
Clustering Moving Entities in Euclidean Space
Stephane Durocher1

University of Manitoba, Winnipeg, Canada
durocher@cs.umanitoba.ca

Md Yeakub Hassan
University of Manitoba, Winnipeg, Canada
hassanmy@cs.umanitoba.ca

Abstract
Clustering is a fundamental problem of spatio-temporal data analysis. Given a set X of n moving
entities, each of which corresponds to a sequence of τ time-stamped points in Rd, a k-clustering
of X is a partition of X into k disjoint subsets that optimizes a given objective function. In this
paper, we consider two clustering problems, k-Center and k-MM, where the goal is to minimize
the maximum value of the objective function over the duration of motion for the worst-case input
X . We show that both problems are NP-hard when k is an arbitrary input parameter, even when
the motion is restricted to R. We provide an exact algorithm for the 2-MM clustering problem in
Rd that runs in O(τdn2) time. The running time can be improved to O(τn logn) when the motion
is restricted to R. We show that the 2-Center clustering problem is NP-hard in R2. Our 2-MM
clustering algorithm provides a 1.15-approximate solution to the 2-Center clustering problem in
R2. Moreover, finding a (1.15− ε)-approximate solution remains NP-hard for any ε > 0. For both
the k-MM and k-Center clustering problems in Rd, we provide a 2-approximation algorithm that
runs in O(τdnk) time.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases trajectories, clustering, moving entities, k-CENTER, algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.22

Funding This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada.

1 Introduction

The technology of tracking moving entities (e.g., humans, animals, vehicles, etc.) using GPS,
motion capture, and other location-tracking devices has developed rapidly and has become
widely adopted across a range of applications in the past decade. Tracking devices record
the location of a moving entity over time, corresponding to a sequence of time-stamped
spatial coordinates. In many cases, the positions of multiple moving entities are tracked
simultaneously. In this paper, we consider a set of entities moving continuously in Euclidean
space, such that at any given time, the position of each entity is represented by a point in Rd.
Several applications (e.g., animal migration analysis, weather forecasting, and component
classification from motion capture data) require clustering moving entities [16]. The goal of
clustering is to partition a given set of objects into groups of similar objects, where the degree
of similarity, i.e., the quality of the clustering, is measured according to a given objective
function. Some previous work on clustering moving entities has examined the problem of
updating clusters over time to maintain a good clustering [7, 9, 14, 16, 18]. In these types of
clustering, an entity is often required to switch from one cluster to another to maintain the

1 This research was completed while Stephane Durocher was a visiting researcher with the Morpheo
research group at INRIA Grenoble Rhône Alpes in Grenoble, France.

© Stephane Durocher and Md Yeakub Hassan;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:durocher@cs.umanitoba.ca
mailto:hassanmy@cs.umanitoba.ca
https://doi.org/10.4230/LIPIcs.SWAT.2020.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Clustering Moving Entities in Euclidean Space

Figure 1 Trajectories of three entities x, y, z in R2 within time stamps t1 to t4.

optimality of the objective function. These types of clustering are not suitable for applications
that require an entity to remain in a cluster while optimizing a global objective over the
entire motion. For example, consider an input consisting of trajectories of a set of sensors
recorded during the motion capture of a person running, for which the goal is to identify
different body parts during the motion, e.g., torso, arms, legs, etc. If we allow entities (in
this case, sensors) to change clusters over time, then one part of the body (one trajectory)
might be classified into one cluster (say an arm) at one time and another cluster (say a leg)
later during the same motion. To prevent such inconsistencies, we examine the problem of
clustering a set of moving entities where the moving entities cannot switch clusters over time.
In particular, the basic unit of clustering is the whole trajectory of each moving entity.

The discrete sequence of time-stamped locations of an entity can be linearly interpolated
to obtain a continuous piecewise-linear curve. Depending on the application, we may need to
cluster just the curves (e.g., when clustering animal migration routes followed by multiple
herds or flocks of animals, possibly at different times and speeds) or the curves along with
their associated time stamps (e.g., when clustering animals into groups that moved together
during migration). The k-Center clustering of trajectories of moving entities has been
studied under the Fréchet distance metric [5, 6]. This type of clustering considers only the
piecewise-linear curves of each entity, without factoring the time at which moving entities
occupied points on their trajectory. Fréchet distance considers all possible walk sequences
between two trajectories. Therefore, input consisting of position as a function of time leads
to different clusters than when the input consists of trajectories only. For example, consider
three entities x, y and z moving in R2 whose trajectories from time t1 to t4 are given in
Figure 1. The Fréchet distance between the trajectories of x and y is greater than the Fréchet
distance between the trajectories of y and z. Therefore, if we partition {x, y, z} into two
clusters to minimize the maximum intra-cluster Fréchet distance, then y and z would be in
one cluster, and x would be in another cluster. However, the Euclidean distance between y
and z at time t3 is greater than the distance between x and y at any time. When time is
considered, the resulting clustering assigns y and z to different clusters. As a result, when
time is important, clustering should optimize the objective function based on the position of
entities over the entire motion, i.e., at all times during the motion. In this paper, we examine
clustering algorithms for moving entities in Euclidean space where each entity’s trajectory
has associated time stamps. In particular, we consider k-MM and k-Center clustering of
moving entities, where k specifies the number of clusters.

S. Durocher and M.Y. Hassan 22:3

Problem description

We are given a set X of n entities moving in Rd that are tracked over a given time interval.
The spatial coordinates of entities are recorded at a set T of τ discrete time stamps. Therefore,
the location of each entity over time traces a piecewise-linear trajectory in Rd consisting
of τ vertices. At any time t ∈ T , the position of each entity xi ∈ X is a fixed point in Rd,
denoted xi(t). For any time t ∈ T , X (t) = {x(t) | x ∈ X} denotes the multiset of points
corresponding to the positions of the entities in X at time t. Similarly, for a cluster Ci ⊆ X ,
Ci(t) denotes the multiset of points corresponding to the positions of entities in Ci at time t.

I Definition 1. Given a set T of τ discrete time stamps and a finite set X of n moving
entities in Rd, the goal of the k-clustering problem is to partition X into k disjoint sets
C1, C2, . . . , Ck to optimize a given objective function f : {C1, C2, . . . , Ck} → R. The goal is
to minimize the maximum value of f(t) over all t ∈ T for the worst-case input X .

Kinetic clustering refers to clustering problems on moving or dynamic entities for which
entities may switch clusters over time; static clustering refers to clustering problems on
moving or dynamic entities for which each entity is assigned to a single cluster. Note that
static facility location does not imply static entities, i.e., entity positions can change over
time in static clustering, but their assignment to clusters cannot. This paper examines the
static setting for the problem of clustering moving entities.

The particular objective function depends on the applications of the problem. Common
clustering problems are k-Center, k-median, k-MM and k-means clustering. In this paper,
we present the results for the k-MM and k-Center clustering of moving entities in Rd. In
the k-MM clustering problem, the objective function f measures the maximum distance
during the motion between any two entities in any cluster Ci. The “MM” in the objective
function refers to “max max”. The objective of the k-MM clustering is to find a partition
C1, . . . , Ck of X that minimizes

max
i∈{1,...,k}

max
{x,y}⊆Ci

max
t∈T

δ(x(t), y(t)), (1)

where δ is the Euclidean (`2) distance metric. For any set of points in R2, the k-MM
clustering is often denoted k-2MM, where “2” refers to Euclidean (`2) distance. The k-2MM
problem is NP-hard in R2 when k is an arbitrary input parameter [12]. In the k-Center
clustering problem, the objective function f measures the maximum distance during the
motion from any x ∈ X to its cluster center, where the center of each cluster Ci at time t
is the center of the smallest enclosing d-ball of Ci(t). Therefore, the objective is to find a
partition C1, . . . , Ck of X that minimizes

max
i∈{1,...,k}

max
x∈Ci

max
t∈T

δ(x(t),mi(t)), (2)

where mi(t) denotes the center of the smallest enclosing d-ball of Ci(t). That minimum value
of Equation 2 corresponds to the smallest radius r such that each cluster can be covered at
all times by a d-ball of radius r. We consider the continuous k-Center clustering problem,
where the center of a cluster can be placed anywhere in Euclidean space (i.e., the cluster
center is not restricted to X (t), as is the case in discrete facility location). The k-Center
clustering problem is also NP-hard in R2 when k is an arbitrary input parameter [19].

Results and organization.

In this paper, we study k-MM and k-Center clustering of moving entities in Rd. In Section
2, we discuss related work on clustering moving entities. In Section 3, we present algorithms

SWAT 2020

22:4 Clustering Moving Entities in Euclidean Space

that solve the 2-MM clustering problem optimally in O(τdn2) time in Rd, and in O(τn logn)
time in R. In Section 4, we show that 2-Center clustering is NP-hard for entities moving in
R2; this differs from the 2-Center problem on a set of points in Rd, which can be solved in
polynomial time [2]. The 2-MM clustering algorithm gives an 1.15-approximate solution for
the 2-Center clustering problem in R2. Moreover, computing a (1.15− ε)-approximation
remains NP-hard for any ε > 0. In Section 5, we show that the k-MM and k-Center
clustering problems are NP-hard when k is an arbitrary input parameter, even in R; again,
this differs from the k-MM and k-Center problems on a set of points, which can be solved
in polynomial time in R [11]. We provide a 2-approximation algorithm for both problems by
using the greedy technique of Gonzalez’s algorithm [12]. Finally, in Section 6, we conclude
with a discussion of possible directions for future research.

2 Related work

The k-Center and k-MM clustering problems have been studied extensively for sets of points
in Rd [1, 12]. Both problems are NP-hard in R2 when k is an arbitrary input parameter
[12, 19]. Gonzalez [12] provides a 2-approximation algorithm for both k-MM and k-Center
clustering of a set of points in R2 which requires O(nk) time. However, the algorithm works
for any metric space. Frederickson [11] gives an algorithm for the k-Center problem on a
tree that uses O(n) time and space. The algorithm allows centers to be located at any points
on the edges. Therefore, the k-Center problem for any set of points in R can be solved in
O(n) time using Frederickson’s algorithm. The 2-Center clustering of a set of points in R2

can be solved exactly in O(n log2 n) time [10, 21].
Har-Peled [13] examines the k-Center problem for sets of moving entities in Rd, giving an

algorithm that partitions the input into kµ+1 clusters for entities whose motion has algebraic
degree µ. The 1-Center, 2-Center, and k-Center clustering problems have been studied
for sets of moving entities in the kinetic setting, where entities may switch clusters, with the
goal to maintain a good approximation of the objective function while bounding the relative
velocity of the cluster centers [3, 7, 9, 8]. Variants of these problems have been studied, such
as k-clustering to minimize the average value of the objective function throughout the motion
(e.g., [14]). Li et al. [17] examine a movement pattern of moving entities, called swarm, where
a group of entities moves together for a set of (possibly nonconsecutive) timestamps.

Previous work also examines clustering trajectories of moving entities under different
similarity measures: Fréchet distance, dynamic time warping, and edit distance [22]. Lee
et al. [15] propose a two-phase algorithm to cluster similar portions of a set of trajectories.
Buchin et al. [4] provide a trajectory grouping framework where the structure of a group
of similar trajectories is represented by a Reeb graph. Driemel et al. [6] introduce the
(k, l)-Center clustering problem for a set of curves in R under the Fréchet distance metric,
where each of the k-Center curves has complexity at most l. A (1 + ε)-approximation
algorithm is proposed for this problem, which runs in near-linear time. Buchin et al. [5] show
that (k, l)-Center clustering under Fréchet distance is NP-hard even if k = 1.

3 Algorithms for 2-MM clustering

Given a set X of n moving entities in Rd, we can construct a weighted undirected complete
graph G, where the vertices of G are the moving entities in X = {x1, x2, . . . , xn} and the
weight of the edge between two vertices xi and xj is

max
t∈T

δ(xi(t), xj(t)). (3)

S. Durocher and M.Y. Hassan 22:5

I Lemma 2. The weights of graph G satisfies the triangular inequality.

Proof. Let x, y, and z be three moving entities in Rd. At any time t, the positions of these
entities satisfy triangle inequality (i.e., δ(x(t), y(t)) + δ(y(t), z(t)) ≥ δ(z(t), x(t))). For this
instance, the graph G has three vertices {x, y, z} and three edges {e1(x, y), e2(y, z), e3(z, x)}.
The weights of the edges are

e1 = δ(x(t1), y(t1)); e2 = δ(y(t2), z(t2)); e3 = δ(z(t3), x(t3));

where, t1 = arg maxt δ(x(t), y(t)); t2 = arg maxt δ(y(t), z(t)); t3 = arg maxt δ(z(t), x(t)).
From the weights of the edges we get,

e1 + e2 = δ(x(t1), y(t1)) + δ(y(t2), z(t2))
≥ δ(x(t3), y(t3)) + δ(y(t3), z(t3)); (from the definition of t1, t2 and t3)

≥ δ(x(t3), z(t3)); (since x, y, z satisfy the triangle inequality at time t3)
≥ e3 J

We can solve the 2-MM clustering of X by partitioning G into two clusters C1, C2 such
that the partitioning minimizes

max
i∈{1,2}

max
{x,y}⊆Ci,x 6=y

w(x, y), (4)

where w(x, y) is the weight of the edge between x and y. In other words, we want to minimize
the maximum intra-cluster edge weight, where an edge having both end vertices in the same
cluster is called an intra-cluster edge. To partition the graph G, we first compute a tree T
that is a Maximum Spanning Tree of G using Prim’s algorithm. Proceed to 2-color T by
alternatively coloring vertices red and blue in a breadth-first search. This coloring defines
the two clusters, C1 and C2.

I Theorem 3. C1 and C2 define an optimal 2-MM clustering.

Proof. The algorithm constructs a tree T , i.e., a bipartite graph whose vertices are divided
into two disjoint and independent sets C1 and C2. Suppose x and y are two vertices in C1
(or C2), such that the edge (x, y) in G is a maximum-weight intra-cluster edge (outcome
of Equation 4). Since T is bipartite, there exists a path from x to y with an even number
of edges. Adding the edge (x, y) to T would create a cycle in T . Since T is a maximum
spanning tree of G, each edge in that cycle has a weight at least w(x, y). As a result, there
exists at least one vertex z1 in C2 (or C1) having w(x, z1) ≥ w(x, y), and there exists at least
one vertex z2 in C2 (or C1) having w(y, z2) ≥ w(x, y). If there exists an edge between (x, z2)
in T , then w(x, z2) ≥ w(x, y) (since x, z2, y creates a cycle in T). If there is no edge between
(x, z2) in T , then adding the edge (x, z2) to T would create a cycle where w(x, z2) ≥ w(y, z2).
Since w(y, z2) ≥ w(x, y), we can say that w(x, z2) ≥ w(x, y). Similarly, we can say that
w(y, z1) ≥ w(x, y).

In every possible 2-clustering of G where x and y are in different cluster, there is an
intra-cluster edge that has weight at least w(x, y) (because z1 or z2 can be in any of the
two clusters). On the other hand, when x and y are in the same cluster, every possible
2-clustering of G has an intra-cluster edge having weight w(x, y). This proves that, in every
possible 2-clustering of G, there exists an intra-cluster edge which has weight at least w(x, y).
Therefore, G cannot be partitioned into two clusters where the maximum intra-cluster edge
has weight less than w(x, y). Hence, the clustering C1, C2 is optimal. J

SWAT 2020

22:6 Clustering Moving Entities in Euclidean Space

We have n moving entities in Rd, and the pairwise distance of all pair of entities using
Equation 3 can be computed in O(τdn2) time. Thus, constructing the graph G requires
O(τdn2) time. The running time of Prim’s algorithm is O(n2). Since, the tree T has n− 1
edges, the breadth-first search in the 2-coloring algorithm requires Θ(n) time. Therefore, the
running time of the 2-MM clustering algorithm is O(τdn2).

I Theorem 4. The 2-MM clustering of moving entities in Rd can be computed in O(τdn2)
time.

3.1 Improved algorithm for entities in R

We consider a set X of n moving entities in R. We plot the entities’ position functions over
time, such that horizontal axis represents time and the vertical axis represents the positions
of the entities.

I Definition 5. The upper trajectory of X , denoted UX , is a piecewise-linear trajectory
corresponding to the upper envelope of the plots of trajectories of entities in X . That is, at
any time t ∈ T , the position of the upper trajectory UX (t) is max{x(t)|x ∈ X}. The lower
trajectory of X , denoted LX , is defined analogously with respect to the lower envelope of
the plots of the trajectories of entities in X .

To compute UX and LX , at each time t, we need to find the maximum and minimum
value of X (t). Therefore, UX and LX can be computed in Θ(τn) time. Examples of the
upper and lower trajectories of six entities are shown in Figure 2.

Figure 2 Upper and Lower trajectories of six entities moving in R.

I Observation 6. The upper and lower trajectories of X can be computed in Θ(τn) time.

We can find the furthest pair of entities in X by using UX and LX . A pair (x, y) ∈ X is
called the furthest pair if

max
t∈T

δ(x(t), y(t)) ≥ max
{x′,y′}⊆X ,
x′ 6=x,y′ 6=y

max
t∈T

δ(x′(t), y′(t)).

At each time stamp t, we calculate the distance between entities x(t) ∈ UX (t) and y(t) ∈ LX (t).
The furthest pair is the one which has maximum distance over all time.

I Observation 7. Given the upper and lower trajectories of X , the furthest pair of entities
in X can be found in Θ(τ) time.

S. Durocher and M.Y. Hassan 22:7

At every time stamp, we consider maintaining the sorted order of the entities where
they are sorted according to their positions. This takes O(τn logn) time. If an entity is
added to or removed from X , then UX and LX need to be updated as well. Consider a new
entity x that is added to X . To maintain the sorted order, the insertion of x would take
O(τ logn) time by using a balanced search tree. After that, we can update the upper and
lower trajectories of X in Θ(τ) time. For each time t, if x(t) ≥ UX (t), then we update the
value of UX (t) to x(t). Similarly, if x(t) ≤ LX (t), then we update the value of LX (t) to x(t).
If an entity x is deleted from X , we can update the sorted order of X in O(τ) time. UX and
LX can also be updated in Θ(τ) time. For each time t, if x(t) = UX (t), we update the value
of UX (t) to y(t), where y ∈ X and y(t) is the closest neighbor of x(t). Similarly, we can also
update the lower trajectory of X .

Consider two sets X1 and X2 of moving entities in R. We want to find an entity x ∈ X1
that is furthest away from all entities in X2. Therefore, x ∈ X1 is the entity that maximizes

max
y∈X2

max
t∈T

δ(x(t), y(t)).

After computing the upper and lower trajectories of X1 and X2, the farthest entity can be found
in Θ(τ) time. At each time t, we need to find the furthest entity x(t) ∈ X1(t) by calculating
the maximum of {δ(UX1(t), UX2(t)), δ(UX1(t), LX2(t)), δ(LX1(t), UX2(t)), δ(LX1(t), LX2(t))}.

I Observation 8. Given two sets X1 and X2 of moving entities in R and their upper and
lower trajectories, the furthest entity x ∈ X1 from all entities in X2 can be computed in Θ(τ)
time.

Unlike the 2-MM clustering algorithm in Rd, we do not need to construct the graph G
for the 2-MM clustering in R. In this case, we construct a graph G′, which is equivalent to
the maximum spanning tree of G. We use the idea of Prim’s algorithm to construct G′. At
every time stamp, we maintain the sorted order of the entities. We then use the following
approach to find the 2-MM clustering of X :
1. Calculate UX and LX .
2. Find the furthest pair (x1, x2) of entities in X .
3. Let G′ be a graph with two vertices (entities) x1, x2.
4. Add an edge between x1 and x2.
5. Let Y = {x1, x2}. Remove x1 and x2 from X .
6. Update UX , LX , UY and LY .
7. For i = 1 to n− 2:

Find an entity x ∈ X that is farthest away from all entities in Y. Let y ∈ Y be the
entity for which x becomes the furthest from Y.
Add x to Y and remove x from X . Then, update UX , LX , UY and LY .
Add a vertex x to graph G′. Since, y is already added to G′, add an edge between y
and x.

8. The graph G′ is a bipartite graph; run the 2-coloring algorithm in graph G′.

Each vertex of G′ represents a moving entity in R. The algorithm initially adds the
furthest pair of entities in G′ and grows G′ by one edge in each iteration. Similar to Prim’s
algorithm, in each iteration, the algorithm finds an entity that is furthest away from all
entities (vertices) in G′, and then adds that entity to G′. Therefore the graph G′ is equivalent
to the maximum spanning tree of the graph G. After constructing G′, we apply the 2-coloring
algorithm (similar to the 2-MM algorithm in Rd) to find the clusters C1 and C2.

SWAT 2020

22:8 Clustering Moving Entities in Euclidean Space

I Theorem 9. The 2-MM clustering of moving entities in R can be computed in O(τn logn)
time.

Proof. The sorting operations in all time stamps take total O(τn logn) time. Initially, we
compute the upper and lower trajectories in Θ(τn) time. In each iteration, we find the
furthest entity from X , and then update the upper and lower trajectories of X and Y . Since
we are maintaining the sorted order of entities in all time stamps, the insert operation in Y
would take O(τ logn) time. The upper and lower trajectories of X and Y are updated in
Θ(τ) time. Therefore, constructing G′ requires O(τn logn) time. The 2-coloring algorithm
requires Θ(n) time. Thus, the overall running time of the algorithm is O(τn logn). J

4 Hardness results of 2-Center clustering

Given any set P of points in R, the diameter of the smallest enclosing circle of P and the
maximum possible distance between any two points in P are equal. Therefore, the k-Center
and k-MM clustering of P are equivalent. This result also holds for the k-Center and
k-MM clustering of a set of moving entities in R. However, the two problems have different
solutions in general when entities move in higher dimensions (see Example 11 below).

I Observation 10. If X is a set of moving entities in R, then the k-Center and the k-MM
clustering of X are equivalent.

I Example 11. Consider four points a(0, 33), b(0,−33), c(−56, 0), d(−124, 0) in R2 (see
Figure 3). In exact 2-Center clustering, the radius of any cluster would be at most 34 by
keeping {a, b} in one cluster and {c, d} in another cluster. Because the smallest enclosing
circle containing any three points among {a, b, c, d} would have radius at least 37.7 (the
radius of circle passing through {a, b, c}). However, the exact 2-MM clustering would keep
{a, b, c} in one cluster, leaving {d} for the other cluster, since the maximum distance between
any two points in {a, b, c} is at most 66.

Figure 3 Illustration in support of Example 11.

As we now show, computing the 2-Center clustering of a set X of n moving entities in
R2 is NP-hard. This differs from the problem of computing a 2-Center of a set of points in
R2 which can be solved in O(n log2 n) time [21]. Given a set X of n moving entities and a
real parameter r∗, the decision version of the 2-Center clustering problem asks to determine
whether X can be partitioned into two sets C1 and C2, such that each cluster can be covered
by a disc of radius r∗ at all times. We prove that the decision version of 2-Center clustering
in R2 is NP-complete. We obtain the result by reduction from the Monotone Not-All-Equal

S. Durocher and M.Y. Hassan 22:9

3SAT (NAE-3SAT) problem. The Monotone NAE-3SAT is one of many variants of the 3SAT
problem, which is NP-Complete [20]. The Monotone NAE-3SAT problem consists of a set
of Boolean variables and a set of monotone clauses, i.e., variables in each clause are never
negated. Unlike the 3SAT problem, each clause of the NAE3SAT problem requires to have
at least one true and one false Boolean value.

I Theorem 12. The decision version of the 2-Center clustering problem in R2 is NP-
complete.

Proof. Choose any instance of the Monotone NAE-3SAT problem, let S denote its set of
Boolean variables, and let n = |S|. We describe how to construct a corresponding instance
of the decision version of the 2-Center clustering problem with r∗ = 1. Each element in S
is mapped to a corresponding moving entity in R2, and the number of time stamps is equal
to the number of clauses.

Figure 4 Blue points represent the positions of entities x, y, z at time ti. All entities other than x,
y, and z are placed at the red point. The circumradius of the triangle is 1 + ε, for some small ε > 0.

At each time ti, we take the ith clause from the instance of the Monotone NAE-3SAT
problem and assign coordinates to the moving entities in the plane as follows. Let x, y, z ∈ S
be the three entities from the clause and let x(ti), y(ti), z(ti) denote their respective positions
at time ti. We place x(ti), y(ti), z(ti) at the vertices of an equilateral triangle such that the
circumradius of the triangle is slightly larger than one; thus, x, y, and z cannot be covered by
a unit-radius disc at time ti. The remaining n− 3 entities are placed at the circumcenter of
the triangle. This transformation can be done in O(n) time. Each cluster in the partitioning
of S can be covered by a unit-radius disc if and only if the three entities x, y, z are not in
the same cluster. In the instance of the Monotone NAE-3SAT problem, the values of three
variables in each clause cannot be equal to each other. Similarly, the corresponding three
entities from each clause cannot be in the same cluster if the instance is a “yes” instance
of the decision version of the 2-Center clustering problem. Therefore, the instance of the
Monotone NAE-3SAT problem is satisfiable if and only if the corresponding instance of the
decision version of 2-Center clustering problem is a “yes” instance. J

We can achieve a 1.15-approximate solution for the 2-Center clustering of moving
entities in R2 by applying the 2-MM clustering algorithm from Section 3. We also prove that
no polynomial-time algorithm can achieve a better approximation ratio. In what follows, we
prove the approximation ratio and its lower bound.

I Theorem 13. The exact 2-MM clustering of moving entities in R2 gives a 1.15-approximate
solution for the 2-Center clustering problem.

SWAT 2020

22:10 Clustering Moving Entities in Euclidean Space

Proof. We partition X into two clusters C1 and C2 by applying the algorithm described in
Section 3. Let l be the maximum distance over all time between any pair of entities from the
same cluster (C1 or C2). As argued in the proof of Theorem 3, in every possible 2-clustering
of X , there exists a pair of entities in some cluster whose maximum distance over all time
is at least l. By Jung’s theorem, if the largest possible distance between two points from
a finite set of points in the plane is l, then there exists a circle enclosing all these points
with a radius no greater than l/

√
3. Hence, in any 2-MM clustering of X , the maximum

radius of any cluster would be at most l/
√

3. Since every possible 2-clustering of X consists
a pair of entities in any cluster whose maximum distance over all time is at least l, the
maximum radius of any cluster in exact 2-Center clustering of X would be at least l/2.
Thus, the exact 2-MM clustering gives a 2/

√
3-approximation (or 1.15-approximation) for

the 2-Center clustering problem. J

I Theorem 14. If P 6= NP , no polynomial-time algorithm can achieve a (1.15 − ε)-
approximate solution for the 2-Center clustering of moving entities in R2 for any ε > 0.

Proof. Choose any instance of the Monotone NAE-3SAT problem, let S denote its set of
Boolean variables, and let n = |S|. We show how to construct a corresponding instance
of the 2-Center problem in R2. Each Boolean variable is mapped to a moving entity in
R2. At each time ti, the three entities in the ith clause from the instance of the Monotone
NAE-3SAT problem are placed at the vertices of an equilateral triangle where the length
of each side of the triangle is 2. The remaining entities are placed at the circumcenter of
the triangle. If we can partition S into two clusters {C1, C2} such that all three entities in
each clause are split by this partition, then the maximum radius of any partition over all
time would be 1. For any ε > 0, a (1.15 − ε)-approximation algorithm for the 2-Center
clustering of S will give us two clusters whose maximum radius over all time would be less
than 1.15, in this case, it has to be 1.

We consider the value of a Boolean variable in S is true if the corresponding entity is in
cluster C1 in the 2-Center clustering of S. Similarly, the value of a variable is false if the
corresponding entity is in cluster C2. The instance of the Monotone NAE-3SAT problem
is satisfiable if and only if all the entities in each clause are not in the same cluster. This
can only be done by a (1.15 − ε)-approximation algorithm for 2-Center clustering of S.
Therefore, a polynomial-time (1.15− ε)-approximation algorithm for 2-Center clustering
of S can be used to decide the satisfiability of the corresponding instance of the Monotone
NAE-3SAT problem. This cannot happen assuming P 6= NP . J

5 k-MM and k-Center clustering

The k-MM and k-Center clustering problems are solvable in polynomial-time for any set of
fixed points in R, i.e., without motion [7]. As we now show, both problems are NP-hard for
entities moving in R. We reduce an instance of a restricted version of the k-gMM clustering
problem to an instance of the k-MM clustering problem for moving entities in R. k-gMM is
the more general version of the geometric k-MM problem on arbitrarily weighted graphs; any
instance of the k-MM problem directly corresponds to an instance of the k-gMM problem.

Given an arbitrary weighted graph G = (V,E), the goal of the k-gMM clustering problem
is to partition V into k disjoint sets (k clusters) such that the maximum weight of any
intra-cluster edge is minimized. The decision version of the k-gMM problem has been proved
to be NP-complete [12]. The result is obtained by a reduction from a restricted version of
the exact cover by 3-sets problem. Given an instance of the restricted version of the exact

S. Durocher and M.Y. Hassan 22:11

cover by 3-sets problem, Gonzalez constructed a weighted complete graph as an instance
of the decision version of k-gMM problem, where the weight of each edge is either one or
two. Therefore, the decision version of k-gMM problem remains NP-complete even when the
input graph is a weighted complete graph with edge weights either one or two. We call this
problem the restricted k-gMM problem which we use in our reduction.

I Theorem 15. Given a set of moving entities in Rd, for any d ≥ 1, the k-MM and
k-Center clustering problems are NP-hard when k is an arbitrary input parameter.

Proof. We consider an instance of the restricted k-gMM clustering problem, where we are
given a weighted complete graph G with edge weights in {1, 2}. We construct a corresponding
instance of the k-MM clustering problem. Each vertex of G is mapped to a moving entity in
R. The number of time stamps and the number of edges in G are equal. For each time ti, we
take the ith edge ei from G and assign coordinates to its two end vertices x, y (two entities)
on the real line such that the Euclidean distance between them is equal to the weight of
that edge. At that time, ti, the remaining entities are positioned at the midpoint of the line
segment between x and y. Since the minimum and maximum weight of an edge in G is one
and two, respectively, the maximum distance between any two entities over all time is equal
to the weight of the longest edge connecting two entities (vertices) in G. Therefore, we can
achieve the optimal solution of the restricted k-gMM clustering problem for graph G if and
only if we achieve the optimal solution of the k-MM clustering problem for the corresponding
transformed instance. Since the k-MM and k-Center clustering problems are equivalent in
R (Observation 10), this hardness result also holds for the k-Center problem as well. J

Gonzalez [12] provides a 2-approximation algorithm for the k-MM and k-Center cluster-
ing of fixed points in Rd. We provide a modified version of Gonzalez’s algorithm to compute
an approximate solution for the k-MM and k-Center clustering of a set X of n moving
entities in Rd. The algorithm initially assigns all entities to cluster C1 and arbitrarily labels
one entity as the head of that cluster, denoted head1. The remaining clusters are computed
in k − 1 iterations. In the ith iteration, we compute the head of cluster Ci. An entity x ∈ X
is considered as the head of the cluster Ci if it maximizes

max
j∈{1,...,i}

max
x∈Cj

max
t∈T

δ(headj(t), x(t)).

We label x as headi and add it to cluster Ci. After computing the ith head, the entities
are assigned to a cluster such that, for each entity y ∈ {C1 ∪ · · · ∪ Ci−1}, we move y to
Ci if the maximum distance between y and its current cluster head over all time is larger
than the maximum distance between y and headi. The ith iteration of choosing the ith
head takes O(τn) time. Therefore, the total running time of the algorithm is O(τnk).
Since the algorithm makes its decision by comparing maximum distances between pairs of
entities over all time, it can be generalized for moving entities in Rd, where computing the
Euclidean distance between two points takes O(d) time. If d is an input parameter, then
the algorithm runs in O(τdnk) time. The algorithm guarantees a 2-approximation for both
the k-MM and k-Center clustering problems. The objective function value of k-MM and
k-Center clustering of X by using the above algorithm is denoted by φP1(X) and φP2(X)
respectively. Let OPTP1(X) and OPTP2(X) be the objective function values of optimal
k-MM and k-Center clustering of X respectively.

I Lemma 16. Given a set X of n moving entities in Rd, where L = {x1, . . . , xk+1} is a
subset of X , for every pair {x, y} ⊆ L, if maxt∈T δ(x(t), y(t)) ≥ h, then OPTP1(X) ≥ h, for
any h > 0.

SWAT 2020

22:12 Clustering Moving Entities in Euclidean Space

Proof. We have k + 1 entities to make k clusters. By the pigeonhole principle, one cluster
must contain two entities, and the rest of the k − 1 clusters contain one entity in each. The
maximum distance between any two entities in X over all time is at least h, for any h > 0.
We have only one cluster with two entities where the maximum distance between them over
all time is at least h, therefore we can say that OPTP1(X) ≥ h. J

I Theorem 17. The modified Gonzalez algorithm is a 2-approximation algorithm for the
k-MM and k-Center clustering of X .

Proof. Let x denote an entity in cluster Ci that maximizes

max
i∈{1,...,k}

max
x∈Ci

max
t∈T

δ(headi(t), x(t)).

Let h be the maximum distance between x and headi over all time. This distance satisfies
triangle inequality (Lemma 2). Therefore, φP1(X) ≤ 2 · h. In every iteration, the maximum
distance between x and headi over all time is at least h. Therefore, when a new cluster is added,
the maximum distance between the new cluster’s head and any previously added cluster’s
head over all time is at least h. That is to say, for any i 6= j, maxt∈T δ(headi(t), headj(t)) ≥ h.
Let L = {head1, . . . , headk, x} be a set of k + 1 entities. The maximum distance between
any pair of entities in L over all time is at least h. Since, L is a subset of X , OPTP1(X) ≥ h
(Lemma 16). Thus, we can conclude that φP1(X) ≤ 2 ·OPTP1(X).

In the algorithm, the head of a cluster can be considered to be the center of that cluster.
For k-Center clustering, we assume that φP2(X) > 2 ·OPTP2(X). This implies that in L,
we have k + 1 entities, and their pairwise maximum distance over all time is greater than
2 · OPTP2(X). By the pigeonhole principle, at least two of these entities (say, headi and
headj) must be in the same cluster in the optimal k-Center clustering. Let s be the center
of that cluster. Therefore, we get

max
t∈T

δ(headi(t), s(t)) ≤ OPTP2(X), max
t∈T

δ(headj(t), s(t)) ≤ OPTP2(X).

By triangle inequality, maxt∈T δ(headi(t), headj(t)) ≤ 2 ·OPTP2(X). This contradicts our
initial assumption. Therefore, φP2(X) cannot be greater than 2 ·OPTP2(X). J

From the above discussion, we can state the following theorem.

I Theorem 18. A 2-approximate solution for the k-MM and k-Center clustering of moving
entities in Rd can be computed in O(τdnk) time.

6 Conclusion and possible directions for future research

In this paper, we examine the k-MM and k-Center clustering problems for sets of moving
entities in Rd. Both problems have been studied for sets of fixed points in Rd; this paper
examines these problems in the mobile setting. We show that both problems are NP-hard,
even if entities move in R. The 2-MM clustering problem can be solved exactly in O(τdn2)
time in Rd, and O(τn logn) time in R. Unlike the 2-MM clustering problem, the 2-Center
clustering problem is NP-hard in R2. We show that our 2-MM clustering algorithm gives a
1.15-approximate solution for the 2-Center clustering problem. Furthermore, we prove that
no polynomial-time algorithm can achieve a better approximation ratio unless P = NP . We
use the idea of Gonzalez’s algorithm [12] and provide a 2-approximation algorithm for the
k-MM and k-Center clustering problems. Possible directions for future research include

S. Durocher and M.Y. Hassan 22:13

studying these problems when the time stamps of entities differ. It would be interesting
to develop an algorithm for the 2-MM clustering problem that runs in less than O(τdn2)
time. Finally, if the distance traveled by an entity between two time stamps is bounded by a
constant, can we develop algorithms for these problems whose running time is logarithmic in
τ?

References
1 P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering.

Algorithmica, 33(2):201–226, 2002.
2 P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Computing

Surveys (CSUR), 30(4):412–458, 1998.
3 S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick, and M. Segal. Lower and upper bounds

for tracking mobile users. In Foundations of Information Technology in the Era of Network
and Mobile Computing, pages 47–58. Springer, 2002.

4 K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann, and F. Staals. Trajectory grouping
structure. In Proc. Workshop on Algorithms and Data Structures, volume 8037 of Lecture
Notes in Computer Science, pages 219–230. Springer, 2013.

5 K. Buchin, A. Driemel, J. Gudmundsson, M. Horton, I. Kostitsyna, and M. Löffler. Approxim-
ating (k, l)-center clustering for curves. In Proc. Symposium on Discrete Algorithms, pages
2922–2938. SIAM, 2019.

6 A. Driemel, A. Krivošija, and C. Sohler. Clustering time series under the Fréchet distance. In
Proc. Symposium on Discrete Algorithms, pages 766–785, 2016.

7 S. Durocher. Geometric facility location under continuous motion. PhD thesis, University of
British Columbia, 2006.

8 S. Durocher and D. Kirkpatrick. The Steiner centre of a set of points: Stability, eccentricity,
and applications to mobile facility location. International Journal of Computational Geometry
& Applications, 16(04):345–371, 2006.

9 S. Durocher and D. Kirkpatrick. Bounded-velocity approximation of mobile Euclidean 2-
centres. International Journal of Computational Geometry & Applications, 18(03):161–183,
2008.

10 D. Eppstein. Faster construction of planar two-centers. In Proc. Symposium on Discrete
Algorithms, pages 131–138. ACM/SIAM, 1997.

11 G. N. Frederickson. Parametric search and locating supply centers in trees. In Proc. Workshop
on Algorithms and Data Structures, volume 519 of Lecture Notes in Computer Science, pages
299–319. Springer, 1991.

12 T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

13 S. Har-Peled. Clustering motion. Discrete & Computational Geometry, 31(4):545–565, 2004.
14 C. S. Jensen, D. Lin, and B. C. Ooi. Continuous clustering of moving objects. IEEE Trans.

Knowl. Data Eng., 19(9):1161–1174, 2007.
15 J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-group framework. In

Proc. international conference on Management of data, pages 593–604. ACM, 2007.
16 Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proc. international conference on

Knowledge discovery and data mining, pages 617–622. ACM, 2004.
17 Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters.

Proceedings of the VLDB Endowment, 3(1-2):723–734, 2010.
18 T. W. Liao. Clustering of time series data - a survey. Pattern recognition, 38(11):1857–1874,

2005.
19 N. Megiddo and K. J. Supowit. On the complexity of some common geometric location

problems. SIAM journal on computing, 13(1):182–196, 1984.

SWAT 2020

22:14 Clustering Moving Entities in Euclidean Space

20 T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual
ACM symposium on Theory of computing, pages 216–226, 1978.

21 X. Tan and B. Jiang. Simple O(n log2 n) algorithms for the planar 2-center problem. In
Proc. Computing and Combinatorics Conference, volume 10392 of Lecture Notes in Computer
Science, pages 481–491. Springer, 2017.

22 G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang. A review of moving object trajectory clustering
algorithms. Artificial Intelligence Review, 47(1):123–144, 2017.

	Introduction
	Related work
	Algorithms for 2-MM clustering
	Improved algorithm for entities in R

	Hardness results of 2-Center clustering
	k-MM and k-Center clustering
	Conclusion and possible directions for future research

