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RELATING GRAPH THICKNESS TO PLANAR LAYERS AND
BEND COMPLEXITY*

STEPHANE DUROCHER!' AND DEBAJYOTI MONDAL?

Abstract. The thickness of a graph G = (V, E) with n vertices is the minimum number of
planar subgraphs of G whose union is G. A polyline drawing of G' in R? is a drawing I" of G,
where each vertex is mapped to a point and each edge is mapped to a polygonal chain. Bend and
layer complexities are two important aesthetics of such a drawing. The bend complexity of I' is the
maximum number of bends per edge in I', and the layer complexity of I' is the minimum integer
r such that the set of polygonal chains in I' can be partitioned into r disjoint sets, where each set
corresponds to a planar polyline drawing. Let G be a graph of thickness t. By Féry’s theorem, if
t = 1, then G can be drawn on a single layer with bend complexity 0. A few extensions to higher
thickness are known, e.g., if t = 2 (resp., t > 2), then G can be drawn on ¢ planar layers with bend
complexity 2 (resp., 3n + O(1)).

In this paper we present an elegant extension of Féry’s theorem to draw graphs of thickness
t > 2. We first prove that thickness-t graphs can be drawn on ¢ planar layers with 2.25n + O(1)
bends per edge. We then develop another technique to draw thickness-t graphs on ¢ planar layers

with bend complexity O(\@t . nl_(l/ﬁ))7 where 8 = 2l(t=2)/21 Previously, the bend complexity

was not known to be sublinear for ¢ > 2. Finally, we show that graphs with linear arboricity k can
3(k—1)n

be drawn on k planar layers with bend complexity (1E=2) "

Key words. graph drawing, geometric thickness, planar graphs, bend complexity

AMS subject classifications. 05C10, 68R10

1. Introduction. A polyline drawing of a graph G = (V, E) in R? maps each
vertex of G to a distinct point, and each edge of G to a polygonal chain. Many
problems in VLSI layout and software visualization are tackled using algorithms that
produce polyline drawings. For a variety of practical purposes, these algorithms often
seek to produce drawings that optimize several drawing aesthetics, e.g., minimizing
the number of bends, minimizing the number of crossings, etc. In this paper we
examine two such parameters: bend complexity and layer complexity.

The thickness of a graph G is the minimum number 6(G) such that G can be
decomposed into §(G) planar subgraphs. Let I’ be a polyline drawing of G. Then
the bend complexity of I' is the minimum integer b such that each edge in I' has
at most b bends. A set of edges £’ C E is called a crossing-free edge set in T, if
the corresponding polygonal chains correspond to a planar polyline drawing, i.e., no
two polylines that correspond to a pair of edges in E’ intersect, except possibly at
their common endpoints. The layer complezity of T' is the minimum integer ¢ such
that the edges of I' can be partitioned into ¢ crossing-free edge sets. Figure 1(a)
illustrates a polyline drawing of Kg on 3 planar layers with bend complexity 1. At
first glance the layer complexity of I' may appear to be related to the thickness of
G. However, the layer complexity is a property of the drawing I', while thickness is
a graph property. The layer complexity of I' can be arbitrarily large even when G is
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2 STEPHANE DUROCHER, AND DEBAJYOTI MONDAL

Fic. 1. (a) A polyline drawing of Kg. (b) A drawing of a matching of size 5. (c) A monotone
topological book embedding of some graph. The edges that crosses the spine £ are shown in bold.

planar, e.g., consider the case when G is a matching and T is a straight-line drawing,
where each edge crosses all the other edges; see Figure 1(b).

The layer complexity of a thickness-t graph G is at least ¢, and every n-vertex
thickness-t graph admits a drawing on ¢ planar layers with bend complexity O(n) [21].
The problem of drawing thickness-¢ graphs on ¢ planar layers is closely related to the
stmultaneous embedding problem [4], where given a set of planar graphs Gy,...,Gt
on a common set of vertices, the task is to compute their planar drawings D1, ..., D;
such that each vertex is mapped to the same point in the plane in each of these
drawings. Figure 1(a) can be thought as a simultaneous embedding of three given
planar graphs.

1.1. Related Work. Graphs with low thickness admit polyline drawings on few
planar layers with low bend complexity. If (G) = 1, then by Fary’s theorem [16],
G admits a drawing on a single layer with bend complexity 0. Every pair of planar
graphs can be simultaneously embedded using two bends per edge [15, 17]. Therefore,
if 6(G) = 2, then G admits a drawing on two planar layers with bend complexity 2.
The best known lower bound on the bend complexity of such drawings is one [11].
Wood [22] showed how to construct drawings on O(y/m) layers with bend complexity
1, where m is the number of edges in G.

Given an n-vertex planar graph G and a point location for each vertex in R2,
Pach and Wenger [21] showed that G admits a planar polyline drawing with the given
vertex locations, where each edge has at most 120n bends. They also showed that
Q(n) bends are sometimes necessary. Badent et al. [1] and Gordon [18] independently
improved the bend complexity to 3n + O(1). Consequently, for 8(G) > 3, these
constructions can be used to draw G on 6(G) planar layers with at most 3n + O(1)
bends per edge.

A rich body of literature [3, 4, 12, 13] examines geometric thickness, i.e., the
maximum number of planar layers necessary to achieve 0 bend complexity. Two
layers suffice for graphs with maximum degree four [10]. Dujmovié and Wood 8]
proved that [k/2] layers suffice for graphs of treewidth k. Duncan [9] proved that
O(log n) layers suffice for graphs with arboricity two or outerthickness two, and O(y/n)
layers suffice for thickness-2 graphs. Dillencourt et al. [7] proved that complete graphs
with n vertices require at least [(n/5.646) 4+ 0.342] and at most [n/4] layers.

This manuscript is for review purposes only.
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THICKNESS, PLANAR LAYERS AND BEND COMPLEXITY 3

1.2. Our Results. The goal of this paper is to extend our understanding of the
interplay between the layer complexity and bend complexity in polyline drawings.

We first show that every n-vertex thickness-t graph admits a polyline drawing
on t planar layers with bend complexity 2.25n + O(1), improving the 3n + O(1)
upper bound derived from [1, 18]. We then give another drawing algorithm to draw

thickness-t graphs on t planar layers with bend complexity O(\/it -n'=(/B)) where
B = 2[(t=2)/21 ' No such sublinear upper bound on the bend complexity was previously
known for ¢ > 2. Finally, we show that every n-vertex graph with linear arboricity
k > 2 admits a polyline drawing on k planar layers with bend complexity %,
where the linear arboricity of a graph G is the minimum number of linear forests (i.e.,
each connected component is a path) whose union is G.

The rest of the paper is organized as follows. We start with some preliminary
definitions and results (Section 2). In the subsequent section (Section 3) we present
two constructions to draw thickness ¢ graphs on ¢ planar layers. Section 4 presents
the results on drawing graphs of bounded arboricity. Finally, Section 5 concludes the
paper pointing out the limitations of our results and suggesting directions for future
research.

2. Technical Details. In this section we describe some preliminary definitions,
and review some known results.

Let G = (V, E) be a planar graph. A monotone topological book embedding of G
is a planar drawing I" of G that satisfies the following properties.

P;: The vertices of G lie along a horizontal line £ in I'. We refer to ¢ as the spine
of T.

Po:  Each edge (u,v) € E is an x-monotone polyline in I', where (u,v) either lies
on one side of ¢, or crosses £ at most once.

P3: Let (u,v) be an edge that crosses £ at point d, where u appears before v on £.
Let u,...,d,...,v be the corresponding polyline. Then the polyline w,...,d
lies above £, and the polyline d, ..., v lies below /.

Figure 1(c) illustrates a monotone topological book embedding of a planar graph.
Let Gy = (V, E1) and Gy = (V, E2) be two graphs on a common set of vertices. A
simultaneous embedding I' of G7 and G5 consists of their planar drawings D, and Ds,
where each vertex is mapped to the same point in the plane in both D and Dy. Erten
and Kobourov [15] showed that every pair of planar graphs admit a simultaneous
embedding with at most three bends per edge. Giacomo and Liotta [17] observed
that by using monotone topological book embeddings Erten and Kobourov’s [15]
construction can achieve a drawing with two bends per edge. Here we briefly recall
this drawing algorithm. Without loss of generality assume that both G; and G, are
triangulations. Let 7;, where 1 < i < 2, be a vertex ordering that corresponds to
a monotone topological book embedding of G;. Let P; be the corresponding spinal
path, i.e., a path that corresponds to m;. Note that some of the edges of P; may
not exist in Gj, e.g., edges (a,d) and (b, ¢) in Figures 2(a) and (b), respectively, and
these edges of P; create edge crossings in G;. Add a dummy vertex at each such edge
crossing. Let d;(v) be the position of vertex v in 7;. Then P; and P2 can be drawn
simultaneously on an O(n) x O(n) grid [5] by placing each vertex at the grid point
(01(v),02(v)); see Figure 2(c). The mapping between the dummy vertices of P; and
P, can be arbitrary, here we map the dummy vertex on (a, d) to the dummy vertex on
(b, c). Finally, the edges of G; that do not belong to P; are drawn. Let e be such an
edge in G;. If e does not cross the spine, then it is drawn using one bend on one side
of P; according to the book embedding of G;. Otherwise, let ¢ be a dummy vertex

This manuscript is for review purposes only.
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4 STEPHANE DUROCHER, AND DEBAJYOTI MONDAL

on the edge e = (u, v), which corresponds to the intersection point of e and the spine.
The edges (u,q) and (v, q) are drawn on opposite sides of P; such that the polyline
from u to v do not create any bend at ¢. Since each of (u,q) and (v, q) contains only
one bend, e contains only two bends. Finally, the edges of P; that do not belong to
G; are removed from the drawing; see Figure 2(d).

Fi1G. 2. (a)-(b) Monotone topological book embeddings of G1 and Ga. (c)-(d) Simultaneous
embedding of G1 and Ga, where the deleted edges are shown in dashed lines.

Let T be a planar polyline drawing of a path P = {vy,vs,...,v,}. We call T an
uphill drawing if for any point ¢ on I', the upward ray from g does not intersect the
path v1,...,q. Note that ¢ may be a vertex location or an interior point of some edge
in I. Let a and b be two points in R?. Then a and b are r-visible to each other if and
only if their exists a polygonal chain of length r with end points a,b that does not
intersect I' at any point except at a,b. A point p lies between two other points a, b, if
either the inequality z(a) < z(p) < z(b) or z(b) < z(p) < z(a) holds.

A set of points is monotone if the polyline connecting them from left to right is
monotone, i.e., increasing or decreasing, with respect to y-axis. Let S be a set of n
points in general position. By the Erdos-Szekeres theorem [14], S can be partitioned
into O(y/n) disjoint monotone subsets, and such a partition can be computed in
O(n'9) time [2].

3. Drawing Thickness-t Graphs on t Layers. In this section we give two
separate construction techniques to draw thickness-t graphs on ¢ planar layers. We
first present a construction achieving 2.25n + O(1) upper bound (Section 3.1), which
is simple and intuitive. Although the technique is simple, the idea of the construction
will be used frequently in the rest of the paper.

Later, we present a second construction (Section 3.2), which is more involved,
and relies on a deep understanding of the geometry of point sets. In this case, the
upper bound on the bend complexity will depend on some generalization of Erdos-
Szekeres theorem [14], e.g., partitioning a point set into monotone subsequences in
higher dimensions (Section 3.2.3).

3.1. A Simple Construction with Bend Complexity 2.25n + O(1). Let
G1,...,G be the planar subgraphs of the input graph G, and let S be an ordered
set of n points on a semicircular arc. Let V = {vy,vs,...,v,} be the set of vertices
of G. We show that each G;, where 1 < i < ¢, admits a polyline drawing with bend

This manuscript is for review purposes only.
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complexity 2.25n+O(1) such that vertex v, is mapped to the jth point of S. To draw
G;, we will use the vertex ordering of its monotone topological book embedding. The
following lemma will be useful to draw the spinal path P; of G;.

LEMMA 3.1. Let S = {po,p1,--.,Pnt1} be a set of points lying on an x-monotone
semicircular arc (e.g., see Figure 3(a)), and let P = {v1,vs,...,v,} be a path of n
vertices. Assume that pg and pn+1 are the leftmost and rightmost points of S, respec-
tively, and the points pi,...,pn are equally spaced between them in some arbitrary
order. Then P admits an uphill drawing T' with the vertex v; assigned to p;, where
1 <i < n, and every point p; satisfies the following properties:

A. Both the points py and pny1 are (3n/4)-visible to p;.

B. One can draw an z-monotone polygonal chain from pg to pn+1 with 3n/4

bends that intersects I only at p;.

Proof. We prove the lemma by constructing such a drawing I for P. The con-
struction assigns a polyline for each edge of P. The resulting drawing may contain
edge overlaps, and the bend complexity could be as large as n — 2. Later we remove
these degeneracies and reduce the bend complexity to obtain I

Drawings of Edges: For each point p; € S, where 1 < i < n, we create an
anchor point p} at (x(p;),y(p;) + €), where € > 0. We choose € small enough such
that for any j, where 1 <14 # j < n, all the points of S between p; and p; lie above
(i, p}). Figure 3(a) illustrates this property for the anchor point pj.

We first draw the edge (v1,v2) using a straight line segment. For each j from 2
to n — 1, we now draw the edges (v;,v,41) one after another. Assume without loss of
generality that z(p;) < z(p;j+1). We call a point p € S between p; and pj1 a visited
point if the corresponding vertex v appears in v1,...,v;, i.e.,, v has already been
placed at p. We draw an z-monotone polygonal chain L that starts at v;, connects
the anchors of the intermediate visited points from left to right, and ends at v;4q.
Figure 3(b) illustrates such a construction.

Since the number of bends on L is equal to the number of visited points of S
between p; and pjy1, each edge contains at most o bends, where « is the number of
points of S between p; and pj41.

Removing Degeneracies: The drawing D,, of the path P constructed above
contains edge overlaps, e.g., see the edges (v3,v4) and (v4,vs) in Figure 3(c). To
remove the degeneracies, for each ¢, we spread the corresponding bend points in the
interval [p;, p}], in the order they appear on the path, see Figure 3(d). Consequently,
we obtain a planar drawing of P. Let the resulting drawing be D/. Since each
edge (p;,pj+1) is drawn as an z-monotone polyline above the path py,...,p;, D,
satisfies the uphill property. Note that D/, may have bend complexity n — 2, e.g., see
Figure 3(e). We now show how to reduce the bend complexity and satisfy Properties
A-B.

Reducing Bend Complexity: A pair of points in S are consecutive if they do
not contain any other point of S in between. Let e be any edge of P. Let C¢ be the
corresponding polygonal chain in D/,. A pair of bends on C,. are called consecutive
bends if their corresponding points in S are also consecutive. A bend-interval of C,
is a maximal sequence of consecutive bends in C.. Note that we can partition the
bends on e into disjoint sets of bend-intervals.

For any bend-interval s, let I(s) and r(s) be the x-coordinates of the left and
right endpoints of s, respectively. Let s; and s; be two bend-intervals lying on two
distinct edges e; and eq in D), respectively, where e; appears after e; in P. We claim
that the intervals [I(s1),7(s1)] and [I(s2),7(s2)] are either disjoint, or [I(s1),7(s1)] C

This manuscript is for review purposes only.
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P11 %?1
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Po P14
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Fic. 3. Illustration for the proof of Lemma 3.1. (a) Construction of the point set, and the
anchor points. The anchor points are shown in black squares. (b)—(d) Construction of D) . (e) A
scenario when the number of bends may be large. (f)—(g) Reducing bend complexity.

[1(s2),7(s2)]. We refer to this property as the balanced parenthesis property of the bend-
intervals. To verify this property assume that for some s1, s2, we have [I(s1),7(s1)] N
[[(s2),7(s2)] # ¢. Since ss is a maximal sequence of consecutive bends, the inequalities
I(s2) <l1(s1) and r(s2) > r(s1) hold, i.e., [I(s1),7(s1)] C [I(s2),7(s2)]. We say that sy
is nested by so. Figure 3(f) illustrates such a scenario, where s1, s are shown in thin
and thick gray lines, respectively.

This manuscript is for review purposes only.
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THICKNESS, PLANAR LAYERS AND BEND COMPLEXITY 7

We now consider the edges of P in reverse order, i.e., for each j from n to 2, we
modify the drawing of e = (v;,v;_1). For each bend-interval s = (b1,ba...,b;) of C.,
if s has three or more bends, then we delete the bends bs,...,b,._1, and join b; and
b, using a new bend point w. To create w, we consider the two cases of the balanced
parenthesis property.

If s is not nested by any other bend-interval in D/,, then we place w high enough
above b, such that the chain by, w, b, does not introduce any edge crossing, e.g.,
see the point wi(= w) in Figure 3(g). On the other hand, if s is nested by some
other bend-interval, then let s’ be such a bend-interval immediately above s. Since
s’ = (b, by, ...,b) is already processed, it must have been replaced by some chain

i, w', bl Therefore, we can find a location for b inside Zbjw’d]. such that the chain
b1, w, b, does not introduce any edge crossing, e.g., see the points w’ and wy(= w) in
Figure 3(g). Let the resulting drawing of P be T

We now show that the above modification reduces the bend complexity to 3n/4.
Let e be an edge of P that contains « points from S between its endpoints. Let C,
be the corresponding polygonal chain in D,. Recall that any bend-interval of length
¢ in C, contributes to min{¢,3} bends on e in I". Therefore, if there are at most a/4
bend-intervals on C¢, then e can have at most 3a/4 bends in I'. Otherwise, if there
are more than «/4 bend-intervals, then there are at least «/4 points' of S that do
not contribute to bends on C.. Therefore, in both cases, C. can have at most 3a/4
bends in T'.

Satisfying Properties A-B: Let p; be any point of S\ {po,pnt1}. We first
show that pg is (3n/4)-visible to p;. Let D;, where 1 < ¢ < n, be the drawing of the
path vy, v9,...,v;. Observe that one can insert an edge (po,p;) using an z-monotone
polyline L such that the bends on L correspond to the intermediate visited points.
Now the drawing of the rest of the path v;,v;11,...,v, can be continued such that it
does not cross L. Therefore, if the number of points of S between pg and p; is «a, then
L has at most a bends. Finally, the process of reducing bend complexity improves
the number of bends on L to 3a/4.

Similarly, we can observe that p,11 is at most 3a’/4 visible to p;, where o/ is the
number of points of S between p; and p,41. Since the edges (pg,p;) and (p;, Prt1)
are x-monotone, we can draw an z-monotone polygonal chain from pgy to p,41 with
at most 3(a + ’)/4 < (3n/4) bends that intersects I only at p;. |

We now have the following theorem.

THEOREM 3.2. Every n-vertex graph of thickness t admits a drawing on t planar
layers with bend complexity 2.25n + O(1).

Proof. Let G1,...,G; be the planar subgraphs of the input graph G, and let
V = {v1,vq,...,0,} be the set of vertices of G. let S = {pg,p1,...,Pnt1} be a set
of n + 2 points lying on a semicircular arc as defined in Lemma 3.1. Let P; be spinal
path of the monotone topological book embedding of G;, where 1 < ¢ < t. We first
compute an uphill drawing I'; of the path P;. We then draw the edges of GG; that
do not belong to P;,. Let e = (u,v) be such an edge, and without loss of generality
assume that u appears to the left of v on the spine.

If e lies above (resp., below) the spine, then we draw two a-monotone polygonal
chains; one from u to po (resp., pn+1), and the other from v to py (resp., pn+1). By
Lemma 3.1, the polygonal chain wu,...,pg,...,v (resp., u,...,Pn+t1,.-.,v) does not
intersect I'; except at w and v, and contains at most 2 - (3n/4) = 1.5n bends.

IEvery pair of consecutive bend-intervals contain such a point in between.
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FiG. 4. Illustration for the proof of Lemma 3.3. The edge (p1o,pi1) is shown in bold. Passing
through each intermediate set requires at most 4 bends.

If e crosses the spine, then it crosses some edge (w, w’) of P;. Draw the edges (u, w)

and (w,v) using the polylines u,...,po,...,w and w,...,ppi1,...,v, respectively.
The polylines u, ..., po and pp41, ..., v are z-monotone, and have at most 3n/4 bends
each. The polyline C' = (pg,...,w...,pnt1) is also z-monotone and has at most 3n/4

bends. Hence the number of bends is 2.25n in total. It is straightforward to avoid
the degeneracy at w, by adding a constant number of bends on C.

Note that we still have some edge overlaps at pg and p,,y1. It is straightforward
to remove these degeneracies by adding only a constant number of more bends per
edge. ]

3.2. A Construction for Small Values of t. In this section we give another
construction to draw thickness-t graphs on ¢ planar layers. We first show that ev-
ery thickness-t graph, where ¢ € {3,4}, can be drawn on ¢ planar layers with bend
complexity O(y/n), and then show how to extend the technique for larger values of .

3.2.1. Construction when t = 3. Let S be an ordered set of n points, where
the ordering is by increasing z-coordinate. A (k,n)-group Sk, is a partition of S
into k disjoint ordered subsets {S7,..., Sk}, each containing contiguous points from
S. Label the points of S using a permutation of p1,ps,...,p, such that for each
set S’ € Sk, the indices of the points in S’ are either increasing or decreasing. If
the indices are increasing (resp., decreasing), then we refer S’ as a rightward (resp.,
leftward) set. We will refer to such a labelling as a smart labelling of S ,,. Figure 4
illustrates a (5, 23)-group and a smart labelling of the underlying point set S5 3.

Note that for any i, where 1 < i < n, deletion of the points p1,...,p; removes
the points of the rightward (resp., leftward) sets from their left (resp., right). The
necklace of Sy, is a path obtained from a smart labelling of S} ,, by connecting the
points p;, pi+1, where 1 <7 < n—1. The following lemma constructs an uphill drawing
of the necklace using O(k) bends per edge.

LEMMA 3.3. Let S be a set of n points ordered by increasing x-coordinate, and let
Sk = {S1,..., 5} be a (k,n)-group of S. Label Sk, with a smart labelling. Then
the necklace of Sy admits an uphill drawing with O(k) bends per edge.

Proof. We construct this uphill drawing incrementally in a similar way as in the
proof of Lemma 3.1. Let D;, where 1 < j < n, be the drawing of the path p,...,p;.
At each step of the construction, we maintain the invariant that D; is an uphill
drawing.

We first assign vy to p;. Then for each ¢ from 1 to n — 1, we draw the edge
(pi, pi+1) using an z-monotone polyline L that lies above D; and below the points pj/,
where j' > i+ 1. Figure 4 illustrates such a drawing of (p;, pi+1).

This manuscript is for review purposes only.
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Fi1G. 5. Creating vertex locations for drawing thickness-3 graphs, where P1, P> and P3 are shown
in dotted, dashed and thick solid lines, respectively. Illustration for (a) Q, and (b) Sk p.

The crux of the construction is that one can draw such a polyline L using at most
O(k) bends. Assume that p; and p;41 belong to the sets S; € S, and S, € Sk.n,
respectively. If S; and S, are identical, then p; and p;y; are consecutive, and hence
it suffices to use at most O(1) bends to draw L. On the other hand, if S; and S, are
distinct, then there can be at most k — 2 sets of Sy ,, between them. Let S, be such a
set. While passing through S,,,, we need to keep the points that already belong to the
path, below L, and the rest of the points above L. By the property of smart labelling,
the points that belong to D; are consecutive in .S,,, and lie to the left or right side
of S;, depending on whether S, is rightward or leftward. Therefore, we need only
O(1) bends to pass through S,,. Since there are at most k — 2 sets between S; and
Sy, O(k) bends suffice to construct L. d

We are now ready to describe the main construction. Let G be an n-vertex
thickness-3 graph, and let G1, G2, G3 be the planar subgraphs of G. Let P; be the
spinal path of the monotone topological book embedding of G;, where 1 < ¢ < 3. We
first create a set of n points and assign them to the vertices of G. Later we route the
edges of G.

Creating Vertex Locations: Assume without loss of generality that P, =
(v1,...,v,). For each i from 1 to n, we place a point at (¢,5) in the plane, where j
is the position of v; in P5. Let the resulting point set be Q). Recall that by Erdos-
Szekeres theorem, ) can be partitioned into disjoint monotone subsets @1, ..., Qk,
where k € O(y/n) [2, 14]. Figure 5(a) illustrates such a partition.

The sets Q1, ..., Qy are ordered by the xz-coordinate, and the indices of the labels
of the points at each set is in increasing order. Therefore, if we place the points of
the ith set between the lines # = 2(i — 1)n and & = (2i — 1)n, then the resulting point
set Q" would be a (k,n)-group, labelled by a smart labelling. Note that we preserve
the monotonicity property of each group. Finally, we adjust the y-coordinates of
the points according to the position of the corresponding vertices in P;. Let the
resulting point set be Sj . Figure 5(b) illustrates the vertex locations, where P, =
(Ul, V2,..., Un), P2 = (vu,vl, ce ,U3), and P3 = (’06,1}117 N ,’Ulo).

Edge Routing: It is straightforward to observe that the path P; is a necklace
for the current labelling of the points of Sk ,. Therefore, by Lemma 3.3, we can
construct an uphill drawing of P; on Sk ,. Observe that for every set S’ € S, the
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corresponding points are monotone in @, i.e., the points of S’ are ordered along the
z-axis either in increasing or decreasing order of their y-coordinates in ). Therefore,
relabelling the points according to the increasing order of their y-coordinates in @)
will produce another smart labelling of Sy ., and the corresponding necklace would
be the path P,. Therefore, we can use Lemma 3.3 to construct an uphill drawing of
P, on S, ,. Since the height of the points of Sy ,, are adjusted according to the vertex
ordering on Ps, connecting the points of Sy, from top to bottom with straight line
segments yields a y-monotone drawing of Pj.

We now route the edges of G; that do not belong to P;, where 1 < ¢ < 3. Since
Pj is drawn as a y-monotone polygonal path, we can use the technique of Erten and
Kobourov [15] to draw the remaining edges of G5. To draw the edges of G, we insert
two points py and pp4+1 to the left and right of all the points of Sj ,, respectively.
Then the drawing of the remaining edges of G; and G4 is similar to the edge routing
described in the proof of Theorem 3.2. That is, if the edge e = (u,v) lies above
(resp., below) the spine, then we draw it using two z-monotone polygonal chains from
po (resp., ppy1). Otherwise, if e crosses the spine, then we draw three z-monotone
polygonal chains, one from u to pg, another from pg to p,41, and the third one from
v t0 Pp1. Since k € O(y/n), the number of bends on e is O(y/n). Finally, we remove
the degeneracies, which increases the bends per edge by a small constant.

3.2.2. Construction when t = 4. We now show that the technique for drawing
thickness-3 graphs can be generalized to draw thickness-4 graphs with the same bend
complexity.

Let Gq, ..., G4 be the planar subgraphs of G, and let P, ..., P, be the correspond-
ing spinal paths. While constructing the vertex locations, we use a new y-coordinate
assignment for the points of S ,. Instead of placing the points according to the ver-
tex ordering on the path Ps, we create a particular order, by transposing the z- and
y-axis, that would help to construct uphill drawings of P; and P, with bend com-
plexity O(y/n). That is, we first create a (k’, n)-group S}, ,, using P3 and Py, where
k' € O(y/n), in a similar way that we created Sy, using P; and P,. We then adjust
the y-coordinates of the points of Sk, according to the order these points appear
in S,’C,,n. Let S be the resulting point set, and let P, ..., P, be the spinal paths of
G1,...,Gy, respectively. Figure 6(a) illustrates P; and P, in black and gray, respec-
tively. Figure 6(b) illustrates Ps3 and Py in black and gray, respectively. Figure 6(c)
depicts the point set S, and Figures 7-8 illustrate the drawings of the spinal paths.

The construction of G; and G remains the same as described in the previous
section. However, since P3 and P, now admit uphill drawings on S with respect to
y-axis, the drawings of G3 and G4 are now analogous to the construction of G; and
Gs.

3.2.3. Construction when t > 4. De Bruijn [19] observed that the result of
Erdos-Szekeres [14] can be generalized to higher dimensions. Given a sequence p of n
tuples, each of size k, one can find a subsequence of at least n'/* tuples, where A = 2,
such that they are monotone (i.e., increasing or decreasing) in every dimension. This
result is a repeated application of Erdos-Szekeres result [14] at each dimension. We
now show how to partition p into few monotone sequences.

We use the partition algorithm of Bar-Yehuda and Sergio Fogel [2] that partitions
a given sequence of n numbers into at most 24/n monotone subsequences. It is straight-
forward to restrict the size of the subsequences to 1/n, without increasing the number
of subsequences, i.e., by repeatedly extracting a monotone sequence of length exactly
/n. Consequently, one can partition p into 24/n subsequences, where each subse-
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F1G. 6. (a) A point set, constructed from the paths P;, where i € {1,2}, by placing each vertez
v at (61(v),02(v)). Here §;(v) is the position of v on P;. (b) A point set, constructed from the paths
P;, where i € {3,4}, by placing each vertex v at (03(v),04(v)). (¢) The final point set, and the
corresponding (k,n)-groups. The numbers denote the vertex positions on the corresponding spinal
path. The arrows illustrate whether the corresponding sets are leftward or rightward.

quence is of length /n, and monotone in the first dimension. By applying the partition
algorithm on each of these subsequences, we can find 21/n-24/+/n subsequence, each of
which is of length y/\/n, and monotone in the first and second dimensions. Therefore,
after  steps, we obtain a partition of p into 2% - (n/2.nt/4. . .pl/2") = 28 . 1=/
monotone subsequences, where A = 2%. We use this idea to extend our drawing
algorithm to higher thickness.

Let Gi1, . .., Gt be the planar subgraphs of G, and let Py, ..., P; be the correspond-
ing spinal paths. Let v1,vs,...,v, be the vertices of G. Construct a corresponding
sequence p = (11,72,...,Ts) of n tuples, where each tuple is of size ¢, and the ith
element of a tuple 7; corresponds to the position of the corresponding vertex v; in
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F1G. 7. Drawings of P1 and P3 on the point set of Figure 6(c).

P;, where 1 < i < tand 1 < j < n. We now partition p into a set of 2t . n!=(1/8)
monotone subsequences, where 8 = 2.

For each of these monotone sequences, we create an ordered set of consecutive
points along the z-axis, where the vertex v; corresponds to the point p;. It is now
straightforward to observe that these sets correspond to a (k,n)-group Sk, where
k < 2t.n'~(/P) Furthermore, since each group corresponds to a monotone sequence
of tuples, for each P;, the positions of the corresponding vertices are either increasing
or decreasing. Hence, every path P; corresponds to a necklace for some smart labelling
of Skn. Therefore, by Lemma 3.3, we can construct an uphill drawing of P; on
S. We now add the remaining edges of G; following the construction described in
Section 3.2.1. Since k < 2t - n!=(1/#) the number of bends is bounded by O(2¢ -
nl=(/B)),

Observe that all the points in the above construction have the same y-coordinate.
Therefore, we can improve the construction by distributing the load equally among
the z-axis and y-axis as we did in Section 3.2.2. Specifically, we draw the graphs
G1,...,Gi/2) using the uphill drawings of their spinal paths with respect to the x-
axis, and the remaining graphs using the uphill drawings of their spinal paths with re-
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F1G. 8. Drawings of P2 and Py on the point set of Figure 6(c).

spect to the y-axis. Consequently, the bend complexity decreases to O(\/? =/ 5/)),
where g/ = 2[t/21,

We can improve this bound further by observing that we are free to choose any
arbitrary vertex labelling for G while creating the initial sequence of tuples. Instead of
using an arbitrary labelling, we could label the vertices according to their ordering on
some spinal path, which would reduce the bend complexity to O(\/§t_2 -pi=(/ /3”)),
where g = 2[(t=2)/21,

THEOREM 3.4. Fvery n-vertex graph G of thickness t > 3 admits a drawing on t
planar layers with bend complexity O(\/it =B where g = 212721,

4. Drawing Graphs of Linear Arboricity k. In this section we construct
polyline drawings, where the layer number and bend complexities are functions of the
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linear arboricity of the input graphs. We show that the bandwidth of a graph can
be bounded in terms of its linear arboricity and the number of vertices, and then the
result follows from an application of Lemma 3.1.

The bandwidth of an n-vertex graph G = (V, E) is the minimum integer b such
that the vertices can be labelled using distinct integers from 1 to n satisfying the
condition that for any edge (u,v) € E, the absolute difference between the labels of
u and v is at most b. The following lemma proves an upper bound on the bandwidth
of graphs.

LEMMA 4.1. Given an n-vertex graph G = (V, E) with linear arboricity k, the

bandwidth of G is at most 3((fk:12);1 )

Proof. Without loss of generality assume that G is a union of k spanning paths
Py, ..., Pg. For any ordered sequence o, let o(i) be the element at the ith position,
and let |o| be the number of elements in 0. We now construct an ordered sequence
0 =010020...00 0041 of the vertices in V', as follows.

o1: We initially place the first x vertices of P, in the sequence, where the exact value
of z is to be determined later.

oot We then place the vertices that are neighbors of o1 in Py, in order, i.e., we first
place the neighbors of o7(1), then the neighbors of o1(2) that have not been
placed yet, and so on.

o;: Foreach i = 3,..., k, we place the vertices that are neighbors of o1 in P; in order.

ok+1: We next place the remaining vertices of P; in order.

Figure 9(a) illustrates an example for three paths with £ = 2. Observe that
lo1| < x, and |o¢| < 22, where 1 < ¢t < k. We now compute an upper bound on the
bandwidth of G using the vertex ordering of o.

For any i, 7, where 1 <i < j < k+1, let 0;; be the sequence o;0...00;. The
edges of P; that are in o7 have bandwidth 1, and those that are in o1(x) o (0 \ 01)
have bandwidth at most (n — ), e.g., see Figure 9(b). Now let (v, w) be an edge of
G that does not belong to P;. We compute the bandwidth of (v, w) considering the
following cases.

Case 1. If none of v and w belongs to oy, then the bandwidth of (v, w) is at most
(n —x).

Case 2. If both v and w belong to o1, then the bandwidth of (v, w) is at most x.

Case 3. If at most one of v and w belongs to o7, then without loss of generality
assume that v belongs to o1. Since (v,w) does not belong to P;, we may
assume that w belongs to the path P;, where 1 < ¢t < k. By the construction
of o, w belongs to o1 4, e.g., see Figure 9(b). Without loss of generality assume
that w belongs to o, where 1 < r < ¢. Let v be the gqth vertex in the sequence
o. Then the position of w cannot be more than g 4+ 2z - (r — 2) + 2¢, where
the term 2z - (r — 2) corresponds to length of o5 0...00,_1. Therefore, the
bandwidth of the edge (v, w) is at most 2z (r—2)4+¢ < 2z(r—1) < 2z(t—1).

Observe that the bandwidth of the edges of P is upper bounded by (n — ). The
bandwidth of any edge that belongs to P;, where 1 < ¢ < k is at most 2x(t — 1).

Consequently, the bandwidth of G is at most max{n — z, 2z(k — 1)} < ZE=2n

1) where

T = .
(2k—1)
The following theorem is immediate from the proof of Lemmas 3.1 and 4.1.

THEOREM 4.2. Every n-vertex graph with linear arboricity k can be drawn on k

planar layers with at most 3(%,;12))" < 0.75n bends per edge.
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belongs to Ps.

5. Conclusions. In this paper we have developed algorithms to draw graphs
on few planar layers and with low bend complexity. Although our algorithms do
not construct drawings with integral coordinates, it is straightforward to see that
these drawings can also be constructed on polynomial-size integer grids, where all
vertices and bends have integral coordinates. We leave the task of finding compact
grid drawings achieving the same upper bounds as a direction for future research.

We believe our upper bounds on bend complexity to be nearly tight, but we
require more evidence to support this intuition. The only related lower bound is that
of Pach and Wenger [21], who showed that given a planar graph G and a unique
location to place each vertex of G, Q(n) bends are sometimes necessary to construct a
planar polyline drawing of G with the given vertex locations. Therefore, a challenging
research direction would be to prove tight lower bounds on the bend complexity while
drawing thickness-t graphs on ¢ planar layers.
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