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Abstract

A mode of a multiset S is an element a ∈ S of maximum multiplicity; that is, a occurs at least
as frequently as any other element in S. Given an array A[1 : n] of n elements, we consider a basic
problem: constructing a static data structure that efficiently answers range mode queries on A. Each
query consists of an input pair of indices (i, j) for which a mode of A[i : j] must be returned. The
best previous data structure with linear space, by Krizanc, Morin, and Smid (ISAAC 2003), requires
Θ(
√
n log logn) query time in the worst case. We improve their result and present an O(n)-space data

structure that supports range mode queries in O(
√

n/ logn) worst-case time. In the external memory

model, we give a linear-space data structure that requires O(
√

n/B) I/Os per query, where B denotes the
block size. Furthermore, we present strong evidence that a query time significantly below

√
n cannot be

achieved by purely combinatorial techniques; we show that boolean matrix multiplication of two
√
n×
√
n

matrices reduces to n range mode queries in an array of size O(n). Additionally, we give linear-space data
structures for the dynamic problem (queries and updates in near O(n3/4) time), for orthogonal range
mode in d dimensions (queries in near O(n1−1/2d) time) and for half-space range mode in d dimensions

(queries in O(n1−1/d2) time). Finally, we complement our dynamic data structure with a reduction from
the multiphase problem, again supporting that we cannot hope for much more efficient data structures.

1 Introduction

The frequency of an element x in a multiset S, denoted freqS(x), is the number of occurrences (i.e., the
multiplicity) of x in S. A mode of S is an element a ∈ S such that for all x ∈ S, freqS(x) ≤ freqS(a). A
multiset S may have multiple distinct modes; the frequency of the modes of S, denoted by m, is unique. A
unique mode is also known as a plurality when m ≤ |S|/2 and a majority when m > |S|/2.

Along with the mean and median, the mode is a fundamental statistic in data analysis for which efficient
computation is necessary. Given a sequence of n elements ordered in a list A, a range query seeks to compute
the corresponding statistic on the multiset determined by a subinterval of the list A[i : j]. The objective is to
preprocess A to construct a data structure that supports efficient response to one or more subsequent range
queries, where the corresponding input parameters (i, j) are provided at query time. Such a data structure
is useful as it allows us to report statistics over any window of a given sequence of data.

We assume the standard RAM model of computation with word size w = Ω(log n). Although the complete
set of possible queries can be precomputed and stored using Θ(n2) space, practical data structures require
less storage while still enabling efficient response time. For all i, if i = j, then a range query must report
A[i]. Consequently, any range query data structure for a list of n items requires Ω(n) storage space in the
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worst case [7]. This leads to a natural question: how quickly can an O(n)-space data structure answer range
queries?

A range mean query is equivalent to a normalized range sum query (partial sum query), for which a
precomputed prefix-sum array provides a linear-space static data structure with constant query time [47].
Range median queries have been analyzed extensively in recent years and are closely related to range counting,
where efficient data structures are now known (with linear space and logarithmic or slightly sublogarithmic
query time), including both static and dynamic, and both linear- and superlinear-space data structures
[7, 11, 12, 16, 37, 38, 41, 42, 44, 45, 47, 54, 55]. In contrast, range mode queries appear more challenging
than range mean and median. As expressed recently by Brodal et al. [11, page 2]: “The problem of finding
the most frequent element within a given array range is still rather open.”

The best previous linear-space data structure for range mode query was by Krizanc et al. [46, 47], who
obtained a query time of O(

√
n log log n).1 No better approaches have been discovered in the intervening

years, which leads one to suspect that a
√
n-type bound might be the best one could hope for.

Indeed, we present strong evidence that purely combinatorial approaches cannot avoid the
√
n effect

in the preprocessing or query costs, up to polylogarithmic factors. (Krizanc et al.’s method has near n3/2

preprocessing time.) More specifically, we show in Section 9.1 that boolean matrix multiplication (matrix
multiplication on {0, 1}-matrices with addition and multiplication replaced by logical OR and AND, respec-
tively) of two

√
n ×
√
n matrices reduces to n range mode queries in an array of size O(n). This reduction

implies that any data structure for range mode must have either Ω(nω/2) preprocessing time or Ω(nω/2−1)
query time in the worst case, where ω denotes the matrix multiplication exponent. Since the current best
matrix multiplication algorithm has exponent 2.3727 [59], we cannot obtain preprocessing time better than
n1.18635 and query time better than n0.18635 simultaneously with current knowledge. Moreover, since the
current best combinatorial algorithm for boolean matrix multiplication (which avoids algebraic techniques
as in Strassen’s) has running time only a polylogarithmic factor better than cubic [4], we cannot obtain
preprocessing time better than n3/2 and query time better than

√
n simultaneously by purely combinatorial

techniques with current knowledge, except for polylogarithmic-factor speedups.
In view of the above hardness result, it is therefore worthwhile to pursue more modest improvements for

the range mode problem. Notably, can the extra log log n factor in Krizanc et al.’s bound be eliminated?
In Section 3, we give a data structure that accomplishes just that: with O(n) space, we can answer range

mode queries in O(
√
n) time. The data structure is based on—and in some ways simplifies—Krizanc et al.’s,

since we use only rudimentary structures (mostly arrays), without van Emde Boas trees or repeated binary
searches.

In fact, we go beyond eliminating a mere log log n factor: in Section 6, we present an O(n)-space data
structure that answers range mode queries in o(

√
n) time. The precise worst-case time bound is O(

√
n/w) ⊆

O(
√
n/ log n). As one might guess, bit packing tricks are used to achieve the speedup, but in addition we need

a nontrivial combination of ideas, including partitioning elements into two sets (one with small maximum
frequency and another with a small number of distinct elements), each handled by a different method, and
an interesting application of rank/select data structures (from the world of succinct data structures). In the
external memory model we can do even better. In Section 7, we present a linear-space data structure that
requires O(

√
n/B) I/Os per query, where B denotes the block size.

We also give efficient data structures for several variations of range mode. In Section 8, we consider
a dynamic version of range mode in which an update operation modifies the value of one array element.
We obtain the first result with sublinear query and update time bounds: our linear-space data structure
supports both queries and updates in near O(n3/4) time. Since the current state of the art in unconditional
lower bounds remains just polylogarithmic [53], even in the dynamic setting, Section 9.2 presents additional
evidence of the hardness of range mode by reducing the multiphase problem [48] to dynamic range mode.
Based on a widely believed conjecture about the hardness of 3-SUM, this implies that any dynamic range
mode data structure must have either update time or query time polynomial in the size of the array.

In Section 10, we consider a natural higher-dimensional generalization of the problem: given a set of

1The original data structure described by Krizanc et al. [47] supports queries in O(
√
n logn) time. As they remarked, this

time can be reduced to O(
√
n log logn) by using van Emde Boas trees for predecessor search [30].
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coloured points in Rd, support queries for the most frequently occurring colour in some query range. We
obtain the first nontrivial results for this geometric problem. For example, for orthogonal ranges, we give a
near-linear space data structure that supports queries in near O(n1−1/2d) time. For half-space ranges, we

give a linear-space data structure that supports queries in O(n1−1/d2) time. This latter result is obtained
using an interesting application of geometric cuttings [18], in addition to standard range searching data
structures.

Throughout the paper, let m denote the maximum frequency (i.e., the mode of the overall array), and
let ∆ denote the number of distinct elements (max{m,∆} ≤ n).

2 Related Work

2.1 Computing a Mode

The mode of a multiset S of n items can be found in O(n log n) time by sorting S and scanning the sorted
list to identify the longest sequence of identical elements. By reduction from element uniqueness, a matching
Ω(n log n) lower bound in the comparison model follows [58]. Better bounds on the worst-case time can
be obtained by parameterizing in terms of m or ∆. A worst-case time of O(n log ∆) is easily achieved
by inserting the n elements into a balanced search tree in which each node stores a key and its frequency.
Munro and Spira [51] and Dobkin and Munro [25] described an O(n log(n/m))-time algorithm and a matching
comparison-based lower bound. On the word RAM model, a mode can be computed in linear expected time
by hashing.

2.2 Range Mode Query

As mentioned, a range mode data structure of Krizanc et al. [47] requires linear space and providesO(
√
n log log n)

query time. Krizanc et al. also considered larger-space structures. They described data structures that pro-
vide constant-time queries using O(n2 log log n/ log n) space and O(nε log n)-time queries using O(n2−2ε)
space, for any fixed ε ∈ (0, 1/2]. Petersen and Grabowski [55] improved the first bound to constant time
and O(n2 log log n/ log2 n) space and Petersen [54] improved the second bound to O(nε)-time queries using
O(n2−2ε) space, for any fixed ε ∈ [0, 1/2). Although its space requirement is almost linear in n as ε ap-
proaches 1/2, the data structure of Petersen [54] requires ω(n) space (the number of levels in a hierarchical
set of tables and hash functions approaches ∞ as ε → 1/2). Our new approach can also lead to improved
space-time trade-offs (see the statement of Theorem 7 with the parameter s = n1−ε): we can obtain O(nε)
query time with O(n2−2ε/ log n) space for any fixed ε ∈ [0, 1/2]. This improves Petersen’s result (though
for ε = 0, Petersen and Grabowski’s result remains slightly better). Finally, Greve et al. [40] prove a lower
bound of Ω(log n/ log(s · w/n)) query time for any data structure that uses s memory cells of w bits in the
cell probe model.

2.3 Approximate Range Mode Query

Bose et al. [7] considered approximate range mode queries, in which the objective is to return an element
whose frequency is at least αm. They gave a data structure that requires O(n/(1 − α)) space and answers
approximate range mode queries in O(log log1/α n) time for any fixed α ∈ (0, 1), as well as data structures
that provide constant-time queries for α ∈ {1/2, 1/3, 1/4}, using space O(n log n), O(n log log n), and O(n),
respectively. Greve et al. [40] gave data structures that support approximate range mode queries in O(1)
time using O(n) space for α = 1/3, and O(log(α/(1 − α))) time using O(nα/(1 − α)) space for any fixed
α ∈ [1/2, 1).

2.4 Continuous Space versus Array Input

A vast literature studies the problems of geometric range searching in continuous Euclidean space; that is,
data points are positioned arbitrarily in Rd. See the survey by Agarwal [1] for an overview of results. The
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range query problems considered in this paper, however, restrict attention to array input. Although a range
query on an array can be viewed as a restricted case of a more general range searching problem (e.g., a
point set with regular grid spacing), the algorithmic techniques differ greatly between the two settings when
d ≥ 2. When d = 1, however, a geometric range mode query problem reduces to array range mode query.
In particular, the rank of each data point in Euclidean space corresponds to its array index. It suffices
to compute the ranks of the respective successor and predecessor of the endpoints of the query interval to
identify the indices i and j, and to return the corresponding array range mode query on A[i : j].

2.5 Other Related Range Query Problems

In addition to results on the median, mode, and sum range query problems discussed in Sections 1 and 2.2,
other range query problems examined on arrays include semigroups [2, 60, 61], extrema (e.g., range minimum
or maximum) [5, 6, 21, 23, 26, 31, 32, 33, 34, 35], selection or quantiles (for which the median is a special
case) [37, 38, 44, 45], dominance or rank (counting the number of elements in the query range that exceed
a given input threshold) [43, 44], coloured range (counting/enumerating the distinct elements in the query
range) [37], and k-frequency (determining whether any element has frequency k) [40].

Related to range mode query, Durocher et al. [27] described an O(n)-space data structure that supports
constant-time range majority queries; this data structure is then extended to range α-majority queries, a
generalization of range majority. Recently, Chan et al. [15] examined the least-frequent element range query
problem, which is analogous to range mode query, except that an element of minimum frequency is returned.
They give an O(n)-space data structure that supports queries in O(

√
n) time.

Finally, range query problems have been examined on multidimensional arrays, including partial sums
[19], range minimum [3, 9, 8, 23, 39, 56, 57, 62], median [38], selection [37], and α-majority [36]. Similarly,
range query problems have been examined in the dynamic setting, including median and selection [11, 12,
38, 42], dominance [52], majority [29], and minimum [10, 20]. To the authors’ knowledge, this paper contains
the first examinations of range mode query in the multidimensional or dynamic settings.

3 First Method: O(
√
n) Query Time and O(n) Space

We begin by presenting a linear-space data structure with O(
√
n) query time, improving Krizanc et al.’s

result [47] by a factor of log log n. We build on the data structure of Krizanc et al. and introduce a different
technique that avoids the need for predecessor search. We will actually establish the following time-space
trade-off—the linear-space result follows by setting the parameter s = d

√
ne.

Theorem 1 Given an array A[1 : n] and any fixed value s ∈ [1, n], there exists a data structure requiring
O(n+ s2) space that supports range mode queries on A in O(n/s) time.

The following observation will be useful:

Lemma 2 (Krizanc et al. [47]) Let A1 and A2 be any multisets. If c is a mode of A1 ∪ A2 and c 6∈ A1,
then c is a mode of A2.

3.1 Data Structure Precomputation

Given input array A[1 : n], let D denote the set of distinct elements stored in A and assume some arbitrary
ordering on the elements. We first apply rank space reduction: construct an array Ā[1 : n] such that for each
i, Ā[i] stores the rank of A[i] in D. Here, Ā[i] ∈ {1, . . . ,∆}. For any a, i, and j, Ā[a] is a mode of Ā[i : j]
if and only if A[a] is a mode of A[i : j]. For simplicity, we describe our data structures in terms of array Ā;
a table look-up provides a direct bijective mapping from {1, . . . ,∆} to D. Set D, array Ā, and the value ∆
are independent of any query range and can be computed in O(n log ∆) time during preprocessing.

For each a ∈ {1, . . . ,∆}, let Qa = {b | Ā[b] = a}. That is, Qa is the set of indices b such that Ā[b] = a.
For any a, a range counting query for element a in Ā[i : j] can be answered by searching for the predecessors
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Figure 1: The array has size n = 24 (of which ∆ = 5 are distinct), partitioned into s = 6 blocks of size
t = 4. The query range is A[i : j] = A[7 : 19], for which the unique mode is 20, occurring with frequency
5. The corresponding mode of Ā[i : j] is 2. The query range is partitioned into the prefix Ā[7 : 8], the span
Ā[9 : 16], and the suffix Ā[17 : 19]. The span covers blocks bi = 2 to bj = 3, for which the corresponding
mode is S[2, 3] = 2, occurring with frequency S′[2, 3] = 4.

of i and j, respectively, in the set Qa; the difference of their indices is the frequency of a in Ā[i : j] [47]. Such
a range counting query can be implemented using an efficient predecessor data structure in Θ(log log n) time
in the worst case (e.g., [30]).

The following related decision problem, however, can be answered in constant time by a linear-space data
structure: does Ā[i : j] contain at least q instances of element Ā[i]? This question can be answered by a
“select” query that returns the index of the qth instance of Ā[i] in Ā[i : n]. For each a ∈ {1, . . . ,∆}, store
the set Qa as an ordered array (also denoted Qa for simplicity). Define a rank array Ā′[1 : n] such that for
all b, Ā′[b] denotes the rank (i.e., the index) of b in QĀ[b]. Given any q, i, and j, to determine whether Ā[i : j]

contains at least q instances of Ā[i] it suffices to check whether QĀ[i][Ā
′[i] + q − 1] ≤ j. Since array QĀ[i]

stores the sequence of indices of instances of element Ā[i] in Ā, looking ahead q−1 positions in QĀ[i] returns

the index of the qth occurrence of element Ā[i] in Ā[i : n]; if this index is at most j, then the frequency of
Ā[i] in Ā[i : j] is at least q. If the index Ā′[i] + q − 1 exceeds the size of the array QĀ[i], then the query
returns a negative answer. This gives the following lemma:

Lemma 3 Given an array A[1 : n], there exists a data structure requiring O(n) space that can determine in
constant time for any 0 ≤ i ≤ j ≤ n and any q whether A[i : j] contains at least q instances of element A[i].

Following Krizanc et al. [47], given any s ∈ [1, n] we partition array Ā into s blocks of size t = dn/se.
That is, for each i ∈ {0, . . . , s − 2}, the ith block spans Ā[i · t + 1 : (i + 1)t] and the last block spans
Ā[(s− 1)t+ 1 : n]. We precompute tables S[0 : s− 1, 0 : s− 1] and S′[0 : s− 1, 0 : s− 1], each of size Θ(s2),
such that for any 0 ≤ bi ≤ bj < s, S[bi, bj ] stores a mode of Ā[bit + 1 : (bj + 1)t] and S′[bi, bj ] stores the
corresponding frequency.

The arrays Q1, . . . , Q∆ can be constructed in O(n) total time in a single scan of array Ā. The arrays
S and S′ (which we call the mode table) can be constructed in O(n · s) time by scanning array Ā s times,
computing one row of each array S and S′ per scan. Thus, the total precomputation time required to
initialize the data structure is O(n · s).

3.2 Query Algorithm

Given a query range Ā[i : j], let bi = d(i− 1)/te and bj = bj/tc − 1 denote the respective indices of the first
and last blocks completely contained within Ā[i : j]. We refer to Ā[bit + 1 : (bj + 1)t] as the span of the
query range, to Ā[i : min{bit, j}] as its prefix, and to Ā[max{(bj + 1)t + 1, i} : j] as its suffix. One or more
of the prefix, span, and suffix may be empty; in particular, if bi > bj , then the span is empty. See Figure 1.

The value c = S[bi, bj ] is a mode of the span with frequency fc = S′[bi, bj ]. If the span is empty, then
let fc = 0. By Lemma 2, either c is a mode of Ā[i : j] or some element of the prefix or suffix is a mode
of Ā[i : j]. Thus, to find a mode of Ā[i : j], we verify for every element in the prefix and suffix whether
its frequency in Ā[i : j] exceeds fc and, if so, we identify this element as a candidate mode and count its
additional occurrences in Ā[i : j].
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We now describe how to compute the frequency of all candidate elements in the prefix, storing the value
and frequency of the current best candidate in c and fc; an analogous procedure is applied to the suffix.
Sequentially scan the items in the prefix starting at the leftmost index, i, and let x denote the index of
the current item. If QĀ[x][Ā

′[x] − 1] ≥ i, then an instance of element Ā[x] appears in Ā[i : x − 1], and

its frequency has been counted already; in this case, simply skip Ā[x] and increment x. Otherwise, check
whether the frequency of Ā[x] in Ā[i : j] (which is equivalent to the frequency of Ā[x] in Ā[x : j]) is at least
fc by Lemma 3 (i.e., by testing whether QĀ[x][Ā

′[x]+fc−1] ≤ j). If not, we again skip Ā[x]. Otherwise, Ā[x]

is a candidate, and the exact frequency of Ā[x] in Ā[i : j] can be counted by a linear scan2 of QĀ[x], starting

at index Ā′[x] + fc − 1 and terminating upon reaching either an index y such that QĀ[x][y] > j or the end

of array QĀ[x] (i.e., y = |QĀ[x]|+ 1). That is, QĀ[x][y] denotes the index of the first instance of element Ā[x]

that lies beyond the query range Ā[i : j] (or no such element exists). Consequently, the frequency of Ā[x] in
Ā[i : j] is fx = y − Ā′[x]. Update the current best candidate and its frequency: c← Ā[x] and fc ← fx.

After all elements in the prefix and suffix have been processed, a mode of Ā[i : j] and its frequency are
stored in c and fc, respectively.

3.3 Analysis

Excluding the linear scans of QĀ[x], the query cost is clearly bounded by O(t). For each candidate Ā[x]
encountered during the processing of the prefix, the cost of the linear scan of QĀ[x] is O(fx− fc). Since fc is

at least the frequency of the mode of the span, at least fx − fc instances of Ā[x] must occur in the prefix or
suffix. We can thus charge the cost of the scan to these instances. Since each element Ā[x] is considered a
candidate at most once (during its first appearance) in the prefix, we conclude that the total cost of all the
linear scans is proportional to the total number of elements in the prefix, i.e., O(t). An analogous argument
holds for the cost of processing the suffix. Therefore, a range mode query requires O(t) = O(n/s) total time.
The data structure requires O(n) space to store the arrays A, Ā, and Ā′, O(n) total space to store the arrays
Q1, . . . , Q∆, and O(s2) space to store the tables S and S′. This proves Theorem 1.

4 Second Method: O(
√
n/w) Query Time and O(n) Space When

m ≤
√
nw

Our second method is a refinement of the first method (from Section 3), in which we store the mode tables (S
and S′) more compactly by an encoding scheme that enables efficient retrieval of the relevant information,
using techniques from succinct data structures, specifically, for rank/select operations. We show how to
reduce a query to four rank/select operations. These new ideas allow us to improve the space bound in
Theorem 1 by a factor of w, which enables us to use a slightly larger number of blocks, s, which in turn
leads to an improved query time. However, there is one important caveat: our space-saving technique only
works when the maximum frequency is small, namely, when m ≤ s. Specifically, we will prove the following
theorem in this section: choosing s = d

√
nwe gives O(n) space and O(

√
n/w) query time for m ≤

√
nw.

Theorem 4 Given an array A[1 : n] and any fixed s ∈ [1, n] such that m ≤ s (where m is the frequency of
the overall mode), there exists a data structure requiring O(n+s2/w) space that supports range mode queries
on A in O(n/s) time.

4.1 Modified Data Structure

Recall that for a span from block bi to block bj , the mode tables store a mode of the span and its frequency
in S[bi, bj ] and S′[bi, bj ], respectively. As we will show, a mode of the span can be computed efficiently if
its frequency is known; consequently, we omit table S. Also, instead of storing the frequency of the mode

2Although the time required to complete a linear scan could be reduced by instead using a binary search or a more efficient
predecessor data structure, the asymptotic worst-case time remains unchanged; for simplicity, a linear scan suffices.
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explicitly, we store column-to-column frequency deltas (i.e., differences of adjacent frequency values); observe
that frequency values are monotonically increasing across each row. We encode the frequency deltas for a
single row as a bit string, where a zero bit represents an increment in the frequency of the mode (i.e., each
frequency delta is encoded in unary) and a one bit represents a former cell boundary. In any row, the number
of ones is at most the number of blocks, s, and the number of zeroes is at most m ≤ s. Precompute a data
structure that uses a linear number of bits to support O(1)-time binary rank and select operations on each
row (e.g., see [50]):3 given a binary string, for each a ∈ {0, 1}, ranka(i) returns the number of times a occurs
in the first i positions of the string, and selecta(i) returns the position of the ith occurrence of a in the string.
Thus, each row of the table uses O(s) bits of space. The table has s rows and requires O(s2) bits of space
in total. We pack these bits into words, resulting in an O(s2/w)-space data structure.

4.2 Modified Query Algorithm

Assuming we know a mode of the span and its frequency, we can process the prefix and suffix ranges in
O(t) time as before. Our attention turns now to determining a mode of the span and its frequency. We first
obtain the frequency of the mode of the span in O(1) time using rank and select queries on the bit string of
the bith row:

posbj ← select1(bj − bi + 1), and freq ← rank0(posbj ).

Having found the frequency of the mode, identifying a mode itself is still a tricky problem. We proceed in
two steps. We first determine the block in which the last occurrence of a mode lies, in O(1) time, as follows:

pos last ← select0(freq), and blast ← rank1(pos last) + bi.

Next we find a mode of the span by iteratively examining each element in block blast, using a technique
analogous to that for processing a suffix from Section 3. By Lemma 3 (reversed with j ≤ i), we can check
whether each element Ā[x] in blast has frequency freq in Ā[bit + 1 : x], in O(1) time per element. If the
mode occurs multiple times in block blast, its last occurrence will be successfully identified. Processing block
blast requires O(t) total time. We conclude that the total query time is O(t) = O(n/s) time. This proves
Theorem 4.

5 Third Method: O(∆) Query Time and O(n) Space

In this section, we take a quick detour and consider a third method that has query time sensitive to ∆, the
number of distinct elements; this “detour” turns out to be essential in assembling our final solution. We
show the following:

Theorem 5 Given an array A[1 : n], there exists a data structure requiring O(n) space that supports range
mode queries on A in O(∆) time, where ∆ denotes the number of distinct elements in A.

The proof is simple: to answer a range mode query, the approach is to compute the frequency (in the
query range) for each of the ∆ possible elements explicitly, and then just compute the maximum in O(∆)
time.

5.1 Data Structure Precomputation

As before, we work with the array Ā by rank space reduction. This time, we divide Ā into blocks of size
t = ∆. For each i ∈ {1, . . . , bn/∆c}, and for every x ∈ {1, . . . ,∆}, store the frequency Ci[x] of x in the
range Ā[1 : i∆]. The total size of all these frequency tables is O((n/∆) ·∆) = O(n). The preprocessing time
required is O(n) (or O(n log ∆) time if ∆ or Ā must be computed).

3Succinct data structures can ensure that space usage is very close to the length of the bit string up to lower-order terms,
but this fact is not needed in our application.
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5.2 Query Algorithm

Given a query range Ā[i : j], as mentioned, it suffices to compute the frequency of x in Ā[i : j] for every
x ∈ {1, . . . ,∆}.

Let bj = bj/∆c − 1. We can compute the frequency C(x) of x in the suffix Ā[bj∆ + 1 : j] for every
x ∈ {1, . . . ,∆} by a linear scan, in O(∆) time since the suffix has size at most ∆. Then the frequency of
x in Ā[1 : j] is given by Cbj [x] + C(x). The frequency of x in Ā[1 : i − 1] can be computed similarly. The
frequency of x in Ā[i : j] is just the difference of these two numbers. The total query time is clearly O(∆).
This proves Theorem 5.

6 Final Method: O(
√

n/w) Query Time and O(n) Space

We are finally ready to present our improved linear-space data structure with O(
√
n/w) query time. Our

final idea is simple: if the elements all have small frequencies, the second method (Section 4) already works
well; otherwise, the number of distinct elements with large frequencies is small, and so the third method
(Section 5) can be applied instead.

More precisely, let s be any fixed value in [1, n]. Partition the elements of A into those with low fre-
quencies, i.e., at most s, and those with high frequencies, i.e., greater than s. A mode of the low-frequency
elements has frequency at most s. Thus we can apply Theorem 4 to build an O(n + s2/w)-space range
mode query data structure on the low-frequency elements to support O(n/s) query time. On the other
hand, there are at most n/s distinct high-frequency elements. Thus we can apply Theorem 5 to build an
O(n)-space range mode query data structure on the high-frequency elements to support O(n/s) query time.
The following simple decomposition lemma allows us to combine the two structures:

Lemma 6 Given an array A[1 : n] and any ordered partition of A into two arrays B1[1 : n′] and B2[1 : n−n′]
such that no element in B1 occurs in B2 nor vice versa, if there exist respective s1(n)- and s2(n)-space data
structures that support range mode queries on B1 and B2 in t1(n) and t2(n) time, then there exists an
O(n+ s1(n) + s2(n))-space data structure that supports range mode query on A in O(t1(n) + t2(n)) time.

Proof. For each a ∈ {1, 2} and i ∈ {1, . . . , n}, precompute Ia[i], the index in the Ba array of the first
element in A to the right of A[i] that lies in Ba; and precompute Ja[i], the index in the Ba array of the first
element in A to the left of A[i] that lies in Ba. Given a range query A[i : j], we can compute the mode in
the range B1[I1[i], J1[j]] and the mode in the range B2[I2[i], J2[j]] and determine which has larger frequency;
this is a mode of A[i : j]. �

We have thus completed the proof of our main theorem:

Theorem 7 Given an array A[1 : n] and any fixed s ∈ [1, n], there exists a data structure requiring O(n+
s2/w) space that supports range mode queries on A in O(n/s) time. In particular, by setting s = d

√
nwe,

there exists a data structure requiring O(n) space that supports range mode queries on A in O(
√
n/w) time.

7 External Memory Data Structure

We turn our attention to the external memory model. In this model, we have a two-level memory hierarchy:
the disk and the cache. The disk is divided into blocks of size B and our data structure can only operate on
blocks that are in the cache. Our goal is to minimize the number of I/Os (i.e., disk accesses) during a query.
Any internal memory data structure with query time q(n) requires O(q(n)) I/Os in the external memory
model, so we already have linear-space data structures that require O(

√
n), O(∆), or O(

√
n/w) I/Os per

query. We present the following theorem:

Theorem 8 Given an array A[1 : n], there exists a data structure requiring O(n) space that supports range
mode queries on A in O(

√
n/B) I/Os.
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First, note that using the same decomposition technique as in Section 6, we can solve the general case by
separately considering the cases of having a low number of distinct elements ∆ and having a low maximum
frequency m. Decomposing a query takes constant time and thus constant I/Os. Next, we observe that the
data structure of Theorem 5 needs only O(∆/B) I/Os during a query. A query consists of two linear scans of
frequency tables of size ∆ as well as linear scans of the prefix and suffix, which are also of size ∆. Each scan
requires O(∆/B) I/Os since the elements of each array are stored contiguously in memory. Although queries
to our data structures that give O(

√
n) and O(

√
n/w) query time also reduce to linear scans of the prefix

and suffix, at each step of the scan we query the data structure of Lemma 3 which requires a potentially
non-local memory access. Thus, a similar observation does not hold for these data structures. The final piece
is a linear-space data structure that requires O(m) I/Os per query. We give a stronger result: an internal
memory data structure that requires O(m) query time.

Theorem 9 Given an array A[1 : n], there exists a data structure requiring O(n) space that supports range
mode queries on A in O(m) time, where m denotes the frequency of the mode of A.

Proof. We use a combination of ideas from our first method and from an approximate range mode query
data structure of Greve et al. [40].

We proceed as in Section 3, except that now we divide into blocks of size t = m and we replace the mode
tables S and S′ with the following: for each i ∈ {1, . . . , bn/sc}, construct an array Fi[1 : m] such that for
each x, Fi[x] stores the largest j ≤ n such that the mode of Ā[i : j] has frequency at most x; a corresponding
mode is also stored. The space for these arrays is O(m · n/t) = O(n).

A query range is divided into prefix, span, and suffix subarrays as before. As observed by Greve et
al. [40], a mode of the span and its frequency can be computed by finding the successor of j in Fi; this can
be achieved in O(logm) time by binary search in Fi. Once the mode of the span and its frequency have been
found, we can compute the mode of the query range by processing the prefix and suffix as in Section 3, in
O(t) = O(m) time. The resulting worst-case query time is O(m). �

We consider distinct elements of A with frequency at most
√
n/B separately from those with frequency

greater than
√
n/B. Using the data structure of Theorem 9 for the low-frequency elements, we support

queries inO(
√
n/B) I/Os. Since there areO(

√
nB) elements with frequency greater thanO(

√
n/B), the data

structure of Theorem 5 built for the high-frequency elements supports queries in O(
√
nB/B) = O(

√
n/B)

I/Os. This proves Theorem 8.

8 Dynamic Data Structure

We now consider a dynamic version of the problem in which an update operation can modify an element in
the array A. As in Section 3, we partition A into s blocks of size t = dn/se. In addition to the parameter s,
our data structure also takes as input a user specifiable parameter k. For each of the Θ(s2) spans, we store
the top k most frequent elements as well as their frequencies in the data structure described in Lemma 10.
We call such a data structure the top list of a span. The size of this component of our data structure is
O(k · s2).

Lemma 10 There is a data structure that maintains a dynamic multiset S of at most N elements requiring
linear space with respect to the number of unique elements in S and supporting the following operations:

– Update(S, x, µ): Add µ instances of element x to multiset S in O(log logN) expected time. If µ is
negative, instances of x are removed from S.

– Top(S, k): Report the top k most frequent elements in multiset S in O(1 + k) worst-case time.

Proof. We use a linear-space dynamic van Emde Boas tree [30] to store key/value pairs, where a key is a
frequency in the universe {1, . . . , N} and its associated record is a doubly-linked list of all elements whose
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frequency in S matches the key. We use linear-space dynamic hashing to map an element to its doubly-linked
list node in constant expected time.

Assume we are given an update for the frequency of an element x. If there is already an element x ∈ S,
we start by removing its doubly-linked list node from the list associated with its original frequency f . If the
list for frequency f becomes empty, we delete it from our van Emde Boas tree in O(log logN) expected time.
If there is no other element x ∈ S, we create a new doubly-linked list node for the new unique element and
the original frequency f is 0. Unless f +µ = 0, we add the doubly-linked list node of x to the list associated
with frequency f +µ. If there is no other element with frequency f +µ, this involves creating a new list and
inserting it into our van Emde Boas tree in O(log logN) expected time.

To find the top k elements in S we iterate through the entries in our van Emde Boas tree from most
frequent to least frequent. The list of most frequent elements is kept at the root of the van Emde Boas tree
and can be accessed in constant time. Assuming the van Emde Boas tree is augmented to include pointers
between adjacent entries we can find the next list of elements to output in constant time. Once we have
iterated through the k most frequent elements we stop, resulting in a running time of O(1 + k). �

Each of our top lists represents elements from a subarray of A containing at most n elements and thus
supports update operations in O(log log n) time. We first note that we can build all Θ(s2) top lists in
O((k · s2 + sn) log log n) expected time. For each block bi, we create all of the top lists for the spans that
start at bi in one pass through A. During the pass, we add each element in A starting at the beginning of bi
to a global top list. At the end of a block bj , we get the top k elements seen so far in the global top list and
insert them into the top list for the span from bi to bj in O(k log log n) time. The cost of a single pass through
A thus includes the O(n log log n) cost of adding elements to the global top list and the O(k · s log log n) cost
of creating top lists for spans. All s passes thus take O((k · s2 + sn) log log n) time.

For each unique element we also store a linear-space dynamic ranking data structure (e.g., Dietz’s data
structure [24]) for the indices at which the element resides in A. With these data structures we can perform
range counting queries for a specific element in O(log n/ log log n) worst-case time. The cumulative space
cost of all of these dynamic ranking data structures is O(n).

Given a query, we follow the approach of Krizanc et al. [47] using range counting queries that run in
O(log n/ log log n) worst-case time, instead of the O(log log n)-time range counting queries that are possible
in the static case. The result is a worst-case query running time of O((n/s) · (log n/ log log n)).

Assume we are given an update to change the element at index i from x to y. We note that the element
at index i is contained in O(s2) spans and we must propagate the change to each of their top lists. For each
top list, we reduce the frequency of x by 1 if x is in the top list. Also, for each top list, we increase the
frequency of y by 1 if y is in the top list. If y is not in the top list, we perform a range counting query for
element y in the span and increase the frequency of y by this count. Propagating these changes thus takes
O(s2 log n/ log log n) time due to the range counting queries.

After k updates the most frequent element in a span may not be in the span’s top list. Consider when all
k elements in the original top list have the same frequency f and there is one more element x with frequency
f . If each of the k elements in the top list is replaced by some infrequent element, then x becomes the most
frequent element in the span. For this reason, as well as to ensure that the space required by a top list
remains O(k), we rebuild all of our top lists after every k updates. The amortized cost of this step for each
update is O((s2 + s · n/k) log log n). Including the cost of propagating changes to all of the top lists, the
overall cost of an update is O(s2 log n/ log log n+ (s · n/k) log log n).

Theorem 11 Given an array A[1 : n] and any fixed s, k ∈ {1, . . . , n}, there exists a data structure requiring
O(n + k · s2) space that supports range mode queries on A in O((n/s) · (log n/ log logn)) worst-case time
and changes to the elements of A in O(s2 log n/ log log n + (s · n/k) log log n) amortized expected time. In
particular, by setting s = dn1/4e and k = d

√
ne, there exists a data structure requiring O(n) space that

supports range mode queries on A in O(n3/4 log n/ log log n) worst-case time and changes to the elements of
A in O(n3/4 log log n) amortized expected time.

Note that if space is not a concern, we can set s = dn1/3e and k = dn2/3e and obtain an O(n4/3)-space
structure with O(n2/3 polylog n) query and amortized update time.
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9 Conditional Lower Bounds

In this section, we present strong evidence that range mode cannot be solved much more efficiently than
what we have achieved in this paper. First we present a reduction from boolean matrix multiplication to
range mode queries and then a reduction from the multiphase problem to dynamic range mode.

9.1 Boolean Matrix Multiplication and Range Mode

In the following, we show that boolean matrix multiplication of two
√
n ×
√
n matrices reduces to n range

mode queries in an array of size O(n). Greve et al. [40] observe the following:

Observation 12 (Greve et al. [40]) Let S be a multiset whose elements belong to a universe U . Adding
one of each element in U to S increases the frequency of the mode of S by one.

Observation 13 (Greve et al. [40]) Let S1 and S2 be two sets (not multisets) and let S be the multiset
union of S1 and S2. The frequency of the mode of S is one if S1 ∩ S2 = ∅ and it is two if S1 ∩ S2 6= ∅.

Now let A and B be two
√
n×
√
n boolean matrices for which we are to compute the product C = A ·B.

The entry ci,j in C must be 1 precisely if there exists at least one index k, where 1 ≤ k ≤
√
n, such that

ai,k = bk,j = 1. Our goal is to determine whether this is the case using one range mode query for each entry
ci,j . Our first step in achieving this is to transform each row of A and each column of B into respective
sets. For the ith row of A, we construct the set Ai containing all those indices k for which ai,k = 1, i.e.,
Ai = {k | ai,k = 1}. Similarly we let Bj = {k | bk,j = 1}. Clearly ci,j = 1 if and only if Ai ∩ Bj 6= ∅. By
Observation 13, this can be tested if we can determine the frequency of the mode in the multiset union of
Ai and Bj . Our last step is thus to embed all the sets Ai and Bj into an array, such that we can use range
mode queries to perform these intersection tests for every pair i, j. Our constructed array M has two parts,
a left part L and a right part R. The array M is then simply the concatenation of L and R. The array L
represents all the sets Ai. It consists of

√
n blocks of

√
n entries. The ith block (entries L[(i−1)

√
n+1 : i

√
n])

represents the set Ai, and it consists of the elements {1, . . . ,
√
n} \ Ai in some arbitrary order, followed by

the elements of Ai in some arbitrary order. The array R similarly represents the sets Bj and it also consists
of
√
n blocks of

√
n entries. The jth block represents the set Bj and it consists of the elements in Bj in

some arbitrary order, followed by the elements {1, . . . ,
√
n} \Bj in some arbitrary order.

Now assume that |Ai| and |Bj | are known for each set Ai and Bj . We can now determine whether
Ai ∩Bj 6= ∅ (i.e., whether ci,j = 1) from the result of the range mode query on M [start(i) : end(j)], where

start(i) = (i− 1)
√
n+ 1 +

√
n− |Ai| and end(j) = n+ (j − 1)

√
n+ |Bj |.

To see this, first observe that start(i) is the first index in M of the elements in Ai, and that end(j) is the last
index in M of the elements in Bj . In addition to a suffix of the block representing Ai and a prefix of the block
representing Bj , the subarray M [start(i) : end(j)] contains

√
n−i complete blocks from L and j−1 complete

blocks from R. Since a complete block contains all the elements {1, . . . ,
√
n}, it follows from Observations 12

and 13 that Ai ∩ Bj 6= ∅ (i.e., ci,j = 1) if and only if the frequency of the mode in M [start(i), end(j)] is
2 +
√
n− i+ j − 1. The answer to the query (start(i), end(j)) thus allows us to determine whether ci,j = 1

or 0. The array M and the values |Ai| and |Bj | can clearly be computed in linear time when given matrices
A and B, thus we have the following result:

Theorem 14 Let p(n) be the preprocessing time of a range mode data structure and q(n) its query time.
Then boolean matrix multiplication on two

√
n×
√
n matrices can be solved in time O(p(n) + n · q(n) + n).

9.2 The Multiphase Problem and Dynamic Range Mode

In the following, we show that the multiphase problem, introduced by Pǎtraşcu [53], reduces to dynamic
range mode. The multiphase problem is the following dynamic version of set disjointness:
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Phase I. We are given k sets, S1, . . . , Sk ⊂ {1, . . . , n}. We may preprocess the sets in time O(nk · τ).

Phase II. We are given another set T ⊆ {1, . . . , n}, and have time O(n ·τ) to read and update memory
locations from the data structure constructed in Phase I.

Phase III. Finally, we are given an index i ∈ {1, . . . , k} and must, in time O(τ), answer whether Si
is disjoint from T .

Pǎtraşcu made the following conjecture about the hardness of the multiphase problem:

Conjecture 1 (Pǎtraşcu [53]) There exists constants γ > 1 and δ > 0 such that the following holds. If
k = Θ(nγ), any solution to the multiphase problem in the word RAM model requires τ = Ω(nδ).

This conjecture is supported by a reduction from the problem known as 3-SUM (given n integers, find three
that sum to zero). It is widely believed that the 3-SUM problem cannot be solved in truely subquadratic
time, and if this is true, then so is Conjecture 1. In the following, we show that a data structure for dynamic
range mode solves the multiphase problem.

Assume the availability of a dynamic range mode data structure with update time tu and query time tq
on an array M of size n(k + 1) entries. We assume all values in the array are initialized to the same fixed
value. We think of the array as being partitioned into k + 1 consecutive chunks of n entries, where the jth
chunk from the left corresponds to set Sj and the last chunk corresponds to the set T . In Phase I, we update
the entries in chunks j = 1, . . . , k such that the chunks represents the sets S1, . . . , Sk. We follow the ideas
in Section 9.1 uneventfully: the jth chunk consists of the elements {1, . . . , n} \ Sj in some arbitrary order,
followed by the elements of Sj in some arbitrary order. In addition to the range mode data structure, we
store an array with k + 1 entries, such that the jth entry stores the value |Sj | and the last entry will store
|T |. In Phase II, we update the last chunk by inserting the elements of T in the beginning of the chunk. We
also update the last entry of our array of set sizes, such that it stores |T |. Finally, in Phase III, we are given
a query index i and we must determine whether Si ∩ T = ∅. For this, we first retrieve the values |Si| and
|T | and then ask a range mode query on M [start(i) : end(T )], where

start(i) = (i− 1)n+ 1 + n− |Si| and end(T ) = nk + |T |.

As in Section 9.1, this query range contains precisely the elements of Si, the elements of T and k− i complete
permutations of {1, . . . , n}. It follows from Observation 12 and 13 that Si ∩ T 6= ∅ precisely if the frequency
of the mode in M [start(i) : end(T )] is 2 + k − i. We have thus obtained a solution for the multiphase
problem using O(kntu) time in Phase I, O(ntu) time in Phase II and O(tq) time in Phase III. It follows that
Conjecture 1 implies max{tu, tq} = Ω(nδ) for some constant δ > 0 when k = Θ(nγ) for some constant γ > 1,
i.e., either the query time or the update time of a dynamic range mode data structure must be polynomial
in the size of the array.

10 Higher Dimensions

We now consider generalizations of the range mode problem to Euclidean spaces of constant dimension d.
Given a set P of n points in Rd, each of which is assigned a colour, we consider the problem of constructing
an efficient data structure to support queries that return a most frequently occurring colour in P ∩Q for a
query range Q ⊆ Rd. We consider orthogonal range queries in Section 10.1 and half-space range queries in
Section 10.2.

10.1 Orthogonal Ranges

We generalize the technique of Krizanc et al. [47] by dividing space into sd grid cells such that there are
O(n/s) points between any two consecutive parallel grid hyperplanes. The generalization of a span of a query
range Q is the largest rectangle inside Q whose sides lie along grid hyperplanes. There are s2d distinct spans

12



and for each we precompute and store the mode of the span. This component of our data structure thus
requires O(s2d) space. For each set of points of a given colour, we also build an orthogonal range counting data
structure [22] with polylogarithmic space overhead that answers queries in polylogarithmic time (see [43] for
the best known solution, using O(n(log n/ log log n)d−2) space and with O((log n/ log log n)d−1) query time).
Across all colours, these data structures require O(n polylog n) space.

Given a query hyperrectangle Q we use binary search amongst the grid hyperplanes in order to determine
the slabs in which Q’s sides lie. We then determine the mode of Q’s span in O(1) time from our precomputed
table. For each of the 2d sides of Q we must additionally consider each of the O(n/s) points in the slab in
which the side lies. For each such point, we count the number of points of its colour in Q using the range
counting data structure of its colour in polylogarithmic time to find the actual mode. So, the running time
of a query is O (2d · (n/s) · polylog n) = O ((n/s) · polylog n) time.

Theorem 15 Given a set P of n points in Rd, each of which is assigned a colour, and any fixed s ∈
{1, . . . , n}, there exists a data structure requiring O(npolylog n + s2d) space that supports orthogonal range
mode queries in O ((n/s) · polylog n) time. In particular, by setting s = dn1/2de, there exists a data structure
requiring O(npolylog n) space that supports range mode queries in O(n1−1/2d polylog n) time.

Note that in the special case of dominance (i.e., d-sided) ranges in Rd, the query bound in theO(npolylog n)-
space structure can be improved to O(n1−1/d polylog n).

Alternatively, we can guarantee O(n) space if we increase the query time by an nε factor, by switching to
a linear-space data structure for orthogonal range counting with O(nε) query time (by using a range tree [22]
with nε fan-out).

10.2 Halfspace Ranges

We now consider half-space range queries. We work in dual space [22], where the input is transformed
into n hyperplanes, each assigned a colour, and a query half-space is transformed into a point. A query
for a dual point q returns the most frequently occurring colour amongst the hyperplanes that lie below q.
Let s ∈ {1, . . . , n} be a fixed parameter specified by the user. We use the key concept of cuttings [18]
from computational geometry. Given a set of n hyperplanes in Rd, a (1/r)-cutting is a partition of Rd into
simplicial cells such that each cell intersects at most n/r hyperplanes. The following is known [17, 18]:

Lemma 16 For any set of n hyperplanes in Rd, there exists a (1/r)-cutting with O(rd) cells. Furthermore,
there is a data structure for point location in the (1/r)-cutting, also requiring O(rd) space and answering
queries in O(log r) time.

We set r = (n·sd−1)1/d. For each cell γ in the cutting, we store the mode of the hyperplanes that lie strictly
below γ. This component of our data structure requires O(rd) = O(n ·sd−1) space. In primal space, we build
a simplex range reporting data structure [13, 49] for all of the points with S = O(n · sd−1) space. This data
structure reports the k points in a query simplex in O((n/S1/d) polylog n+k) = O((n/s)1−1/d polylog n+k)
time. Also, for each colour i, we build a separate half-space range counting data structure [13, 49] for the

ni points of colour i, with Si = O(ni · sd−1) space and O(ni/S
1/d
i + log ni) = O((ni/s)

1−1/d + log n) query
time. The total space is O(n · sd−1).

Given a dual query point q, we first identify the cell γ of the (1/r)-cutting that contains q in O(log r)
time. The mode of the hyperplanes below q is either the colour stored at cell γ or one of the colours of the
hyperplanes intersecting γ. We can find the O(n/r) hyperplanes intersecting γ by simplex range reporting
in primal space in O((n/s)1−1/d polylog n+n/r) time, since the set of all hyperplanes intersecting a simplex
dualizes to a polyhedron of O(1) size. For each hyperplane that intersects γ and lies below q, we perform a
half-space range counting query for the points of the colour of the hyperplane in primal space to determine the

actual mode. The running time of this step is O
(∑O(n/r)

i=1 (ni/s)
1−1/d + (n/r) log n

)
. By Hölder’s inequality,

the sum in the first term is bounded by O((n/r)1/d · (n/s)1−1/d) = O((n/s)1−1/d2) for r = (n · sd−1)1/d. The
second term (n/r) log n = (n/s)1−1/d log n does not dominate except when n/s = O(polylog n).
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Theorem 17 Given a set P of n points in Rd, each of which is assigned a colour, and any fixed s ∈
{1, . . . , n}, there exists a data structure requiring O(n · sd−1) space that supports half-space range mode

queries in O((n/s)1−1/d2 + polylog n) time. In particular, by setting s = 1, there exists a data structure

requiring O(n) space that supports half-space range mode queries in O(n1−1/d2) time.

A similar approach works for other ranges (e.g., simplices, balls, and other constant-degree semialgebraic
sets) by transforming query ranges to query points in a higher dimension, and using cuttings in this higher-
dimensional space.

11 Discussion and Directions for Future Research

We close by mentioning a few interesting open problems. A useful generalization of the problem is to return
the kth most frequently occurring element (or the k most frequent elements) in a query range. Due to its
dependence on precomputed modes stored in array S, an analogous generalization of our methods (except
for the third method) seems unlikely without a significant increase in space, if k is large.

Open Problem 1 Construct an O(n)-space data structure for identifying the kth most frequently occurring
element (or the k most frequent elements) in the range A[i : j] in time O(n1−ε) (or O(n1−ε + k)) for some
constant ε > 0, where i, j, and k are given at query time.

We have given (near-)linear-space data structures for multiple variants of range mode, including dynamic
range mode in an array, orthogonal range mode for a d-dimensional point set and half-space range mode for
a d-dimensional point set. Our results, in various ways, build on and generalize the techniques of Krizanc
et al. [47]. It is unknown whether there are entirely different approaches that can achieve smaller exponents
on n in the query and update times of these data structures.

Open Problem 2 Is there a linear-space dynamic data structure for range mode in an array that supports
queries and updates in O(

√
npolylog n) time?

Open Problem 3 Is there a (near-)linear-space data structure for orthogonal range mode in Rd that sup-
ports queries in o(n1−1/2d) time?

Open Problem 4 Is there a linear-space data structure for half-space range mode in Rd that supports
queries in o(n1−1/d2) time?

Lastly, the following open problem is likely difficult since currently no techniques seem capable of proving
unconditional super-polylogarithmic cell probe lower bounds:

Open Problem 5 Prove a tight, unconditional lower bound on the worst-case query time required by any
O(n)-space data structure that supports range mode queries on an array of n items.
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