ)}. Let

a(t) = 0, b(t) = −t, and c(t) = 1.

Let P denote a multiset of 2k + 1 clients such that k clients have positions
determined by a(t), k clients have positions determined by b(t), and a single
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0t= t= ε kk

ε 1

2k A

1

B

Figure 7.3: illustration in support of Thm. 7.4

client has position determined by c(t). See Fig. 7.3. Observe that each client
moves with at most unit velocity.

The geometric 2-median sum of P (0) is zero, realized by the unique geomet-
ric 2-median, {M1

1 (P (0)),M2
1 (P (0))} = {0, 1}. Observe that k > λ/ǫ ≥ 1/ǫ.

Therefore, kǫ > 1 and the two clusters of k clients must each be served by
a different median of P (ǫ). Thus the geometric 2-median sum of P (ǫ) is one,
realized by the unique geometric 2-median, {M1

1 (P (ǫ)),M2
1 (P (ǫ))} = {−ǫ, 0}.

Let Υ1
1(P (t)) and Υ2

1(P (t)) denote the positions of two facilities with ap-
proximation factor λ. Since the geometric 2-median sum is zero at t = 0, these
two facilities must coincide with the geometric 2-median at t = 0. Since the
geometric 2-median sum is one at t = ǫ, no facility can lie to the right of λ/k
at time t = ǫ (otherwise the corresponding sum of distances would exceed λ).
That is, {Υ1

1(P (0)),Υ2
1(P (0))} = {0, 1} and {Υ1

1(P (ǫ)),Υ2
1(P (ǫ))} = {x1, x2},

where x1 ≤ λ/k and x2 ≤ λ/k. Therefore,

|Υi
1(P (0)) − Υi

1(P (ǫ)| ≥ 1 − λ

k
> ǫvmax,

for some i ∈ {1, 2}. That is, the average velocity of some facility exceeds vmax

over the time interval [0, ǫ].

7.2.3 Alternate Notions of Approximation

The common definition of approximation which is used in this thesis (Def. 3.5)
does not allow for the comparison of two bounded-velocity facility functions in
terms of the quality of their respective approximations of the mobile Euclidean
k-centre when k ≥ 3 and k-median when k ≥ 2.

Client sets that exemplify the inapproximability tend to occur when clients
are collocated at k points and any approximation of the geometric k-centre
or k-median whose facilities fail to coincide with these k points results in an
unbounded approximation factor. Measuring a relative difference instead of
a ratio may allow for informed conclusions to be drawn about the quality of
facility functions relative to each other.

Natural possibilities for measuring the quality of approximation of the Eu-
clidean k-centre include taking a difference of the optimization functions and
normalizing by the Euclidean radius. In the case of the Euclidean k-median, one
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may consider an additional normalizing factor corresponding to the cardinality
of the client set.

Evaluating mobile approximation strategies in terms of these alternatives
requires a change of framework that does not fit with the results presented in
this thesis; within this work we restrict our analysis to approximation as defined
in Def. 3.5. In the following section we briefly consider the question of whether
bounded-velocity approximation is possible given additional mobile facilities.

7.3 Additional Facilities

Given that the geometric 2-median and the geometric 3-centre cannot be ap-
proximated by a bounded-velocity facility function, we relax the requirement
that the number of approximate facilities must correspond to the original num-
ber of facilities. That is, we consider approximations of a k-centre or k-median
problem by use of k + 1 or greater mobile facilities. As we show, one additional
facility permits approximation for small values of k, but the problems remain
inapproximable for most values of k.

7.3.1 Geometric k-Centre with Additional Facilities

We begin by showing that the geometric 3-centre can be approximated with
four mobile facilities. Lem. 7.5 is used in the proof of Obs. 7.6.

Lemma 7.5. Given a set of clients P in R, let pl and pr denote clients at
the extrema of P and let pm denote a client closest to Ξ1(P ). There exists a
geometric 3-centre of P such that pl, pr, and pm are each served by different
facilities, Ξ1

1(P ), Ξ2
1(P ), and Ξ3

1(P ).

Proof. Let r denote the Euclidean 3-radius of P . Observe that r ≤ |pr − pl|/6.
Assume all clients in the interval [pl, pl + 2r] are served by Ξ1

1(P ). Similarly,
assume all clients in the interval [pr−2r, pr] are served by Ξ2

1(P ). Consequently,
all clients in the interval [pl + 2r, pr − 2r] are served by Ξ3

1(P ).
Case 1. Assume pm ∈ (pl+2r, pr−2r). Client pm must be served by Ξ3

1(P ).
Case 2. Assume pm 6∈ (pl+2r, pr−2r). It follows that P ∩(pl+2r, pr−2r) =

∅. Consequently, P ⊆ [pl, pl + 2r] ∪ [pr − 2r, pr] and all clients in P are served
by Ξ1

1(P ) or Ξ2
1(P ). Therefore Ξ3

1(P ) can be assigned to pm.

Observation 7.6. Given a finite set of mobile clients P in R, there exists
a set of four mobile facilities with maximum velocity three that provides a 2-
approximation of the geometric 3-centre of P .

Proof. Since the worst-case approximation factor is realized independently of
motion, we consider a static set of clients P in R to simplify notation. Let
the first two facilities, Υ1

1(P ) and Υ2
1(P ), have positions that coincide with the

extrema of P . Let the position of the third facility, Υ3
1(P ), coincide with the

position of a client of P closest to Ξ1(P ) and let the position of the fourth
facility, Υ4

1(P ), be given by the reflection of Υ3
1(P ) across Ξ1(P ). Observe that
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if two clients are nearest to Ξ1(P ) on opposite sides, then they are each other’s
reflections across Ξ1(P ).

If |P | ≤ 2, then Υ1
1(P ) and Υ2

1(P ) coincide with P . Therefore, assume
|P | ≥ 3. Let P1, P2, and P3 denote the partition of P induced by Ξ1

1(P ),
Ξ2

1(P ), and Ξ3
1(P ) such that Ξid(P ) is the facility closest to any client in Pi for

i ∈ {1, 2, 3}. If any client p in P is equidistant from Ξid(P ) and Ξjd(P ), then
assume p is assigned to partitions Pi or Pj arbitrarily.

By Lem. 7.5, the leftmost client, the rightmost client, and a client nearest
to the midpoint must all lie in different partitions. Within each partition, the
Euclidean 3-centre behaves locally like a Euclidean 1-centre problem. It follows
from Lem. 4.4 that any client within Pi provides a 2-approximation of Ξi1, for
i ∈ {1, 2, 3}.

With respect to a set of mobile clients P , the positions of Υ3
1 and Υ4

1 are
interchanged periodically. Whenever such an interchange occurs, Υ3

1(P (t)) and
Υ4

1(P (t)) are equidistant from Ξ1(P (t)); that is, Υ3
1(P (t)) and Υ4

1(P (t)) corre-
spond to each other’s reflection across Ξ1(P (t)). To avoid discontinuity, assume
Υ3′

1 (P (t)) refers to the leftmost point of {Υ3
1(P (t)),Υ4

1(P (t))} and Υ4′

1 (P (t))
refers to the rightmost point.

Facilities Υ1
1 and Υ2

1 each have velocity at most one since their positions
coincide with those of clients in P . Similarly, either Υ3′

1 or Υ4′

1 has instantaneous
velocity at most one since its position coincides with that of some client in P .
By Thm. 6.13 and Obs. 4.3, the last facility, Υ4′

1 or Υ3′

1 , has maximum velocity
three.

Although four facilities are sufficient (and necessary) to provide a bounded-
velocity approximation of the geometric 3-centre, the corresponding property
does not hold for the geometric 4-centre.

Observation 7.7. No five mobile facilities can guarantee a continuous λ-approximation
of the geometric 4-centre in R for any fixed λ.

Proof. Choose any λ > 0 and any ǫ ∈ (0, 1/2). Let P = {a, b, c, d, e, f} denote
a set of six mobile clients such that

a(t) = 0, b(t) =

{
t − ǫ t ≤ ǫ
0 t > ǫ

,

c(t) = 1, d(t) =





1 t ≤ ǫ
1 + t − ǫ ǫ < t ≤ 2ǫ
1 + 3ǫ − t 2ǫ < t ≤ 3ǫ
1 t > 3ǫ

,

e(t) = 2, and f(t) =

{
2 t ≤ 3ǫ
2 + t − 3ǫ t > 3ǫ

.

Observe that each client moves with at most unit velocity. See Fig. 7.4. The
geometric 4-radius of P (t) is 0 for all t, realized by a unique geometric 4-centre
whose positions coincide with P (t) for all t 6∈ {ǫ, 3ǫ}.
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Figure 7.4: illustration in support of Obs. 7.7

By the pigeonhole principle and an argument analogous to the proof of
Cor. 7.3, it follows that no set of five bounded-velocity mobile facilities always
coincides with the positions of P (t).

If the motions of clients d and f at time t = ǫ are selected by an adversary
as a function of the positions of the five facilities, the claim can be strengthened
to state that no set of five continuous mobile facilities always coincides with the
positions of P (t). That is, at time t = ǫ, two facilities must be located at a(ǫ)
and b(ǫ), a third facility must be located at c(ǫ) = d(ǫ) and a fourth facility
must be located at e(ǫ) = f(ǫ). The fifth facility cannot coincide with both
c(ǫ) = d(ǫ) and e(ǫ) = f(ǫ). The adversary selects to move either d or f at time
ǫ, whichever lies further away from the fifth facility.

Corollary 7.8. No k+1 mobile facilities can guarantee a continuous λ-approximation
of the geometric k-centre in R for any k ≥ 4 and any fixed λ.

Proof. The argument follows from Obs. 7.7 upon augmenting the client set P
with k − 4 clients located at 3, 4, . . . , k − 2 since each additional client must
coincide with a facility.

7.3.2 Geometric k-Median with Additional Facilities

We show similar bounds on the geometric k-median.

Observation 7.9. No four mobile facilities can guarantee a bounded-velocity
λ-approximation of the geometric 3-median in R for any fixed λ.

Proof. Choose any λ ≥ 1 and vmax ≥ 1. Choose any ǫ ∈ (0, 1/vmax). Choose an
integer k such that k > max{λ/ǫ, λ/(1 − vmaxǫ)}. Let

a(t) = −1, b(t) =

{
t − 1 − ǫ t ≤ ǫ
−1 t > ǫ

,

c(t) = 0, d(t) =

{
1 t ≤ ǫ
t + 1 − ǫ t > ǫ

,

and e(t) = 1.

Let P denote a multiset of 4k + 1 clients such that k clients have positions
determined by a(t), k clients have positions determined by b(t), a single client
has position determined by c(t), k clients have positions determined by d(t),
and k clients have positions determined by e(t). See Fig. 7.5. Observe each
client moves with at most unit velocity.
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Figure 7.5: illustration in support of Obs. 7.9

By the pigeonhole principle and an argument analogous to to the proof of
Thm. 7.4, it follows that the average velocity of some facility exceeds vmax over
the time interval [0, 2ǫ]. That is, no four mobile facilities with maximum velocity
vmax can coincide with {−1 − ǫ,−1, 1} at time t = 0, {−1, 0, 1} at time t = ǫ,
and {−1, 1, 1 + ǫ} at time t = 2ǫ.

Corollary 7.10. No k + 1 mobile facilities can guarantee a bounded-velocity
λ-approximation of the geometric k-median in R for any k ≥ 3 and any fixed λ.

Proof. The argument follows from Obs. 7.9 upon augmenting the client set P
with k − 3 clients located at 2, 3, . . . , k − 2 since each additional client must
coincide with a facility.

The question of whether there exists a set of three mobile facilities that
provides a bounded-velocity approximation of the geometric 2-median remains
open.

The negative results in Obs. 7.7 and 7.9 and Cor. 7.8 and 7.10 imply the
corresponding results in Rd for any d ≥ 1. The positive result in Obs. 7.6,
however, does not imply the corresponding results in higher dimensions.

Finally, it is straightforward to show that the negative results imply similar
results for various combinations of facilities k and k + j. For example, it follows
from Obs. 7.7 and Cor. 7.8 that no eleven mobile facilities can guarantee a
bounded-velocity λ-approximation of the geometric 9-centre in R for any k ≥ 4
and any fixed λ (4+5 = 9 facilities and 5+6 = 11 facilities). Again, combinations
of positive results do not follow from Obs. 7.6.
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Chapter 8

Implementation

8.1 Introduction

8.1.1 Chapter Objectives

This chapter provides descriptions of algorithms that implement the key ap-
proximation functions discussed in Chs. 4 through 6. Specifically, we describe
kinetic data structures for maintaining the two-dimensional Steiner centre, the
projection median, and reflection-based 2-centre functions.

A graphical demonstration of these approximation functions was imple-
mented in Java with the dual objective of providing visual intuition of the
behaviour of these functions in a mobile setting as well as gathering informal
empirical data to confirm that the relative ordering of the respective worst-case
theoretical bounds is realized in practice. We provide a brief description of
the implementation followed by a short discussion of the data collected. The
reader should not draw overly-strong conclusions about bounds on average-case
performance from the statistics presented; rather, these are included to provide
informal evidence that the worst-case bounds on velocity and approximation
factor are not overly pessimistic or unrealistic. In particular, the data suggest
that the mobile Steiner centre and the mobile projection median provide better
approximations of the mobile Euclidean 1-centre and 1-median, respectively,
more often than do the mobile centre of mass, the mobile rectilinear 1-centre,
the mobile rectilinear 1-median, and the mobile Gaussian median.

8.1.2 Chapter Overview

Below is a summary of the sections presented in this chapter.

Maintaining Mobile Centre and 2-Centre Functions (Sec. 8.2)

Sec. 8.2 briefly addresses maintaining the mobile centre of mass and refers to
related work for KDS algorithms that maintain the mobile rectilinear 1-centre.
We describe two KDS algorithms for maintaining the mobile Steiner centre. The
first maintains the exact position of the mobile Steiner centre. For the second
algorithm we introduce the m-hull, a discretization of the convex hull, allowing
us to develop a more efficient algorithm for maintaining a close approximation
of the mobile Steiner centre. The section closes with a discussion of algorithms
for maintaining reflection-based 2-centre functions.
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Maintaining Mobile Median Functions (Sec. 8.3)
Sec. 8.3 begins by referring to related work for KDS algorithms that maintain the
mobile rectilinear 1-median. We employ the Steiner centre algorithm described
in Sec. 8.2.3, in an algorithm for maintaining a close approximation of the mobile
Gaussian median. We then discuss algorithms for finding the static projection
median and for maintaining its exact and approximate position in the mobile
setting.

Java Visualization (Sec. 8.4)
Sec. 8.4 begins with a brief description of a graphical demonstration of these
approximation functions implemented in Java. Next we provide a summary
of data collected by the implementation presented in the form of cumulative
distribution plots and percentile tables.

8.2 Maintaining Mobile Centre and 2-Centre
Functions

In Ch. 4 we identified four bounded-velocity approximations of the mobile Eu-
clidean 1-centre: the Steiner centre, the rectilinear 1-centre, the centre of mass,
and a linear combination of the latter two. In Ch. 6 we identified two bounded-
velocity approximations of the mobile Euclidean 2-centre: the Steiner reflection
2-centre and the rectilinear reflection 2-centre. We describe algorithms to main-
tain these that make use of kinetic data structures (KDS). See Sec. 3.7.1 for a
discussion of KDS.

The rectilinear 1-centre of a set of mobile clients is maintained by the mobile
minima and maxima of each dimension. Agarwal and Har-Peled [AH01] describe
an efficient implementation using a KDS. Closely-related is the maintenance of
the extent of a set of mobile clients in one dimension [AH01, AGHV01, Gui98,
BGH99].

The centre of mass of a set of mobile clients is straightforward to maintain
as the average of the positions of all mobile clients. No actual KDS is required
since no certificate validation is necessary. If the clients of P have motion that
is degree j polynomial, then the motion of Cd(P (t)) is also degree j polynomial.
The motion of Cd(P (t)) requires only a constant-time update whenever a client’s
flight plan is updated.

Maintaining any convex combination of the mobile centre of mass and the
mobile rectilinear 1-centre is achieved by maintaining the motions of both centre
functions as described above and returning the convex combination of their
trajectories.

We now examine implementation issues involving KDS for the maintenance
of both exact and approximate mobile Steiner centres of a set of mobile clients.
We describe a simple algorithm to maintain an arbitrarily-close approximation
of the Steiner centre of a set of mobile clients by using a KDS to maintain the
m-hull of the clients (see Def. 8.1). We show the motion of the Steiner centre of
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θ
b

a

p

Figure 8.1: The Gaussian weight of client p is defined in terms of the positions
of clients p, a, and b.

the m-hull follows a piecewise-linear trajectory if the motion of clients in P is
also piecewise-linear. Although the Steiner centre has two equivalent definitions,
in this context maintaining the Steiner centre of the m-hull is much simpler by
its formulation by Gaussian weights.

8.2.1 Maintaining the Mobile Steiner Centre

The Gaussian weight w2(p(t)) of an extreme point p in P at time t is defined
in terms of the position of client p and its two neighbouring clients, a and b, on
the convex hull boundary of P . Using the inner product of the vectors a − p
and b − p, it follows that

w2(p(t)) = π − arccos

( 〈a(t) − p(t), b(t) − p(t)〉
||a(t) − p(t)|| · ||b(t) − p(t)||

)
. (8.1)

See Fig. 8.1. Even if the motion of clients is linear, function w2(p(t)) remains
trigonometric. As a consequence, the position of the Steiner centre is not ex-
pressible as a polynomial and its description requires a number of terms propor-
tional to the size of the convex hull, Θ(|P |). Similarly, even under linear motion
of clients, the trajectory of the Euclidean 1-centre Ξ2 cannot be expressed al-
gebraically. At any given time, the position of Ξ2(P (t)) is defined by at most
three clients and, unlike Γ2, the trajectory of Ξ2 is expressible by a constant
number of terms (while the same three clients define Ξ2).

Given this constraint on the complexity of a description of the Steiner cen-
tre’s trajectory, the position of Γ2 may be maintained by any KDS that main-
tains the convex hull of a set of mobile clients. For any mobile client p, the
description of its Gaussian weight w2(p(t)) changes only when the neighbours
of p change along the convex hull boundary or when p joins or leaves the convex
hull boundary. Each such update requires only constant time. Therefore, the
number of KDS events processed remains unchanged and the complexity of the
new KDS is not increased. Thus, a KDS may be used to maintain the Steiner
centre with responsiveness, efficiency, locality, and compactness identical to that
for maintaining the convex hull. However, the expression for the position of the
Steiner centre requires Θ(n) terms, where n = |P |.
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Q  (P)
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A B

CH(P)

Figure 8.2: the convex hull and the 8-hull of P

8.2.2 The Steiner Centre of the m-Hull

The definition of many centre functions (like the Euclidean 1-centre and the
Steiner centre) depends only on extreme points of the set P . Of course, the
convex hull of any (possibly infinite) bounded set of clients P can be closely
approximated by some finite set of points P ′. We formalize this notion by
defining the m-hull of a set of clients. We then show that when any set of
clients P ∈ P(Rd) is approximated by its m-hull, Qm(P ), the relative distance
between Γ2(P ) and Γ2(Qm(P )) is O( 1

m ).

Definition 8.1. Let P ∈ P(R2) and let m ∈ Z,m ≥ 4, be fixed. The m-hull of
P , denoted Qm(P ), is defined by the intersection of all half-planes H+ such that
P ⊆ H+ and the outer normal to the boundary line of H+ is uφ = (cos φ, sin φ)
for some φ = 0 mod 2π

m .

See the example in Fig. 8.2 for m = 8. The boundary of Qm(P ) is a polygon
with at most m sides whose edges have normals parallel to (cos( 2πj

m ), sin(2πj
m ))

for some j ∈ Z. As m increases, the m-hull of P approaches the convex hull of
P .

We show that when a client set P is approximated by its m-hull, Qm(P ),
the relative distance between Γ2(P ) and Γ2(Qm(P )) is O( 1

m ).

Lemma 8.1. Let P ∈ P(R2) and let m ∈ Z+ be fixed, m ≥ 4. Let Qm(P )
denote the m-hull of P and let r be the Euclidean radius of P . The distance
between Γ2(P ) and Γ2(Qm(P )) satisfies

||Γ2(Qm(P )) − Γ2(P )|| ≤ 16r

πm
. (8.2)

Proof. Since Γ2(P ) = Γ2(CH(P )) and the m-hull of P is equal to the m-hull of
CH(P ), assume without loss of generality that P = CH(P ). Choose any m ∈ Z,
m ≥ 4. Let Qm(P ) denote the m-hull of P . Let r be the Euclidean radius of
P . Let f be an ǫ-perturbation of Qm(P ) such that for every q ∈ Qm(P ), f(q)
is a nearest client in P to q (the value of ǫ is chosen below). For every edge
l of the boundary of Qm(P ), there is a client p ∈ P tangent to l. Let a and
b be extreme points in P defining adjacent boundary edges l1 and l2 on the
boundary of Qm(P ). Let point c ∈ Qm(P ) denote the intersection of l1 and l2.
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Figure 8.3: illustration in support of Lem. 8.1

See Fig. 8.3B. If c ∈ P then locally ||f(c) − c|| = 0. Therefore assume c 6∈ P .
The distance from c to line ab is maximized when ||a−c|| = ||b−c||. Since c 6∈ P ,
angle ∠acb = π − 2π/m. Consequently, ∠cab = ∠cba = π/m. Since a,b ∈ P ,
||a − b|| ≤ 2r. Let e denote the midpoint of ab. Therefore, ||a − e|| ≤ r and
||e−c|| ≤ r tan(π/m). Thus, no point in Qm(P ) may lie farther than r tan(π/m)
from the convex hull of P . Therefore, the maximum distance between Qm(P )
and the convex hull of P is at most max

q∈Qm(P )
||q − f(q)|| ≤ r tan(π/m).

Thus, f is an r tan(π/m)-perturbation of Qm(P ). Thus, let ǫ = r tan(π/m).
By Def. 3.7 and Thm. 4.24,

||Γ2(Qm(P )) − Γ2(f(Qm(P )))|| ≤ 4r

π
tan

( π

m

)
. (8.3)

Since P ⊆ Qm(P ) and by the definition of f , observe that Γ2(f(Qm(P ))) =
Γ2(P ). Also note that if θ < π/4, then tan θ < 4θ/π. Therefore,

||Γ2(P ) − Γ2(Qm(P ))|| = ||Γ2(Qm(P )) − Γ2(f(Qm(P )))||

=
4

π
r tan

( π

m

)

≤ 4

π
r

[
4

π

π

m

]

=
16r

πm
.

The idea of the m-hull is related to that of the strong convex hull introduced
by Fink and Wood [FW03] and the convex F -hull introduced by Rawlins and
Wood [RW87]. Both the strong convex hull and the convex F -hull correspond to
the smallest convex region that contains a set of points P and whose edges are
parallel to a given set of lines. Note, the term k-hull has alternative definitions.
In particular, Cole et al. [CSY87] define the k-hull of a set of points P such that
any hyperplane H passing through a vertex of the k-hull of P has at least k
points of P contained within each of the two half-spaces induced by H. Thus,
the convex hull is a 1-hull.
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8.2.3 Mobile Implementation Using the m-Hull

For implementation it may be desirable to define a mobile centre function that
carries the benefits of the Steiner centre but has a simple polynomial description.
Under linear motion of clients, we describe a simple discretization using the m-
hull that allows the motion of the Steiner centre to be closely approximated by
a piecewise-linear function.

Let Qm(P ) denote the m-hull of a set P ∈ P(R2). See the example in
Fig. 8.2 for m = 8. The boundary of Qm(P ) is a polygon with at most m
sides with turn angles that are multiples of 2π

m between 0 and π. These corre-
spond to Gaussian weights. Therefore, the Gaussian weight of q ∈ Qm(P ) is
w2(q(t)) = j 2π

m for some j ∈ {0, . . . , ⌊m/2⌋}. Furthermore, while the adjacencies
between edges of Qm(P ) to points on the convex hull boundary of P remains
unchanged, the Gaussian weight of any extreme point q ∈ Qm(P ) remains con-
stant. Since the weights are constant, the Steiner centre Γ2(Qm(P )) is simply
a linear combination of the vertices of Qm(P ). Therefore, under linear motion
of clients of P , between events along the convex hull boundary of Qm(P ), the
motion of Γ2(Qm(P )) is also linear (and continuous). In general, the motion of
Γ2(Qm(P )) is piecewise-linear.

Maintaining the mobile m-hull of P in a KDS is simple. Associated with the
m-hull are m normal vectors, uφ = (cos φ, sin φ), where φ is drawn from the set
of m angles Φ = {j 2π

m | 0 ≤ j ≤ m−1}. For each φ ∈ Φ, let Pφ = {uφ〈p, uφ〉 | p ∈
P} be the projection of P onto the line through the origin that lies parallel to
uφ. We maintain the maximum client in each of the m sets Pφ. As described
by Guibas [Gui98], a KDS that maintains the maximum of a set of clients in
R, each moving with linear motion, is responsive, efficient, compact, and local.
Under linear motion the maximum client of each set Pφ changes at most n = |P |
times. We require maintaining m instances of this KDS. Therefore, the total
number of times a maximum client changes is at most m · n.

The set of m maximum clients defines the m-hull, Qm(P ), and ultimately
the Steiner centre of Qm(P ), Γ2(Qm(P )). Associated with each maximum client
is a tangent line with normal uφ. These lines are ordered and we maintain the m
intersection points that define the boundary of the m-hull (intersection points
may be collocated resulting in fewer than m points). Since the clients of P move
linearly, the motion of the intersection points is also linear. Furthermore, an
intersection point only requires updating whenever the maximum client of one
of its defining lines is updated. For each such event, the Gaussian weight of
a client on the boundary of Qm(P ) requires a constant-time update. Between
events, weights of clients in Qm(P ) remain constant.

Although Richardson [Ric97] provides an approximation of the convex hull
of P to within O(1/m2) (measured by the Hausdorff distance between the two
hulls) while requiring at most m vertices, the m-hull has the advantage that
interior angles at the vertices of Qm(P ) are multiples of 2π/m. Consequently,
maintaining the kinetic m-hull is straightforward and only requires maintaining
the m supporting planes with outer normals j · 2π/m, for j = 0 . . . m − 1.

In summary, given a set of mobile clients P each moving in linear trajec-
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tories, the Steiner centre of P does not move with algebraic motion. However,
the m-hull allows the maintenance of an approximation to the mobile Steiner
centre of P that moves with piecewise-linear motion. Furthermore, m can be
selected independently of |P | to ensure the approximate Steiner centre is made
arbitrarily close to the Steiner centre of P . Finally, maintaining the m-hull
and approximate Steiner centre of a set of mobile clients P using a KDS is
responsive, efficient, compact, and local.

The size of the KDS can be reduced from Θ(mn) to Θ(n log m) by using
a natural generalization of a kinetic tournament [BGH99, Gui98]. The size
bound exploits the fact that the m-hull of a set P can be efficiently represented
in Θ(min{m, |P |}) space. The total number of change events remains O(mn)
[DK06].

8.2.4 Maintaining Mobile 2-Centre Functions

In Ch. 6 we identified two bounded-velocity approximations of the mobile Eu-
clidean 2-centre: the Steiner reflection 2-centre and the rectilinear reflection
2-centre.

Each of these is defined by reflecting the position of some client p0 in P across
the corresponding centre function. It follows that the kinetic maintenance of any
reflection-based 2-centre function is achieved by maintaining the corresponding
mobile centre function as described earlier in this section.

8.3 Maintaining Mobile Median Functions

In Ch. 5 we identified five bounded-velocity approximations of the mobile Eu-
clidean 1-median: the projection median, the Gaussian median, the rectilinear
1-median, the centre of mass, and a linear combination of the latter two.

The rectilinear 1-median of a set of mobile clients is maintained by the re-
spective one-dimensional mobile median in each dimension. Agarwal et al. [AGG02]
describe an efficient implementation using a KDS.

As described in Sec. 8.2, the centre of mass of a set of mobile clients is
straightforward to maintain as the average of the positions of all mobile clients.

Maintaining any convex combination of the mobile centre of mass and the
mobile rectilinear 1-median is achieved by maintaining the motions of both
centre functions as described above and returning the convex combination of
their trajectories.

We now describe algorithms for maintaining the mobile Gaussian median
and the mobile projection median.

8.3.1 Maintaining the Mobile Gaussian Median

The definition of the Gaussian median of P is a normalized weighted average of
the positions of clients in P . The weight of client p at time t is π−w2(p(t)), where
w2(p(t)) corresponds to Eq. (8.1) (see Def. 5.4). Consequently, our observations
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about maintaining the exact position of the mobile Steiner centre with a KDS
also apply to maintenance of the mobile Gaussian median. See Sec. 8.2.1. Thus,
the position of the Gaussian median is not expressible as a polynomial and its
description requires a number of terms proportional to the size of the convex
hull, Θ(|P |). Given this constraint on the complexity of a description of the
Gaussian median’s trajectory, the position of G2 may be maintained by any
KDS that maintains the convex hull of a set of mobile clients.

As shown in Obs. 5.28, the Gaussian median of a set of mobile clients P can
be described as a function of the Steiner centre of P and the centre of mass of P .
Just as we employed the m-hull to approximate the mobile Steiner centre, the
correspondence between the Gaussian median and the Steiner centre suggests
we examine the quality of the approximation of the Gaussian median of the
m-hull of a set of mobile clients.

Corollary 8.2. Let P ∈ P(R2) and let m ∈ Z+ be fixed, m ≥ 4. Let Qm(P )
denote the m-hull of P and let r be the Euclidean radius of P . The distance
between G2(P ) and G2(Qm(P )) satisfies

||G2(Qm(P )) − G2(P )|| ≤ (12π + 32)r

πm
. (8.4)

Proof.

||G2(P ) − G2(Qm(P ))||

=
1

|P | − 2

∣∣∣∣
∣∣∣∣|P |[C2(P ) − C2(Qm(P ))] − 2[Γ2(P ) − Γ2(Qm(P ))]

∣∣∣∣
∣∣∣∣,

by Obs. 5.28,

≤ 1

|P | − 2

(
|P | · ||C2(P ) − C2(Qm(P ))|| + 2||Γ2(P ) − Γ2(Qm(P ))||

)

≤ 1

|P | − 2

(
|P |4r

m
+ 2

16r

πm

)
,

by Thm. 8.1,

≤ (12π + 32)r

πm
.

Again, our observations about maintaining the mobile Steiner centre of the
m-hull with a KDS also apply to maintenance of the mobile Gaussian median
of the m-hull. See Sec. 8.2.3.

8.3.2 Algorithm for the Static Projection Median

The projection median can be found using techniques similar to those developed
by Bereg et al. [BKS00]. In brief, as θ varies from 0 to π, the client(s) in P that
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Figure 8.4: For every client p in P , the static projection median algorithm
identifies the range of angles for which p induces induces a median of Pθ.

induce med(Pθ) are identified by maintaining a line (perpendicular to lθ) that
partitions P into two sets of at most ⌊n/2⌋ clients each (see Def. 5.1).

The range of integration θ ∈ [0, π) can be partitioned into subintervals
[αi, αi+1) such that for every θ ∈ [αi, αi+1), the median of Pθ is given by the
projection of client pai

∈ P onto line lθ. That is,

1

2π

∫ π

0

med(Pθ) dθ =
1

2π

m−1∑

i=0

∫ αi+1

αi

uθ〈pai
, uθ〉 dθ, (8.5)

for some 0 = α0 < . . . < αm = π and pa0
, . . . , pam−1

∈ P . Eq. (8.5) has a closed
form integration consisting of Θ(m) terms. Each endpoint of interval [αi, αi+1)
at client a coincides with an interval [αi+1, αi+2) at an adjacent client, say b,
along edge ab. See Fig. 8.4D.

These subintervals are identified by maintaining the convex hull of each parti-
tion as the line rotates, requiring O(log2 n) time per update [OL81]. See Fig. 8.5.
Since the dual problem to maintaining these partitions corresponds to an n/2-
level, we require at most O(n4/3) such updates [Dey98]. That is m = O(n4/3).
Between updates, the contribution to Π2(P ) of the client(s) that induce med(Pθ)
is calculated in O(1) time. Together, these give an O(n4/3 log2 n)-time algo-
rithm. This can be improved to O(n4/3 log1+ǫ n) amortized time using the
dynamic convex hull data structure of Chan [Cha01].

lθ

lθ
BA

c c

a

e

a

dd

b b

e

Figure 8.5: maintaining the convex hulls of both partitions as lθ rotates
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p p’

a
a’b b’

Figure 8.6: Edge pa crosses edge pb when a and b lie in the same half-plane
relative to p and arctan[(ay − py)/(ax − px)] = arctan[(by − py)/(bx − px)].

8.3.3 Maintaining the Mobile Projection Median

The static projection median algorithm generalizes to a mobile algorithm using
a KDS. We first employ the static algorithm on the initial set of client positions
such that for every client p in P , we identify the subintervals of angles for which
p induces a median of Pθ. These subintervals are maintained as the clients move.
Let a, b, and p denote mobile clients in P . Edges ap and bp cross if

arctan

(
ay(t) − py(t)

ax(t) − px(t)

)
= arctan

(
by(t) − py(t)

bx(t) − px(t)

)

⇒ [ay(t) − py(t)][bx(t) − px(t)] = [ax(t) − px(t)][by(t) − py(t)], (8.6)

as long as a and b lie in the same half-plane relative to p. See Fig. 8.6. Eq. (8.6)
is a piecewise-quadratic polynomial given piecewise-linear client motion. Fur-
thermore, between client flight updates, every two edges cross at most once.
There are Θ(n2) edges and n clients, resulting in O(n3) edge crossings. For
each edge crossing, the corresponding intervals must be updated at three clients
involved. Four cases are possible as displayed in Fig. 8.7.

a
ba

c

b
c

a
ba

c

b
c

a
ba

c

b
c

a
ba

c

b
c

A1 A2 B1 B2

C1 C2 D1 D2

Figure 8.7: Four cases are possible when c crosses the edge between a and b.

The resulting KDS has similar properties to those of a KDS that main-
tains the exact Steiner centre. That is, the position of the projection median is
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not expressible as a polynomial. Furthermore, its description requires O(n4/3)
terms, corresponding to the number of subintervals of [0, π) described in the
static algorithm. Given this constraint on the complexity of a description of the
projection median’s trajectory, the position of Π2 may be maintained by any
KDS that maintains the set of subintervals for each client. For any mobile client
p, the description of its subintervals change only when some client crosses and
edge adjacent to p. Each such update requires only constant time. For com-
parison, in general the position of the Euclidean 1-median cannot be expressed
exactly (see Sec. 2.4.1).

8.3.4 Discretized Approximation of the Projection
Median

Just as the m-hull enabled for a simpler KDS to maintain a close approximation
of the Steiner centre, we propose maintaining a discretization of the projection
median. In Lem. 5.14 we showed that the projection median can be expressed
in terms of the rectilinear 1-median:

Π2(P ) =
2

π

∫ π/2

0

Sθ(P ) dθ = lim
n→∞

1

n

n−1∑

i=0

Siπ/2n(P ). (8.7)

Consequently, we propose approximating the projection median by

Tm(P ) =
1

m

m−1∑

i=0

Siπ/2m(P ), (8.8)

for a fixed m ≥ 1. Every Tm(P ) is maintained kinetically by an instance of the
rectilinear 1-median KDS of Agarwal et al. [AGG02] mentioned earlier.

By Thms. 5.6 and 5.26, Tm provides a
√

2-approximation of the Euclidean
1-median for any m ≥ 1. We provide a better bound on the approximation
factor of Tm using techniques similar to those used in the proof of Thm. 5.20.
This bound is tight as m → ∞.

Theorem 8.3. The two-dimensional discretized projection median provides a
λ-approximation of the Euclidean 1-median, where

λ =
1

m
csc
( π

4m

)
. (8.9)
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Proof. Choose any fixed m ≥ 1. We bound the median sum of Tm.
∑
p∈P ||Tm(P ) − p||

∑
q∈P ||M2(P ) − q||

=

∑
p∈P

∣∣∣
∣∣∣ 1
m

∑m−1
i=0 Siπ/2m(P ) − p

∣∣∣
∣∣∣

∑
q∈P ||M2(P ) − q||

=

∑
p∈P

∣∣∣
∣∣∣ 1
m

∑m−1
i=0 Siπ/2m(P ) − 1

m

∑m−1
i=0 p

∣∣∣
∣∣∣

∑
q∈P ||M2(P ) − q||

≤
∑
p∈P

1
m

∑m−1
i=0 ||Siπ/2m(P ) − p||

∑
q∈P ||M2(P ) − q|| ,

by the △ inequality,

≤
∑
p∈P

1
m

∑m−1
i=0 diπ/2m(Siπ/2m(P ), p)

∑
q∈P ||M2(P ) − q|| ,

since ∀x ||x||1 ≥ ||x|| and, similarly, ∀x∀φ dφ(x) ≥ ||x||,

≤
∑
p∈P

1
m

∑m−1
i=0 diπ/2m(M2(P ), p)

∑
q∈P ||M2(P ) − q|| , (8.10a)

since Sφ(P ) minimizes the sum of the dφ distances to points of P ,

=

∑
p∈P

1
m

∑m−1
i=0

[
cos
(
iπ
2m − αp

)
+ sin

(
iπ
2m − αp

)]
· ||M2(P ) − p||

∑
q∈P ||M2(P ) − q|| , (8.10b)

where αp = arctan[(M2(P )y − py)/(M2(P )x − px)] mod π
2 (see Fig. 5.8),

=

∑
p∈P

[
cos
(
π

2m

)
cos αp − sin

(
π

2m

)
sinαp + cos αp

]
· ||M2(P ) − p||

m sin
(
π

2m

)∑
q∈P ||M2(P ) − q||

(8.10c)

≤
∑
p∈P

[
cos
(
π

2m

)
cos
(
π

4m

)
+ sin

(
π

2m

)
sin
(
π

4m

)
+ cos

(
π

4m

)]
· ||M2(P ) − p||

m sin
(
π

2m

)∑
q∈P ||M2(P ) − q|| ,

(8.10d)

by Eq. (8.11),

=
csc
(
π

4m

)∑
p∈P ||M2(P ) − p||

m
∑
q∈P ||M2(P ) − q||

=
1

m
csc
( π

4m

)
. (8.10e)
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Eq. (8.10d) follows from Eq. (8.10c) by taking the derivative and setting it to
zero:

∂

∂αp

[
cos
( π

2m

)
cos αp − sin

( π

2m

)
sinαp + cos αp

]
= 0,

⇒ − cos
( π

2m

)
sinαp − sin

( π

2m

)
cos αp − sinαp = 0,

⇒ αp = − arctan

(
sin
(
π

2m

)

cos
(
π

2m

)
+ 1

)

= − π

4m
. (8.11)

Therefore, for any finite multiset of points P in R2 and for any fixed m ≥ 1,

∑

p∈P
||Tm(P ) − p|| ≤ 1

m
csc
( π

4m

)∑

q∈P
||M2(P ) − q||.

Observe that

lim
m→∞

1

m
csc
( π

4m

)
=

4

π
. (8.12)

Eq. (8.12) converges rapidly to 4/π, as shown by the Laurent series expansion
of cosecant which gives

1

m
csc
( π

4m

)
=

4

π
+

π

24m2
+ O

(
1

m4

)
.

8.4 Java Visualization

The worst-case approximation factor of an approximation function is realized by
a static set of client positions. As such, intuition about the approximation factor
of the two-dimensional Euclidean 1-centre, 2-centre, and 1-median is effectively
communicated though the use of figures that exemplify specific characteristics
of various sets of client positions. Intuition about velocity, however, is more
difficult to convey in a figure. Even more difficult to represent graphically is the
correlation between velocity and approximation factor.

To help convey various notions described in this thesis, a visual demon-
stration was implemented to display a set of mobile clients P in R2 and the
significant approximation functions of P described in Chs. 4 through 6. We
briefly describe the implementation in this section.

In addition, the implementation provides a source of data on the approxima-
tion factor and average velocity of each approximation function at every time
step. Data collected from extended runs is included in this section to reinforce
conclusions drawn in Chs. 4 and 5 and suggest that the worst-case bounds de-
rived are are not overly pessimistic or unrealistic. It should be emphasized,
however, that the reader is not expected to draw precise numerical conclusions
on average-case bounds on approximation factors or velocities; rather these
statistics are included only to provide informal evidence to reinforce the corre-
sponding formal results established in Chs. 4, 5, and 6.
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Figure 8.8: a screen capture of the applet (the different colours are not easily
distinguishable in this grey-scale image)

8.4.1 Java Applet Overview

The implementation as described was written in Java. The interface consists
of a tabbed control panel above a display window. See Fig. 8.8. The window
displays a set of mobile clients moving inside a red rectangle. Each client follows
a linear trajectory until it bounces upon coming into contact with a rectangle
edge. The bounce angle is randomized so that client trajectories do not remain
constant.

A set of check boxes and a tabbed menu allows the user to select which
approximation functions of the client set are to be displayed. These include
the Euclidean 1-centre, the rectilinear 1-centre, the centre of mass, the Steiner
centre, the Euclidean 1-median, the rectilinear 1-median, the projection me-
dian, the Gaussian median, the Euclidean 2-centre, the Steiner reflection 2-
centre, and the rectilinear reflection 2-centre. Exact positions (to within stan-
dard floating point error) are calculated for all facilities except the Euclidean
1-median, for which Weiszfeld’s approximation algorithm is implemented, and
the projection median, for which the discretization described in Eq. (8.8) is
calculated. Additional features of P that can be displayed include the mini-
mum enclosing circle(s), the bounding box, the convex hull, client projections
onto the x- and y-axes, and the Voronoi diagram of P corresponding to a par-
tition of clients in P based on proximity to either facility of the Euclidean
2-centre. Buttons and slide bars for controlling the velocity, position, and num-
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Figure 8.9: centre function cumulative plots for approximation factor and aver-
age velocity for six mobile clients
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Figure 8.10: centre function cumulative plots for approximation factor and av-
erage velocity for sixteen mobile clients

ber of clients are also included. The applet is available for viewing online at
http://www.cs.ubc.ca/~durocher/gaussianDemo.html.

In addition to displaying the various mobile objects described above, the
applet includes three visualizations that display the approximation factor and
velocity of the approximation functions. These are intended to help a viewer
get a sense of the relative approximation factors and velocities of the approx-
imation functions for various configurations of client positions. These include
scrolling overlayed plots of the approximation factors (respectively, velocity) of
various centre (respectively, median, 2-centre) functions over time, a histogram
of the instantaneous approximation factors (velocity) of various centre (median,
2-centre) functions, and a cumulative distribution plot displaying the distribu-
tion of the approximation factors (velocity) of various centre (median, 2-centre)
functions over the entire duration of a simulation.
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centre function 50th percentile 75th percentile 90th percentile
Euclidean 6 1.0000 | 0.6188 1.0000 | 0.7969 1.0000 | 1.0594
1-centre 16 1.0000 | 0.5719 1.0000 | 0.8156 1.0000 | 1.1906
centre 6 1.1406 | 0.2812 1.2188 | 0.3937 1.3068 | 0.4875
of mass 16 1.1055 | 0.1500 1.1641 | 0.2156 1.2266 | 0.2719
rectilinear 6 1.0547 | 0.5062 1.1016 | 0.6750 1.1406 | 0.8063
1-centre 16 1.0547 | 0.4312 1.0859 | 0.5906 1.1133 | 0.7406
Steiner 6 1.0353 | 0.4312 1.0547 | 0.5719 1.0703 | 0.6844
centre 16 1.0273 | 0.3281 1.0430 | 0.4594 1.0586 | 0.5719

Table 8.1: summary of centre function statistics displayed as percentiles: λ|vmax

8.4.2 Empirical Evidence

In addition to visual display, the implementation was used to collect empirical
data on the performance of the approximation functions implemented. Each run
consisted of 10,000 time steps. For each instance, a set of mobile client positions
was randomly generated over a uniform distribution of x- and y-coordinates
inside a bounded rectangular area. Clients were assigned velocities consisting
of a magnitude in the range [0, v] for a fixed v and a direction angle in the
range [0, 2π], both of which were generated uniformly and at random. The data
collected at every time step consisted of instantaneous approximation factor
and average velocity between the current time and previous time stamp. This
information was recorded for the Euclidean 1-centre, the rectilinear 1-centre, the
Steiner centre, the centre of mass (as a centre function), the Euclidean 1-median,
the rectilinear 1-median, the projection median, the Gaussian median, the centre
of mass (as a median function), the Euclidean 2-centre, the rectilinear reflection
2-centre, and the Steiner reflection 2-centre. Since these statistics depend on the
cardinality of the client set, the simulation was run for 6 clients and again for
16 clients, resulting in twelve sets of data: 6 vs. 16 clients, centre function vs.
median function vs. 2-centre function, and velocity vs. approximation factor.

The results of these tests are displayed in Figs. 8.9 through 8.14. The plots
display the cumulative distribution as a percentage. Recall that the approxi-
mation factor is always at least one. Consequently, the domain displayed for
approximation factor is [1, 1.5] for centre functions, [1, 1.1] for median functions,
and [1, 3] for 2-centre functions, whereas the domain displayed for velocity is
[0, 1.2] for centre and median functions and [0, 4] for 2-centre functions. The
test data is also summarized in Tabs. 8.1, 8.2. and 8.3.

In each of the plots, the topmost line best satisfies the property being plotted.
For instance, in Fig. 8.9A, the topmost line corresponds to the Steiner centre,
suggesting that on average, the approximation factor of the Steiner centre was
less than that of the rectilinear 1-centre, which was in turn lower than that of
the centre of mass. Similarly, in Fig. 8.9B, the topmost line corresponds to the
centre of mass, suggesting that on average, the velocity of the centre of mass
was less than that of the Steiner centre, followed by the rectilinear 1-centre, and
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Figure 8.11: median function cumulative plots for approximation factor and
average velocity for six mobile clients
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Figure 8.12: median function cumulative plots for approximation factor and
average velocity for sixteen mobile clients

finally the Euclidean 1-centre. The results of Fig. 8.10 are similar.
Similarly, we present data collected for mobile median functions. In Fig. 8.11A,

the topmost line corresponds to the projection median, suggesting that on aver-
age, the approximation factor of the projection median was less than that of the
rectilinear 1-median and the Gaussian median, followed by the centre of mass.
In Fig. 8.11B, the topmost line corresponds to the centre of mass, suggesting
that on average, the velocity of the centre of mass was less than that of the
Gaussian median, followed by the projection median, followed by the rectilin-
ear 1-median, followed by the Euclidean 1-median. The results of Fig. 8.12 are
similar.

Finally, we present data collected for mobile 2-centre functions. In Fig. 8.13A,
the topmost line corresponds to the Steiner reflection 2-centre, suggesting that
on average, the approximation factor of the Steiner reflection 2-centre was
slightly less than that of the rectilinear reflection 2-centre. Observe that the
plot lines in Fig. 8.13A appear smooth with the exception of a spike occur-
ring at approximation factor λ = 2. This cluster is explained by the fact that
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median function 50th percentile 75th percentile 90th percentile
Euclidean 6 1.0000 | 0.4875 1.0000 | 0.6281 1.0000 | 0.8344
1-median 16 1.0000 | 0.3000 1.0000 | 0.4312 1.0000 | 0.5719
centre 6 1.0188 | 0.2437 1.0406 | 0.3375 1.0742 | 0.4031
of mass 16 1.0063 | 0.1406 1.0117 | 0.2062 1.0203 | 0.2625
rectilinear 6 1.0102 | 0.4406 1.0219 | 0.5719 1.0344 | 0.6750
1-median 16 1.0047 | 0.4500 1.0094 | 0.6000 1.0164 | 0.7219
Gaussian 6 1.0086 | 0.2719 1.0203 | 0.3750 1.0375 | 0.4688
median 16 1.0047 | 0.1500 1.0094 | 0.2156 1.0164 | 0.2812
projection 6 1.0023 | 0.3469 1.0070 | 0.4500 1.0125 | 0.5625
median 16 1.0000 | 0.2625 1.0008 | 0.3656 1.0016 | 0.4594

Table 8.2: summary of median function statistics displayed as percentiles:
λ|vmax

whenever client p0 lies on the minimum enclosing circle of the partition of P
with larger Euclidean radius, the corresponding approximation factor is exactly
2. No such spike is evident in Fig. 8.14A; this property is expected since the
probability that p0 lies on the minimum enclosing circle of the partition of P
with larger radius decreases inversely with |P |. In Fig. 8.13B, both the recti-
linear reflection 2-centre and the Steiner reflection 2-centre show a sharp spike
near velocity vmax = 1. Whenever the reflected centre, q, moves slower than
p0, the maximum velocity of a reflection-based 2-centre function is realized by
p0. Again, this property is less pronounced when |P | = 16 in Fig. 8.14B. Note
that since velocity is measured as average over a time interval, discontinuities
in the position of the Euclidean 2-centre are not recorded as arbitrarily large
velocities.

In Ch. 4 we showed that in R2 the worst-case approximation factors of
centre functions in order from lowest (best) to highest (worst) correspond to
the Steiner centre, the rectilinear 1-centre, and the centre of mass. Similarly,
we showed that in R2 the worst-case maximum velocities of centre functions
in order from slowest to fastest correspond to the centre of mass, the Steiner
centre, the rectilinear 1-centre, and the Euclidean 1-centre. Although average-
case values tend to be significantly lower that the corresponding worst-case
bounds, Figs. 8.9 and 8.10 show that the relative ordering remains unchanged
in practice.

In Ch. 5 we showed that in R2 the worst-case approximation factors of me-
dian functions in order from lowest (best) to highest (worst) correspond to the
projection median, the rectilinear 1-median, and the centre of mass. Similarly,
we showed that in R2 the worst-case maximum velocities of median functions
in order from slowest to fastest correspond to the centre of mass, the projec-
tion median, the rectilinear 1-median, and the Euclidean 1-median. Although
average-case values tend to be significantly lower that the corresponding worst-
case bounds, Figs. 8.11 and 8.12 show that the relative ordering remains un-
changed in practice. Although we did not derive tight bounds on the maximum
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Figure 8.13: 2-centre function cumulative plots for approximation factor and
average velocity for six mobile clients
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Figure 8.14: 2-centre function cumulative plots for approximation factor and
average velocity for sixteen mobile clients

velocity and approximation factor of the Gaussian median, Figs. 8.11 and 8.12
suggest that the upper bounds may indeed be lower that those we have estab-
lished in Sec. 5.8.

In Ch. 6 we showed that in R2 the worst-case approximation factors of 2-
centre functions in order from lowest (best) to highest (worst) correspond to the
Steiner reflection 2-centre and the rectilinear reflection 2-centre. Similarly, we
showed that in R2 the worst-case maximum velocities of 2-centre functions in
order from slowest to fastest correspond to the Steiner reflection 2-centre, the
rectilinear reflection 2-centre, and the Euclidean 2-centre. Although average-
case values tend to be significantly lower that the corresponding worst-case
bounds, Figs. 8.13A and 8.14A show that the relative ordering of approximation
factors remains unchanged in practice. The analogous conclusion on velocity is
not immediate from this analysis, partly due to the fact that this data does not
account for discontinuities in the motion of the Euclidean 2-centre.
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2-centre function 50th percentile 75th percentile 90th percentile
Euclidean 6 1.0000 | 0.6250 1.0000 | 0.7812 1.0000 | 1.2188
2-centre 16 1.0000 | 0.6875 1.0000 | 1.1562 1.0000 | 3.9688
Steiner 6 1.7188 | 1.0000 1.9375 | 1.1875 2.0000 | 1.5000
reflection 2-centre 16 1.5469 | 1.0000 1.7188 | 1.3125 1.8438 | 1.5938
rectilinear 6 1.7812 | 1.0000 1.9844 | 1.3750 2.0000 | 1.7500
reflection 2-centre 16 1.5781 | 1.0938 1.7344 | 1.5000 1.8594 | 1.8438

Table 8.3: summary of 2-centre function statistics displayed as percentiles:
λ|vmax

206



Chapter 9

Conclusions and Directions
for Future Research

This chapter provides a brief conclusion and lists possible future research direc-
tions that result from this work.

9.1 Bounded-Velocity Approximations of the
Mobile Euclidean k-Centre and k-Median

This thesis seeks to identify bounded-velocity approximations to the mobile Eu-
clidean k-centre and the mobile Euclidean k-median, two sets of mobile facilities
whose positions move with unbounded velocity and/or discontinuous motion,
even when k = 1.

We identified the rectilinear 1-centre, the centre of mass, and the Steiner
centre as bounded-velocity approximations of the mobile Euclidean 1-centre. In
particular, we established that the Steiner centre, which had not previously been
evaluated as an approximation of the Euclidean 1-centre, successfully balances
low maximum velocity and a low approximation factor.

We identified the rectilinear 1-median and the centre of mass and we in-
troduced the projection median and the Gaussian median as bounded-velocity
approximations of the mobile Euclidean 1-median. The definition of the pro-
jection median provides a new generalization of the one-dimensional median to
higher dimensions that successfully balances low maximum velocity and a low
approximation factor.

We introduced the rectilinear reflection 2-centre and the Steiner reflection
2-centre as bounded-velocity approximations of the Euclidean 2-centre. These
two mobile approximation functions overcome the challenges of discontinuity
and implicit partitioning imposed by multiple facilities.

We addressed the Euclidean k-centre for k ≥ 3 and the Euclidean k-median
for k ≥ 2 and showed that no bounded-velocity approximation can be guaran-
teed for either of these.

Finally, we presented kinetic algorithms for maintaining these various mo-
bile approximation functions on a set of mobile clients using both exact and
approximate solutions.
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9.2 Directions for Future Research

In this section we briefly mention some of the open problems that arise as a
result of this research. The first few questions involve tightening bounds on ap-
proximation factor or generalizing two-dimensional results to three dimensions.

Steiner Centre
In Thm. 4.20 and Cor. 4.21 we showed a tight bound of approximately 1.1153
on the approximation factor (eccentricity) of the Steiner centre’s approximation
of the Euclidean 1-centre in two dimensions. In Thm. 4.22 we showed a corre-
sponding lower bound of approximately 1.2017 in three dimensions. Lem. 4.4
implies an upper bound of 2 on the approximation factor. The question of find-
ing a tight bound λ ∈ [1.2017, 2] on the approximation factor of the Steiner
centre in three dimensions remains open.

Rectilinear 1-Median
In Thm. 5.6 we showed an upper bound of

√
d on the approximation factor of

the rectilinear 1-median’s approximation of the Euclidean 1-median in d dimen-
sions. In Thm. 5.7 we showed a corresponding lower bound of (1+

√
d − 1)/

√
d.

The question of finding a tight bound λ ∈ [(1+
√

d − 1)/
√

d,
√

d] on the approx-
imation factor of the rectilinear 1-median in d dimensions remains open.

Projection Median
In Thm. 5.20 we showed an upper bound of 4/π on the approximation factor of
the projection median’s approximation of the Euclidean 1-median in two dimen-
sions. In Thm. 5.21 we showed a corresponding lower bound of

√
4/π2 + 1. The

question of finding a tight bound λ ∈ [
√

4/π2 + 1, 4/π] on the approximation
factor of the projection median in two dimensions remains open.

It seems probable that the definition of the three-dimensional projection me-
dian can be interpreted in terms of the rectilinear 1-median as was done in two
dimensions in Lem. 5.14. If true, this equivalence may lead to a generalization
of the two-dimensional upper bound on the approximation factor of the projec-
tion median. Should Thm. 5.20 generalize, the three-dimensional upper bound
corresponding to Eq. (5.27d) simplifies to 3/2.

Reflection-Based 2-Centre Functions
In Thm. 6.25 we showed an upper bound of 8/π on the approximation factor (ec-
centricity) of the Steiner reflection 2-centre’s approximation of the Euclidean 2-
centre in two dimensions. In Thm. 6.26 we showed a corresponding lower bound
of 2

√
1 + 1/π2. The question of finding a tight bound λ ∈ [2

√
1 + 1/π2, 8/π]

on the approximation factor of the Steiner reflection 2-centre in two dimensions
remains open. No greater lower bound is known in three dimensions nor is
any upper bound currently known. The generalization of Lem. 4.18 to three
dimensions would allow for the proof of Thm. 6.25 to be generalized to three
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dimensions, resulting in an upper bound of 5 on the approximation factor of the
Steiner reflection 2-centre in three dimensions.

In Thm. 6.23 we showed an upper bound of 2
√

d on the approximation factor
of the rectilinear reflection 2-centre’s approximation of the Euclidean 2-centre
in d dimensions. In Thm. 6.24 we showed a corresponding lower bound of 2

√
2.

The question of finding a tight bound λ ∈ [2
√

2, 2
√

d] on the approximation
factor of the rectilinear reflection 2-centre in d dimensions remains open.

Approximating the Euclidean 2-Centre without Reflection
The only bounded-velocity approximations of the Euclidean 2-centre currently
known are the Steiner reflection 2-centre and the rectilinear reflection 2-centre.
Straightforward variations of these (e.g., linear combinations) are likely to pro-
duce additional related bounded-velocity approximations. The problem of defin-
ing a bounded-velocity approximation whose position is independent of reflec-
tion of a client position remains open.

Additional Facilities
The question of whether there exists a set of three mobile facilities that provides
a bounded-velocity approximation of the geometric 2-median in one dimension
remains open. The analogous questions for the geometric 3-centre and for k
mobile facilities and the (k + 1)-median were addressed in Sec. 7.3.

Implementation and Average-Case Analysis
As mentioned in Sec. 8.4.2, the data collected by the Java applet are not intended
as a formal statistical analysis. The following changes are required if one were
interested in collecting more robust statistics:

• the positions and velocities of clients should be randomized after each time
step,

• each test should be run for a greater number of time steps,

• results from several runs should be averaged,

• greater care needs to be taken with respect to numerical error in small
values of λ, and

• potential error with respect to approximation of the positions of the Eu-
clidean 1-median and the projection median must be addressed.

For a more formal average-case analysis, the precise definition of the model
needs to be addressed. Specifically, what defines average motion or randomized
motion of a mobile client? Does this motion occur within a bounded area (if so,
what is its shape)? How many mobile clients should be included? Large sets
of mobile clients tend to induce slow-moving centre functions clustered near
the middle whereas smaller sets allow for larger variation and rapid changes in
the positions of centre functions. What random distribution best describes an
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“average” distribution of velocities of mobile clients (simpler if all clients have
unit velocity)?
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Pisa, 1999.

[Pla95] Frank Plastria. Continuous location problems. In Zvi Drezner, ed-
itor, Facility Location: A Survey of Applications and Methods, vol-
ume 106, pages 225–262. Springer Series in Operations Research,
Springer Verlag, New York, 1995.

[Pla02] Frank Plastria. Continuous covering location problems. In Zvi
Drezner and Horst W. Hamacher, editors, Facility Location: Ap-
plications and Theory, pages 37–80. Springer, New York, 2002.

[Ric97] Thomas J. Richardson. Approximation of planar convex sets from
hyperplane probes. Discrete and Computational Geometry, 18:151–
177, 1997.

[Ros92] Kenneth E. Rosing. An optimal method for solving the (gener-
alized) multi-Weber problem. European Journal of Operational
Research, 58(3):414–426, 1992.

[RT90] Jean-Marc Robert and Godfried T. Toussaint. Computational
geometry and facility location. In Proceedings of the Interna-
tional Conference on Operations Research and Management Sci-
ence, pages B–1–B–10, 1990.

[RW87] Gregory J. E. Rawlins and Derick Wood. Optimal computation
of finitely oriented convex hulls. Information and Computation,
72:150–166, 1987.

[Sal66] George Thomas Sallee. A valuation property of Steiner points.
Mathematika, 13:76–82, 1966.

[Sch73] Alain Schärlig. About the confusion between the center of gravity
and Weber’s optimum. Regional and Urban Economics, 3(4):371–
382, 1973.

[Sch03] Konrad Schlude. From robotics to facility location: Contraction
functions, Weber point, convex core. Technical Report 403, Eid-
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Appendix A

List of Symbols

Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers.

Z+ = {x | x ∈ Z, x ≥ 0} is the set of non-negative integers.

N = {x | x ∈ Z, x > 0} is the set of natural numbers. By convention, we
assume 0 6∈ N.

R is the set of real numbers.

R+ = {x | x ∈ R, x ≥ 0} is the set of non-negative real numbers.

Q = {pq | p ∈ Z, q ∈ N} is the set of rational numbers.

Q+ = {x | x ∈ Q, x ≥ 0} is the set of non-negative rational numbers.

(px, py) denote the x- and y-coordinates of a point p ∈ R2.

(px, py, pz) denote the x-, y-, and z-coordinates of a point p ∈ R3.

pi denotes the ith coordinate of a point p = (p1, . . . , pi, . . . , pd) ∈ Rd.

P(A) denotes the power set of set A.

P̃(A) denotes the set of all nonempty subsets of set A. P̃(A) = P(A)−{∅}.

P̂(A) denotes the set of all nonempty bounded subsets of set A.

P̊(A) denotes the set of all nonempty finite subsets of set A. P̊(A) ⊆ P̂(A) ⊆
P̃(A) ⊆ P(A).

A denotes the closure of set A. That is, A is the intersection of all closed sets
that contain A.

BB(A) denotes the bounding box of set A (including its interior).

CH(A) denotes the convex hull of set A. That is, CH(A) is the intersection
of all convex sets that contain A.

MEC(A) denotes the minimum enclosing circle of set A in R (including the
interior of the circle).

circ(A) denotes the circumference of a minimum enclosing circle of set A in
R2.

231



APPENDIX A. LIST OF SYMBOLS

VA denotes the set of extreme points of set A.

∂(A) denotes the boundary of set A. That is, ∂(A) = Ac ∩ A.

deg(p) denotes the degree of vertex p. When p is an extreme point of P , deg(p)
denotes the number of neighbours of p on the graph induced by CH(P ).

idU denotes the identity function id : U → U on universe U .

|x| denotes the absolute value of x ∈ R.

||x||p denotes the ℓp (Minkowski) norm of a point x = (x1, . . . , xd) ∈ Rd, where

||x||p =
(∑d

i=1 |xi|p
)1/p

.

||x||1 denotes the ℓ1 (rectilinear) norm of a point x = (x1, . . . , xd) ∈ Rd, where

||x||1 =
∑d
i=1 |xi|.

||x|| denotes the ℓ2 (Euclidean) norm of a point x = (x1, . . . , xd) ∈ Rd, where

||x|| =
√∑d

i=1 x2
i .

||x||∞ denotes the ℓ∞ (Chebyshev) norm of a point x = (x1, . . . , xd) ∈ Rd,
where ||x||∞ = limp→∞ ||x||p = maxdi=1 |xi|.

Γd denotes the d-dimensional Steiner centre.

Gd denotes the d-dimensional Gaussian median.

Cd denotes the d-dimensional centre of mass.

Rd denotes the d-dimensional rectlinear 1-centre.

Sd denotes the d-dimensional rectlinear 1-median.

Md denotes the d-dimensional Euclidean 1-median.

Πd denotes the d-dimensional projection median.

Ξd denotes the d-dimensional Euclidean 1-centre.

Υd denotes a d-dimensional approximation function.

Fd denotes a d-dimensional function used to define the point of reflection in a
reflection-based 2-centre function.

wd denotes the d-dimensional Gaussian weight.

gd denotes the d-dimensional Gaussian median weight.

uθ denotes a unit vector in R2, uθ = (cos θ, sin θ).

uθ,φ denotes a unit vector in R3, uθ,φ = (cos θ sinφ, sin θ sin φ, cos φ).
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lθ denotes the line in R2 through the origin parallel to vector uθ.

lθ,φ denotes the line in R3 through the origin parallel to vector uθ,φ.

Pθ denotes the projection of set P ∈ P(R2) onto line lθ.

Pθ,φ denotes the projection of set P ∈ P(R3) onto line lθ,φ.

〈u, v〉 denotes the inner product (dot product) of two points u, v ∈ Rd.

max(A) denotes the maximum extreme point of a the closure of a set of collinear
points, A in R.

med(A) denotes the median of a set of collinear points, A in R.

mid(A) denotes the midpoint of the closure of a set of collinear points, A in R.

min(A) denotes the minimum extreme point of the closure of a set of collinear
points, A in R.

vmax denotes the maximum velocity of a mobile approximation function.

κ refers to the stability of an approximation function.

λ refers to the approximation factor of an approximation function.

ext(P, θ) denotes an extreme point of set P in R2 in direction (cos θ, sin θ).
That is, p = ext(P, θ) if and only if there exists a half-plane H+ ⊆ R2

with outer normal (cos θ, sin θ) such that P∩H+ = {p}. Note, the extreme
point in a given direction θ may not exist (if it does exist, then it is unique
by the above definition).

Ext(P, θ) = limφ→θ+ ext(P, φ). See ext(P, θ).
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Index

1-centre, 12
1-median, 16

additional facilities, 182
approximation factor, 42, 108, 141,

155
alternate notions, 181

approximation function, 42

bounded velocity, 40

centrality, 61
centre function, 42, 57

2-centre function, 155
centre of mass, see k-means cluster-

ing, 26, 66–67, 100, 115–
118, 141, 170, 172

algorithms, 188, 193
approximation factor, 115
eccentricity, 66
maximum velocity, 66, 118

Chebyshev distance, 22, 61, 174
Chebyshev norm, see Chebyshev dis-

tance
client, 8

mobile client, 39
client density function, 29
continuous, 40
continuous facility location, 29

continuous centre of mass, 30
continuous Euclidean k-median,

30
continuous Euclidean 1-centre,

29
continuous Euclidean 1-median,

29
continuous Steiner centre, 70,

72
continuous motion, 38
continuous space, 9

convex combination, 95–99, 101, 132–
134, 142

approximation factor, 132
eccentricity, 96
Euclidean norm, 96
maximum velocity, 98, 133

d-polytope, 73
discrete facility location, 31

related work (mobile), 50
discrete space, 10
distance metric, 8, 9
dynamic facility location, 50

ǫ-perturbation, 44
eccentricity, see approximation fac-

tor, 42, 57, 59, 99, 155, 157,
170

Euclidean k-centre, 14, 178, 209
additional facilities, 182
algorithms, 13, 15
applications, 14
Euclidean k-radius, 14
Euclidean 1-centre, 12, 55–57,

99, 163, 172
continuity, 55
unbounded velocity, 56

Euclidean 2-centre, 147–154, 170
algorithms, 15, 149
discontinuity, 154
non-uniqueness, 14, 148
open problems, 209

Euclidean 3-centre
discontinuity, 178
inapproximability, 180

Euclidean radius, 13
related work (mobile), 48
synonyms, 13, 15

Euclidean k-median, 20, 178, 209
additional facilities, 182
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Index

algorithms, 18, 20
Euclidean k-median sum, 20
Euclidean 1-median, 17, 107, 141

discontinuity, 107
Euclidean 2-median

discontinuity, 179
inapproximability, 180

Euclidean median sum, 17
related work (mobile), 48
synonyms, 17, 20

Euclidean distance, 11, 12, 17, 96
Euclidean norm, see Euclidean dis-

tance
Euclidean space, 9
extreme point, 61

facility, 8
facility function, 9

additional facilities, 182
approximation function, 42
mobile facility function, 39
multiple-facility function, 9, 145,

209
single-facility function, 9, 158

facility location
additional facilities, 34
capacitated facility location, 32
continuous facility location, 29
discrete facility location, 31
generalized distance metrics, 34
mobile, see mobile facility loca-

tion
obnoxious facility location, 33
obstacles, 34
on graphs, see on networks
on networks, 30
probabilistic facility location, 34
regions, 34
related work, 21
related work (mobile), 46
weighted clients, 34

Gaussian median, 134–141, 143
algorithms, 193
approximation factor, 139
definition in R2, 134

definition in R3, 135
Gaussian median weight in R2,

135
Gaussian median weight in R3,

135
maximum velocity, 140

Gaussian weight, 67, 135
in R2, 68
in R3, 71

Gauss map, Gaussian diagram, 72
geometric k-centre, 12, 178

additional facilities, 182
geometric 1-centre, 23
geometric 2-centre, 149

algorithms, 149
geometric 3-centre

discontinuity, 178
inapproximability, 180

geometric k-median, 17, 178
additional facilities, 182
geometric 2-median

discontinuity, 179
inapproximability, 180

geometric facility location, 9, 11
related work, 21

implementation, 199
incentre, 95

Java applet, 199

k-centre, 12
k-means clustering, 26

1-mean clustering, see centre of
mass

2-means clustering, 158, 171
algorithms, 27
complexity, 27
discontinuity, 158
synonyms, 27

k-median, 17
κ-stable, 44
KDS, see kinetic data structures
kinetic data structures, 47

ℓ∞ distance, see Chebyshev distance
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Index

ℓ1 distance, see rectilinear distance
ℓ2 distance, see Euclidean distance
ℓp norm, see Minkowski norm
λ-approximation, 42
least squares point, 94

m-hull, 190
maximum velocity, 41, 57, 59, 99,

108, 141, 155, 157, 170
median function, 42, 108
Minkowski distance, 9, see Minkowski

norm
Minkowski norm, 11
mobile client, 39
mobile facility function, 39
mobile facility location, 37

applications, 51
data structures, 46
open problems, 208
related work, 46

network space, 10, 30
normal map, see Gauss map

optimization function, 8, 11
orthocentre, 95

piercing sets, 35
polytope, 73
projection median, 118–132, 142

algorithms, 194, 196, 197
approximation factor, 125, 208
definition in R2, 119
definition in R3, 121
definition in Rd, 121
dimensional consistency, 124
discretization, 197
generalized definition, 131
invariance under similarity trans-

formations, 122
maximum velocity, 128
open problems, 208

rectilinear k-centre, 22, 178
additional facilities, 182
algorithms, 23
rectilinear k-radius, 22

rectilinear 1-centre, 22, 61–65,
100, 165, 171

algorithms, 188
eccentricity, 62
maximum velocity, 65

rectilinear 2-centre, 149, 158, 171,
174–175

algorithms, 149
discontinuity, 159

rectilinear 3-centre
discontinuity, 178
inapproximability, 180

related work (mobile), 49
rectilinear k-median, 24, 178

additional facilities, 182
algorithms, 24
rectilinear k-median sum, 24
rectilinear 1-median, 24, 111–

114, 141
algorithms, 193
approximation factor, 111, 208
maximum velocity, 114
open problems, 208

rectilinear 2-median
discontinuity, 179
inapproximability, 180

related work (mobile), 49
rectilinear distance, 24, 111
rectilinear norm, see rectilinear dis-

tance
reflection-based approximation, 159–

170
algorithms, 193
centre of mass, 170, 172
eccentricity, 163, 165, 167, 170,

208
Euclidean 1-centre, 163, 172
maximum velocity, 161
open problems, 208
rectilinear 1-centre, 165, 171, 208
Steiner centre, 167, 171, 208

stability, 44
Steiner Centre

discretization, 190
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Index

Steiner centre, 67–93, 100, 167, 171,
189

m-hull, 190
algorithms, 189–193
by Gaussian weights in R2, 69
by Gaussian weights in R3, 71
by projection in R2, 75
by projection in R3, 77
by projection in Rd, 78
continuous Steiner centre, 70,

72
eccentricity, 79, 208
in R, 72
maximum velocity, 86
open problems, 208

triangle centre, 93, 100

universe, 8, 9

v∗, 59
vmax, see maximum velocity
velocity, 40
visualization, 199

Weber point, see Euclidean 1-median
weighted clients, 34
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