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Abstract. The thickness of a graph G = (V,E) with n vertices is the minimum number of4
planar subgraphs of G whose union is G. A polyline drawing of G in R2 is a drawing Γ of G,5
where each vertex is mapped to a point and each edge is mapped to a polygonal chain. Bend and6
layer complexities are two important aesthetics of such a drawing. The bend complexity of Γ is the7
maximum number of bends per edge in Γ, and the layer complexity of Γ is the minimum integer8
r such that the set of polygonal chains in Γ can be partitioned into r disjoint sets, where each set9
corresponds to a planar polyline drawing. Let G be a graph of thickness t. By Fáry’s theorem, if10
t = 1, then G can be drawn on a single layer with bend complexity 0. A few extensions to higher11
thickness are known, e.g., if t = 2 (resp., t > 2), then G can be drawn on t planar layers with bend12
complexity 2 (resp., 3n+O(1)).13

In this paper we present an elegant extension of Fáry’s theorem to draw graphs of thickness14
t > 2. We first prove that thickness-t graphs can be drawn on t planar layers with 2.25n + O(1)15
bends per edge. We then develop another technique to draw thickness-t graphs on t planar layers16

with bend complexity O(
√

2
t · n1−(1/β)), where β = 2d(t−2)/2e. Previously, the bend complexity17

was not known to be sublinear for t > 2. Finally, we show that graphs with linear arboricity k can18

be drawn on k planar layers with bend complexity
3(k−1)n
(4k−2)

.19
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1. Introduction. A polyline drawing of a graph G = (V,E) in R2 maps each22

vertex of G to a distinct point, and each edge of G to a polygonal chain. Many23

problems in VLSI layout and software visualization are tackled using algorithms that24

produce polyline drawings. For a variety of practical purposes, these algorithms often25

seek to produce drawings that optimize several drawing aesthetics, e.g., minimizing26

the number of bends, minimizing the number of crossings, etc. In this paper we27

examine two such parameters: bend complexity and layer complexity.28

The thickness of a graph G is the minimum number θ(G) such that G can be29

decomposed into θ(G) planar subgraphs. Let Γ be a polyline drawing of G. Then30

the bend complexity of Γ is the minimum integer b such that each edge in Γ has31

at most b bends. A set of edges E′ ⊆ E is called a crossing-free edge set in Γ, if32

the corresponding polygonal chains correspond to a planar polyline drawing, i.e., no33

two polylines that correspond to a pair of edges in E′ intersect, except possibly at34

their common endpoints. The layer complexity of Γ is the minimum integer t such35

that the edges of Γ can be partitioned into t crossing-free edge sets. Figure 1(a)36

illustrates a polyline drawing of K9 on 3 planar layers with bend complexity 1. At37

first glance the layer complexity of Γ may appear to be related to the thickness of38

G. However, the layer complexity is a property of the drawing Γ, while thickness is39

a graph property. The layer complexity of Γ can be arbitrarily large even when G is40
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(a) (b) (c)

`

Fig. 1. (a) A polyline drawing of K9. (b) A drawing of a matching of size 5. (c) A monotone
topological book embedding of some graph. The edges that crosses the spine ` are shown in bold.

planar, e.g., consider the case when G is a matching and Γ is a straight-line drawing,41

where each edge crosses all the other edges; see Figure 1(b).42

The layer complexity of a thickness-t graph G is at least t, and every n-vertex43

thickness-t graph admits a drawing on t planar layers with bend complexity O(n) [21].44

The problem of drawing thickness-t graphs on t planar layers is closely related to the45

simultaneous embedding problem [4], where given a set of planar graphs G1, . . . , Gt46

on a common set of vertices, the task is to compute their planar drawings D1, . . . , Dt47

such that each vertex is mapped to the same point in the plane in each of these48

drawings. Figure 1(a) can be thought as a simultaneous embedding of three given49

planar graphs.50

1.1. Related Work. Graphs with low thickness admit polyline drawings on few51

planar layers with low bend complexity. If θ(G) = 1, then by Fáry’s theorem [16],52

G admits a drawing on a single layer with bend complexity 0. Every pair of planar53

graphs can be simultaneously embedded using two bends per edge [15, 17]. Therefore,54

if θ(G) = 2, then G admits a drawing on two planar layers with bend complexity 2.55

The best known lower bound on the bend complexity of such drawings is one [11].56

Wood [22] showed how to construct drawings on O(
√
m) layers with bend complexity57

1, where m is the number of edges in G.58

Given an n-vertex planar graph G and a point location for each vertex in R2,59

Pach and Wenger [21] showed that G admits a planar polyline drawing with the given60

vertex locations, where each edge has at most 120n bends. They also showed that61

Ω(n) bends are sometimes necessary. Badent et al. [1] and Gordon [18] independently62

improved the bend complexity to 3n + O(1). Consequently, for θ(G) ≥ 3, these63

constructions can be used to draw G on θ(G) planar layers with at most 3n + O(1)64

bends per edge.65

A rich body of literature [3, 4, 12, 13] examines geometric thickness, i.e., the66

maximum number of planar layers necessary to achieve 0 bend complexity. Two67

layers suffice for graphs with maximum degree four [10]. Dujmović and Wood [8]68

proved that dk/2e layers suffice for graphs of treewidth k. Duncan [9] proved that69

O(log n) layers suffice for graphs with arboricity two or outerthickness two, and O(
√
n)70

layers suffice for thickness-2 graphs. Dillencourt et al. [7] proved that complete graphs71

with n vertices require at least d(n/5.646) + 0.342e and at most dn/4e layers.72
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1.2. Our Results. The goal of this paper is to extend our understanding of the73

interplay between the layer complexity and bend complexity in polyline drawings.74

We first show that every n-vertex thickness-t graph admits a polyline drawing75

on t planar layers with bend complexity 2.25n + O(1), improving the 3n + O(1)76

upper bound derived from [1, 18]. We then give another drawing algorithm to draw77

thickness-t graphs on t planar layers with bend complexity O(
√

2
t · n1−(1/β)), where78

β = 2d(t−2)/2e. No such sublinear upper bound on the bend complexity was previously79

known for t > 2. Finally, we show that every n-vertex graph with linear arboricity80

k ≥ 2 admits a polyline drawing on k planar layers with bend complexity 3(k−1)n
(4k−2) ,81

where the linear arboricity of a graph G is the minimum number of linear forests (i.e.,82

each connected component is a path) whose union is G.83

The rest of the paper is organized as follows. We start with some preliminary84

definitions and results (Section 2). In the subsequent section (Section 3) we present85

two constructions to draw thickness t graphs on t planar layers. Section 4 presents86

the results on drawing graphs of bounded arboricity. Finally, Section 5 concludes the87

paper pointing out the limitations of our results and suggesting directions for future88

research.89

2. Technical Details. In this section we describe some preliminary definitions,90

and review some known results.91

Let G = (V,E) be a planar graph. A monotone topological book embedding of G92

is a planar drawing Γ of G that satisfies the following properties.93

P1: The vertices of G lie along a horizontal line ` in Γ. We refer to ` as the spine94

of Γ.95

P2: Each edge (u, v) ∈ E is an x-monotone polyline in Γ, where (u, v) either lies96

on one side of `, or crosses ` at most once.97

P3: Let (u, v) be an edge that crosses ` at point d, where u appears before v on `.98

Let u, . . . , d, . . . , v be the corresponding polyline. Then the polyline u, . . . , d99

lies above `, and the polyline d, . . . , v lies below `.100

Figure 1(c) illustrates a monotone topological book embedding of a planar graph.101

Let G1 = (V,E1) and G2 = (V,E2) be two graphs on a common set of vertices. A102

simultaneous embedding Γ of G1 and G2 consists of their planar drawings D1 and D2,103

where each vertex is mapped to the same point in the plane in both D1 and D2. Erten104

and Kobourov [15] showed that every pair of planar graphs admit a simultaneous105

embedding with at most three bends per edge. Giacomo and Liotta [17] observed106

that by using monotone topological book embeddings Erten and Kobourov’s [15]107

construction can achieve a drawing with two bends per edge. Here we briefly recall108

this drawing algorithm. Without loss of generality assume that both G1 and G2 are109

triangulations. Let πi, where 1 ≤ i ≤ 2, be a vertex ordering that corresponds to110

a monotone topological book embedding of Gi. Let Pi be the corresponding spinal111

path, i.e., a path that corresponds to πi. Note that some of the edges of Pi may112

not exist in Gi, e.g., edges (a, d) and (b, c) in Figures 2(a) and (b), respectively, and113

these edges of Pi create edge crossings in Gi. Add a dummy vertex at each such edge114

crossing. Let δi(v) be the position of vertex v in πi. Then P1 and P2 can be drawn115

simultaneously on an O(n) × O(n) grid [5] by placing each vertex at the grid point116

(δ1(v), δ2(v)); see Figure 2(c). The mapping between the dummy vertices of P1 and117

P2 can be arbitrary, here we map the dummy vertex on (a, d) to the dummy vertex on118

(b, c). Finally, the edges of Gi that do not belong to Pi are drawn. Let e be such an119

edge in Gi. If e does not cross the spine, then it is drawn using one bend on one side120

of Pi according to the book embedding of Gi. Otherwise, let q be a dummy vertex121
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on the edge e = (u, v), which corresponds to the intersection point of e and the spine.122

The edges (u, q) and (v, q) are drawn on opposite sides of Pi such that the polyline123

from u to v do not create any bend at q. Since each of (u, q) and (v, q) contains only124

one bend, e contains only two bends. Finally, the edges of Pi that do not belong to125

Gi are removed from the drawing; see Figure 2(d).126

a
b

c de

a b c d
e

(a)

(b) (c) (d)

e

a

b

c

de

a
b

c

d

q

Fig. 2. (a)–(b) Monotone topological book embeddings of G1 and G2. (c)–(d) Simultaneous
embedding of G1 and G2, where the deleted edges are shown in dashed lines.

Let Γ be a planar polyline drawing of a path P = {v1, v2, . . . , vn}. We call Γ an127

uphill drawing if for any point q on Γ, the upward ray from q does not intersect the128

path v1, . . . , q. Note that q may be a vertex location or an interior point of some edge129

in Γ. Let a and b be two points in R2. Then a and b are r-visible to each other if and130

only if their exists a polygonal chain of length r with end points a, b that does not131

intersect Γ at any point except at a, b. A point p lies between two other points a, b, if132

either the inequality x(a) < x(p) < x(b) or x(b) < x(p) < x(a) holds.133

A set of points is monotone if the polyline connecting them from left to right is134

monotone, i.e., increasing or decreasing, with respect to y-axis. Let S be a set of n135

points in general position. By the Erdös-Szekeres theorem [14], S can be partitioned136

into O(
√
n) disjoint monotone subsets, and such a partition can be computed in137

O(n1.5) time [2].138

3. Drawing Thickness-t Graphs on t Layers. In this section we give two139

separate construction techniques to draw thickness-t graphs on t planar layers. We140

first present a construction achieving 2.25n+O(1) upper bound (Section 3.1), which141

is simple and intuitive. Although the technique is simple, the idea of the construction142

will be used frequently in the rest of the paper.143

Later, we present a second construction (Section 3.2), which is more involved,144

and relies on a deep understanding of the geometry of point sets. In this case, the145

upper bound on the bend complexity will depend on some generalization of Erdös-146

Szekeres theorem [14], e.g., partitioning a point set into monotone subsequences in147

higher dimensions (Section 3.2.3).148

3.1. A Simple Construction with Bend Complexity 2.25n + O(1). Let149

G1, . . . , Gt be the planar subgraphs of the input graph G, and let S be an ordered150

set of n points on a semicircular arc. Let V = {v1, v2, . . . , vn} be the set of vertices151

of G. We show that each Gi, where 1 ≤ i ≤ t, admits a polyline drawing with bend152
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complexity 2.25n+O(1) such that vertex vj is mapped to the jth point of S. To draw153

Gi, we will use the vertex ordering of its monotone topological book embedding. The154

following lemma will be useful to draw the spinal path Pi of Gi.155

Lemma 3.1. Let S = {p0, p1, . . . , pn+1} be a set of points lying on an x-monotone156

semicircular arc (e.g., see Figure 3(a)), and let P = {v1, v2, . . . , vn} be a path of n157

vertices. Assume that p0 and pn+1 are the leftmost and rightmost points of S, respec-158

tively, and the points p1, . . . , pn are equally spaced between them in some arbitrary159

order. Then P admits an uphill drawing Γ with the vertex vi assigned to pi, where160

1 ≤ i ≤ n, and every point pi satisfies the following properties:161

A. Both the points p0 and pn+1 are (3n/4)-visible to pi.162

B. One can draw an x-monotone polygonal chain from p0 to pn+1 with 3n/4163

bends that intersects Γ only at pi.164

Proof. We prove the lemma by constructing such a drawing Γ for P . The con-165

struction assigns a polyline for each edge of P . The resulting drawing may contain166

edge overlaps, and the bend complexity could be as large as n− 2. Later we remove167

these degeneracies and reduce the bend complexity to obtain Γ.168

Drawings of Edges: For each point pi ∈ S, where 1 ≤ i ≤ n, we create an169

anchor point p′i at (x(pi), y(pi) + ε), where ε > 0. We choose ε small enough such170

that for any j, where 1 ≤ i 6= j ≤ n, all the points of S between pi and pj lie above171

(p′i, p
′
j). Figure 3(a) illustrates this property for the anchor point p′1.172

We first draw the edge (v1, v2) using a straight line segment. For each j from 2173

to n− 1, we now draw the edges (vj , vj+1) one after another. Assume without loss of174

generality that x(pj) < x(pj+1). We call a point p ∈ S between pj and pj+1 a visited175

point if the corresponding vertex v appears in v1, . . . , vj , i.e., v has already been176

placed at p. We draw an x-monotone polygonal chain L that starts at vj , connects177

the anchors of the intermediate visited points from left to right, and ends at vj+1.178

Figure 3(b) illustrates such a construction.179

Since the number of bends on L is equal to the number of visited points of S180

between pj and pj+1, each edge contains at most α bends, where α is the number of181

points of S between pj and pj+1.182

Removing Degeneracies: The drawing Dn of the path P constructed above183

contains edge overlaps, e.g., see the edges (v3, v4) and (v4, v5) in Figure 3(c). To184

remove the degeneracies, for each i, we spread the corresponding bend points in the185

interval [pi, p
′
i], in the order they appear on the path, see Figure 3(d). Consequently,186

we obtain a planar drawing of P . Let the resulting drawing be D′n. Since each187

edge (pj , pj+1) is drawn as an x-monotone polyline above the path p1, . . . , pj , D
′
n188

satisfies the uphill property. Note that D′n may have bend complexity n− 2, e.g., see189

Figure 3(e). We now show how to reduce the bend complexity and satisfy Properties190

A–B.191

Reducing Bend Complexity: A pair of points in S are consecutive if they do192

not contain any other point of S in between. Let e be any edge of P . Let Ce be the193

corresponding polygonal chain in D′n. A pair of bends on Ce are called consecutive194

bends if their corresponding points in S are also consecutive. A bend-interval of Ce195

is a maximal sequence of consecutive bends in Ce. Note that we can partition the196

bends on e into disjoint sets of bend-intervals.197

For any bend-interval s, let l(s) and r(s) be the x-coordinates of the left and198

right endpoints of s, respectively. Let s1 and s2 be two bend-intervals lying on two199

distinct edges e1 and e2 in D′n, respectively, where e2 appears after e1 in P . We claim200

that the intervals [l(s1), r(s1)] and [l(s2), r(s2)] are either disjoint, or [l(s1), r(s1)] ⊆201
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(d)

(e)

p0 p14
p13p12
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p11

(c)
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p8

p10

p4 p5
p6
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w2

Fig. 3. Illustration for the proof of Lemma 3.1. (a) Construction of the point set, and the
anchor points. The anchor points are shown in black squares. (b)–(d) Construction of D′n. (e) A
scenario when the number of bends may be large. (f)–(g) Reducing bend complexity.

[l(s2), r(s2)]. We refer to this property as the balanced parenthesis property of the bend-202

intervals. To verify this property assume that for some s1, s2, we have [l(s1), r(s1)] ∩203

[l(s2), r(s2)] 6= φ. Since s2 is a maximal sequence of consecutive bends, the inequalities204

l(s2) ≤ l(s1) and r(s2) ≥ r(s1) hold, i.e., [l(s1), r(s1)] ⊆ [l(s2), r(s2)]. We say that s1205

is nested by s2. Figure 3(f) illustrates such a scenario, where s1, s2 are shown in thin206

and thick gray lines, respectively.207
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We now consider the edges of P in reverse order, i.e., for each j from n to 2, we208

modify the drawing of e = (vj , vj−1). For each bend-interval s = (b1, b2 . . . , br) of Ce,209

if s has three or more bends, then we delete the bends b2, . . . , br−1, and join b1 and210

br using a new bend point w. To create w, we consider the two cases of the balanced211

parenthesis property.212

If s is not nested by any other bend-interval in D′n, then we place w high enough213

above br such that the chain b1, w, br does not introduce any edge crossing, e.g.,214

see the point w1(= w) in Figure 3(g). On the other hand, if s is nested by some215

other bend-interval, then let s′ be such a bend-interval immediately above s. Since216

s′ = (b′1, b
′
2, . . . , b

′
r) is already processed, it must have been replaced by some chain217

b′1, w
′, b′r. Therefore, we can find a location for b inside ∠b′1w

′b′r such that the chain218

b1, w, br does not introduce any edge crossing, e.g., see the points w′ and w2(= w) in219

Figure 3(g). Let the resulting drawing of P be Γ.220

We now show that the above modification reduces the bend complexity to 3n/4.221

Let e be an edge of P that contains α points from S between its endpoints. Let Ce222

be the corresponding polygonal chain in D′n. Recall that any bend-interval of length223

` in Ce contributes to min{`, 3} bends on e in Γ. Therefore, if there are at most α/4224

bend-intervals on Ce, then e can have at most 3α/4 bends in Γ. Otherwise, if there225

are more than α/4 bend-intervals, then there are at least α/4 points1 of S that do226

not contribute to bends on Ce. Therefore, in both cases, Ce can have at most 3α/4227

bends in Γ.228

Satisfying Properties A–B: Let pi be any point of S \ {p0, pn+1}. We first229

show that p0 is (3n/4)-visible to pi. Let Di, where 1 ≤ i ≤ n, be the drawing of the230

path v1, v2, . . . , vi. Observe that one can insert an edge (p0, pi) using an x-monotone231

polyline L such that the bends on L correspond to the intermediate visited points.232

Now the drawing of the rest of the path vi, vi+1, . . . , vn can be continued such that it233

does not cross L. Therefore, if the number of points of S between p0 and pi is α, then234

L has at most α bends. Finally, the process of reducing bend complexity improves235

the number of bends on L to 3α/4.236

Similarly, we can observe that pn+1 is at most 3α′/4 visible to pi, where α′ is the237

number of points of S between pi and pn+1. Since the edges (p0, pi) and (pi, pn+1)238

are x-monotone, we can draw an x-monotone polygonal chain from p0 to pn+1 with239

at most 3(α+ α′)/4 ≤ (3n/4) bends that intersects Γ only at pi.240

We now have the following theorem.241

Theorem 3.2. Every n-vertex graph of thickness t admits a drawing on t planar242

layers with bend complexity 2.25n+O(1).243

Proof. Let G1, . . . , Gt be the planar subgraphs of the input graph G, and let244

V = {v1, v2, . . . , vn} be the set of vertices of G. let S = {p0, p1, . . . , pn+1} be a set245

of n+ 2 points lying on a semicircular arc as defined in Lemma 3.1. Let Pi be spinal246

path of the monotone topological book embedding of Gi, where 1 ≤ i ≤ t. We first247

compute an uphill drawing Γi of the path Pi. We then draw the edges of Gi that248

do not belong to Pi. Let e = (u, v) be such an edge, and without loss of generality249

assume that u appears to the left of v on the spine.250

If e lies above (resp., below) the spine, then we draw two x-monotone polygonal251

chains; one from u to p0 (resp., pn+1), and the other from v to p0 (resp., pn+1). By252

Lemma 3.1, the polygonal chain u, . . . , p0, . . . , v (resp., u, . . . , pn+1, . . . , v) does not253

intersect Γi except at u and v, and contains at most 2 · (3n/4) = 1.5n bends.254

1Every pair of consecutive bend-intervals contain such a point in between.
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Fig. 4. Illustration for the proof of Lemma 3.3. The edge (p10, p11) is shown in bold. Passing
through each intermediate set requires at most 4 bends.

If e crosses the spine, then it crosses some edge (w,w′) of Pi. Draw the edges (u,w)255

and (w, v) using the polylines u, . . . , p0, . . . , w and w, . . . , pn+1, . . . , v, respectively.256

The polylines u, . . . , p0 and pn+1, . . . , v are x-monotone, and have at most 3n/4 bends257

each. The polyline C = (p0, . . . , w . . . , pn+1) is also x-monotone and has at most 3n/4258

bends. Hence the number of bends is 2.25n in total. It is straightforward to avoid259

the degeneracy at w, by adding a constant number of bends on C.260

Note that we still have some edge overlaps at p0 and pn+1. It is straightforward261

to remove these degeneracies by adding only a constant number of more bends per262

edge.263

3.2. A Construction for Small Values of t. In this section we give another264

construction to draw thickness-t graphs on t planar layers. We first show that ev-265

ery thickness-t graph, where t ∈ {3, 4}, can be drawn on t planar layers with bend266

complexity O(
√
n), and then show how to extend the technique for larger values of t.267

3.2.1. Construction when t = 3. Let S be an ordered set of n points, where268

the ordering is by increasing x-coordinate. A (k, n)-group Sk,n is a partition of S269

into k disjoint ordered subsets {S1, . . . , Sk}, each containing contiguous points from270

S. Label the points of S using a permutation of p1, p2, . . . , pn such that for each271

set S′ ∈ Sk,n, the indices of the points in S′ are either increasing or decreasing. If272

the indices are increasing (resp., decreasing), then we refer S′ as a rightward (resp.,273

leftward) set. We will refer to such a labelling as a smart labelling of Sk,n. Figure 4274

illustrates a (5, 23)-group and a smart labelling of the underlying point set S5,23.275

Note that for any i, where 1 ≤ i ≤ n, deletion of the points p1, . . . , pi removes276

the points of the rightward (resp., leftward) sets from their left (resp., right). The277

necklace of Sk,n is a path obtained from a smart labelling of Sk,n by connecting the278

points pi, pi+1, where 1 ≤ i ≤ n−1. The following lemma constructs an uphill drawing279

of the necklace using O(k) bends per edge.280

Lemma 3.3. Let S be a set of n points ordered by increasing x-coordinate, and let281

Sk,n = {S1, . . . , Sk} be a (k, n)-group of S. Label Sk,n with a smart labelling. Then282

the necklace of Sk,n admits an uphill drawing with O(k) bends per edge.283

Proof. We construct this uphill drawing incrementally in a similar way as in the284

proof of Lemma 3.1. Let Dj , where 1 ≤ j ≤ n, be the drawing of the path p1, . . . , pj .285

At each step of the construction, we maintain the invariant that Dj is an uphill286

drawing.287

We first assign v1 to p1. Then for each i from 1 to n − 1, we draw the edge288

(pi, pi+1) using an x-monotone polyline L that lies above Di and below the points pj′ ,289

where j′ > i+ 1. Figure 4 illustrates such a drawing of (pi, pi+1).290
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Fig. 5. Creating vertex locations for drawing thickness-3 graphs, where P1, P2 and P3 are shown
in dotted, dashed and thick solid lines, respectively. Illustration for (a) Q, and (b) Sk,n.

The crux of the construction is that one can draw such a polyline L using at most291

O(k) bends. Assume that pi and pi+1 belong to the sets Sl ∈ Sk,n and Sr ∈ Sk,n,292

respectively. If Sl and Sr are identical, then pi and pi+1 are consecutive, and hence293

it suffices to use at most O(1) bends to draw L. On the other hand, if Sl and Sr are294

distinct, then there can be at most k−2 sets of Sk,n between them. Let Sm be such a295

set. While passing through Sm, we need to keep the points that already belong to the296

path, below L, and the rest of the points above L. By the property of smart labelling,297

the points that belong to Di are consecutive in Sm, and lie to the left or right side298

of Sm depending on whether Sm is rightward or leftward. Therefore, we need only299

O(1) bends to pass through Sm. Since there are at most k − 2 sets between Sl and300

Sr, O(k) bends suffice to construct L.301

We are now ready to describe the main construction. Let G be an n-vertex302

thickness-3 graph, and let G1, G2, G3 be the planar subgraphs of G. Let Pi be the303

spinal path of the monotone topological book embedding of Gi, where 1 ≤ i ≤ 3. We304

first create a set of n points and assign them to the vertices of G. Later we route the305

edges of G.306

Creating Vertex Locations: Assume without loss of generality that P1 =307

(v1, . . . , vn). For each i from 1 to n, we place a point at (i, j) in the plane, where j308

is the position of vi in P2. Let the resulting point set be Q. Recall that by Erdös-309

Szekeres theorem, Q can be partitioned into disjoint monotone subsets Q1, . . . , Qk,310

where k ∈ O(
√
n) [2, 14]. Figure 5(a) illustrates such a partition.311

The sets Q1, . . . , Qk are ordered by the x-coordinate, and the indices of the labels312

of the points at each set is in increasing order. Therefore, if we place the points of313

the ith set between the lines x = 2(i−1)n and x = (2i−1)n, then the resulting point314

set Q′ would be a (k, n)-group, labelled by a smart labelling. Note that we preserve315

the monotonicity property of each group. Finally, we adjust the y-coordinates of316

the points according to the position of the corresponding vertices in P3. Let the317

resulting point set be Sk,n. Figure 5(b) illustrates the vertex locations, where P1 =318

(v1, v2, . . . , vn), P2 = (v11, v1, . . . , v3), and P3 = (v6, v11, . . . , v10).319

Edge Routing: It is straightforward to observe that the path P1 is a necklace320

for the current labelling of the points of Sk,n. Therefore, by Lemma 3.3, we can321

construct an uphill drawing of P1 on Sk,n. Observe that for every set S′ ∈ Sk,n, the322
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corresponding points are monotone in Q, i.e., the points of S′ are ordered along the323

x-axis either in increasing or decreasing order of their y-coordinates in Q. Therefore,324

relabelling the points according to the increasing order of their y-coordinates in Q325

will produce another smart labelling of Sk,n, and the corresponding necklace would326

be the path P2. Therefore, we can use Lemma 3.3 to construct an uphill drawing of327

P2 on Sk,n. Since the height of the points of Sk,n are adjusted according to the vertex328

ordering on P3, connecting the points of Sk,n from top to bottom with straight line329

segments yields a y-monotone drawing of P3.330

We now route the edges of Gi that do not belong to Pi, where 1 ≤ i ≤ 3. Since331

P3 is drawn as a y-monotone polygonal path, we can use the technique of Erten and332

Kobourov [15] to draw the remaining edges of G3. To draw the edges of G2, we insert333

two points p0 and pn+1 to the left and right of all the points of Sk,n, respectively.334

Then the drawing of the remaining edges of G1 and G2 is similar to the edge routing335

described in the proof of Theorem 3.2. That is, if the edge e = (u, v) lies above336

(resp., below) the spine, then we draw it using two x-monotone polygonal chains from337

p0 (resp., pn+1). Otherwise, if e crosses the spine, then we draw three x-monotone338

polygonal chains, one from u to p0, another from p0 to pn+1, and the third one from339

v to pn+1. Since k ∈ O(
√
n), the number of bends on e is O(

√
n). Finally, we remove340

the degeneracies, which increases the bends per edge by a small constant.341

3.2.2. Construction when t = 4. We now show that the technique for drawing342

thickness-3 graphs can be generalized to draw thickness-4 graphs with the same bend343

complexity.344

LetG1, . . . , G4 be the planar subgraphs ofG, and let P1, . . . , P4 be the correspond-345

ing spinal paths. While constructing the vertex locations, we use a new y-coordinate346

assignment for the points of Sk,n. Instead of placing the points according to the ver-347

tex ordering on the path P3, we create a particular order, by transposing the x- and348

y-axis, that would help to construct uphill drawings of P3 and P4 with bend com-349

plexity O(
√
n). That is, we first create a (k′, n)-group S′k′,n using P3 and P4, where350

k′ ∈ O(
√
n), in a similar way that we created Sk,n using P1 and P2. We then adjust351

the y-coordinates of the points of Sk,n according to the order these points appear352

in S′k′,n. Let S be the resulting point set, and let P1, . . . , P4 be the spinal paths of353

G1, . . . , G4, respectively. Figure 6(a) illustrates P1 and P2 in black and gray, respec-354

tively. Figure 6(b) illustrates P3 and P4 in black and gray, respectively. Figure 6(c)355

depicts the point set S, and Figures 7–8 illustrate the drawings of the spinal paths.356

The construction of G1 and G2 remains the same as described in the previous357

section. However, since P3 and P4 now admit uphill drawings on S with respect to358

y-axis, the drawings of G3 and G4 are now analogous to the construction of G1 and359

G2.360

3.2.3. Construction when t > 4. De Bruijn [19] observed that the result of361

Erdös-Szekeres [14] can be generalized to higher dimensions. Given a sequence ρ of n362

tuples, each of size κ, one can find a subsequence of at least n1/λ tuples, where λ = 2κ,363

such that they are monotone (i.e., increasing or decreasing) in every dimension. This364

result is a repeated application of Erdös-Szekeres result [14] at each dimension. We365

now show how to partition ρ into few monotone sequences.366

We use the partition algorithm of Bar-Yehuda and Sergio Fogel [2] that partitions367

a given sequence of n numbers into at most 2
√
nmonotone subsequences. It is straight-368

forward to restrict the size of the subsequences to
√
n, without increasing the number369

of subsequences, i.e., by repeatedly extracting a monotone sequence of length exactly370 √
n. Consequently, one can partition ρ into 2

√
n subsequences, where each subse-371
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Fig. 6. (a) A point set, constructed from the paths Pi, where i ∈ {1, 2}, by placing each vertex
v at (δ1(v), δ2(v)). Here δi(v) is the position of v on Pi. (b) A point set, constructed from the paths
Pi, where i ∈ {3, 4}, by placing each vertex v at (δ3(v), δ4(v)). (c) The final point set, and the
corresponding (k, n)-groups. The numbers denote the vertex positions on the corresponding spinal
path. The arrows illustrate whether the corresponding sets are leftward or rightward.

quence is of length
√
n, and monotone in the first dimension. By applying the partition372

algorithm on each of these subsequences, we can find 2
√
n·2

√√
n subsequence, each of373

which is of length
√√

n, and monotone in the first and second dimensions. Therefore,374

after κ steps, we obtain a partition of ρ into 2κ · (n1/2 ·n1/4 · . . . ·n1/2κ) = 2κ ·n1−(1/λ)375

monotone subsequences, where λ = 2κ. We use this idea to extend our drawing376

algorithm to higher thickness.377

Let G1, . . . , Gt be the planar subgraphs of G, and let P1, . . . , Pt be the correspond-378

ing spinal paths. Let v1, v2, . . . , vn be the vertices of G. Construct a corresponding379

sequence ρ = (τ1, τ2, . . . , τn) of n tuples, where each tuple is of size t, and the ith380

element of a tuple τj corresponds to the position of the corresponding vertex vj in381
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Fig. 7. Drawings of P1 and P3 on the point set of Figure 6(c).

Pi, where 1 ≤ i ≤ t and 1 ≤ j ≤ n. We now partition ρ into a set of 2t · n1−(1/β)382

monotone subsequences, where β = 2t.383

For each of these monotone sequences, we create an ordered set of consecutive384

points along the x-axis, where the vertex vj corresponds to the point pj . It is now385

straightforward to observe that these sets correspond to a (k, n)-group Sk,n, where386

k ≤ 2t ·n1−(1/β). Furthermore, since each group corresponds to a monotone sequence387

of tuples, for each Pi, the positions of the corresponding vertices are either increasing388

or decreasing. Hence, every path Pi corresponds to a necklace for some smart labelling389

of Sk,n. Therefore, by Lemma 3.3, we can construct an uphill drawing of Pi on390

S. We now add the remaining edges of Gi following the construction described in391

Section 3.2.1. Since k ≤ 2t · n1−(1/β), the number of bends is bounded by O(2t ·392

n1−(1/β)).393

Observe that all the points in the above construction have the same y-coordinate.394

Therefore, we can improve the construction by distributing the load equally among395

the x-axis and y-axis as we did in Section 3.2.2. Specifically, we draw the graphs396

G1, . . . , Gdt/2e using the uphill drawings of their spinal paths with respect to the x-397

axis, and the remaining graphs using the uphill drawings of their spinal paths with re-398
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Fig. 8. Drawings of P2 and P4 on the point set of Figure 6(c).

spect to the y-axis. Consequently, the bend complexity decreases to O(
√

2
t ·n1−(1/β′)),399

where β′ = 2dt/2e.400

We can improve this bound further by observing that we are free to choose any401

arbitrary vertex labelling for G while creating the initial sequence of tuples. Instead of402

using an arbitrary labelling, we could label the vertices according to their ordering on403

some spinal path, which would reduce the bend complexity to O(
√

2
t−2 · n1−(1/β′′)),404

where β′′ = 2d(t−2)/2e.405

Theorem 3.4. Every n-vertex graph G of thickness t ≥ 3 admits a drawing on t406

planar layers with bend complexity O(
√

2
t · n1−(1/β)), where β = 2d(t−2)/2e.407

4. Drawing Graphs of Linear Arboricity k. In this section we construct408

polyline drawings, where the layer number and bend complexities are functions of the409

This manuscript is for review purposes only.



14 STEPHANE DUROCHER, AND DEBAJYOTI MONDAL

linear arboricity of the input graphs. We show that the bandwidth of a graph can410

be bounded in terms of its linear arboricity and the number of vertices, and then the411

result follows from an application of Lemma 3.1.412

The bandwidth of an n-vertex graph G = (V,E) is the minimum integer b such413

that the vertices can be labelled using distinct integers from 1 to n satisfying the414

condition that for any edge (u, v) ∈ E, the absolute difference between the labels of415

u and v is at most b. The following lemma proves an upper bound on the bandwidth416

of graphs.417

Lemma 4.1. Given an n-vertex graph G = (V,E) with linear arboricity k, the418

bandwidth of G is at most 3(k−1)n
(4k−2) .419

Proof. Without loss of generality assume that G is a union of k spanning paths420

P1, . . . , Pk. For any ordered sequence σ, let σ(i) be the element at the ith position,421

and let |σ| be the number of elements in σ. We now construct an ordered sequence422

σ = σ1 ◦ σ2 ◦ . . . ◦ σk ◦ σk+1 of the vertices in V , as follows.423

σ1: We initially place the first x vertices of P1 in the sequence, where the exact value424

of x is to be determined later.425

σ2: We then place the vertices that are neighbors of σ1 in P2, in order, i.e., we first426

place the neighbors of σ1(1), then the neighbors of σ1(2) that have not been427

placed yet, and so on.428

σi: For each i = 3, . . . , k, we place the vertices that are neighbors of σ1 in Pi in order.429

σk+1: We next place the remaining vertices of P1 in order.430

Figure 9(a) illustrates an example for three paths with x = 2. Observe that431

|σ1| ≤ x, and |σt| ≤ 2x, where 1 < t ≤ k. We now compute an upper bound on the432

bandwidth of G using the vertex ordering of σ.433

For any i, j, where 1 ≤ i < j ≤ k + 1, let σi,j be the sequence σi ◦ . . . ◦ σj . The434

edges of P1 that are in σ1 have bandwidth 1, and those that are in σ1(x) ◦ (σ \ σ1)435

have bandwidth at most (n − x), e.g., see Figure 9(b). Now let (v, w) be an edge of436

G that does not belong to P1. We compute the bandwidth of (v, w) considering the437

following cases.438

Case 1. If none of v and w belongs to σ1, then the bandwidth of (v, w) is at most439

(n− x).440

Case 2. If both v and w belong to σ1, then the bandwidth of (v, w) is at most x.441

Case 3. If at most one of v and w belongs to σ1, then without loss of generality442

assume that v belongs to σ1. Since (v, w) does not belong to P1, we may443

assume that w belongs to the path Pt, where 1 < t ≤ k. By the construction444

of σ, w belongs to σ1,t, e.g., see Figure 9(b). Without loss of generality assume445

that w belongs to σr, where 1 < r ≤ t. Let v be the qth vertex in the sequence446

σ. Then the position of w cannot be more than q + 2x · (r − 2) + 2q, where447

the term 2x · (r − 2) corresponds to length of σ2 ◦ . . . ◦ σr−1. Therefore, the448

bandwidth of the edge (v, w) is at most 2x ·(r−2)+q ≤ 2x(r−1) ≤ 2x(t−1).449

Observe that the bandwidth of the edges of P1 is upper bounded by (n−x). The450

bandwidth of any edge that belongs to Pt, where 1 < t ≤ k is at most 2x(t − 1).451

Consequently, the bandwidth of G is at most max{n−x, 2x(k− 1)} ≤ (2k−2)n
(2k−1) , where452

x = n
(2k−1) .453

The following theorem is immediate from the proof of Lemmas 3.1 and 4.1.454

Theorem 4.2. Every n-vertex graph with linear arboricity k can be drawn on k455

planar layers with at most 3(k−1)n
(4k−2) < 0.75n bends per edge.456
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Fig. 9. (a) Construction of σ. (b) A schematic representation of P1 and (v, w), where (v, w)
belongs to P3.

5. Conclusions. In this paper we have developed algorithms to draw graphs457

on few planar layers and with low bend complexity. Although our algorithms do458

not construct drawings with integral coordinates, it is straightforward to see that459

these drawings can also be constructed on polynomial-size integer grids, where all460

vertices and bends have integral coordinates. We leave the task of finding compact461

grid drawings achieving the same upper bounds as a direction for future research.462

We believe our upper bounds on bend complexity to be nearly tight, but we463

require more evidence to support this intuition. The only related lower bound is that464

of Pach and Wenger [21], who showed that given a planar graph G and a unique465

location to place each vertex of G, Ω(n) bends are sometimes necessary to construct a466

planar polyline drawing of G with the given vertex locations. Therefore, a challenging467

research direction would be to prove tight lower bounds on the bend complexity while468

drawing thickness-t graphs on t planar layers.469
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