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Bounding Interference in Wireless Ad Hoc
Networks with Nodes in Random Position

Majid Khabbazian, Stephane Durocher, Alireza Haghnegahdar, and Fabian Kuhn

Abstract—Given a set of positions for wireless nodes, the interference minimization problem is to assign a transmission radius (i.e.,
a power level) to each node such that the resulting communication graph is connected, while minimizing the maximum (respectively,
average) interference. We consider the model introduced by von Rickenbach et al. (2005), in which each wireless node is represented
by a point in Euclidean space on which is centred a transmission range represented by a ball, and edges in the corresponding graph are
symmetric. The problem is NP-complete in two or more dimensions (Buchin 2008) and no polynomial-time approximation algorithm is
known. We show how to solve the problem efficiently in settings typical for wireless ad hoc networks. If nodes are represented by a set
P of n points selected uniformly and independently at random over a d-dimensional rectangular region, then the topology given by the
closure of the Euclidean minimum spanning tree of P has O(logn) maximum interference with high probability and O(1) expected
interference. We extend the first bound to a general class of communication graphs over a broad set of probability distributions.
We present a local algorithm that constructs a graph from this class; this is the first local algorithm to provide an upper bound on
expected maximum interference. Finally, we disprove a conjecture of Devroye and Morin (2012) relating the maximum interference of
the Euclidean minimum spanning tree to the optimal maximum interference attainable.

Index Terms—interference minimization, topology control, random points, wireless networks, communication graph.
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1 INTRODUCTION

1.1 Motivation
Establishing connectivity in a wireless network can be a
complex task for which various (sometimes conflicting)
objectives must be optimized. To permit a packet to
be routed between any two nodes in a network, the
corresponding communication graph must be connected.
In addition to requiring connectivity, various properties
can be imposed on the network, including low power
consumption [33], [45], bounded average traffic load [16],
[24], small average hop distance between sender-receiver
pairs [2], low dilation (t-spanner) [2], [7], [10], [11], [26],
[34], [41], and minimal interference; this latter objective,
minimizing interference, is the focus of much recent
research [2], [5], [6], [9], [15], [22], [28], [30]–[32], [35],
[37]–[39], [45]–[49] and of this paper.

The amplitude of a radio signal transmitted at a node
p and received at a node q decreases as the distance
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between p and q increases. The signal from p must be
sufficiently strong for q to receive it. That is, for a given
transmission power level at node p, there exists some
threshold, say r(p), such that if q receives a message from
p, then the distance from p to q can be at most r(p). We
model transmission in a wireless network by assigning to
each wireless node p a radius of transmission r(p), such
that every node within distance r(p) of p can receive a
transmission from p, whereas no node at greater distance
from p can. However, the distance between p and q alone
is not sufficient to determine successful communication
between p and q; even if q is within distance r(p), signals
sent from other nodes could interfere with the signal
from p received at q. We adopt the interference model
introduced by von Rickenbach et al. [48] which is related
to the geometric radio network model of Dessmark and
Pelc [13] and other early geometric models for wireless
networks [18], [21].

We measure interference at node p by the number
of nodes that have p within their respective radii of
transmission. Given a set of wireless nodes whose po-
sitions are represented by a set of points P , we consider
the problem of identifying a connected network on
P that minimizes the maximum (respectively, average)
interference. The problem of constructing the network is
equivalent to that of assigning a transmission radius to
each node (in general, Θ(n) distinct radii are assigned
to a set of n nodes); once the transmission radius of
each node is fixed, the corresponding communication
graph and its associated maximum interference are also
determined. Conversely, once a graph is fixed, each
node’s transmission radius is determined by the distance
to its furthest neighbour. This model and, in particular,
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the interference minimization problem applied to this
model are the focus of numerous publications and have
generated significant recent research interest [2], [5],
[9], [15], [22], [28], [30]–[32], [37], [38], [46]–[49]. Fur-
thermore, a number of important algorithmic questions
remain open with respect to interference minimization in
this model. While models such as SINR arguably provide
a more realistic physical representation of interference
in a wireless network (e.g., [1], [19], [36], [40], [42]),
algorithmic problems such as interference minimization
are significantly more difficult to solve in the SINR
model, motivating continued examination of interference
minimization under both models. Finally, in some cases,
a solution to a problem set in the model used in this
work leads to an approximate solution to the corre-
sponding problem under the SINR model (e.g., [31]). See
Section 1.3 for a formal definition of the model and see
Figure 1 for an example.

Given a set of points P in the plane, finding a con-
nected graph on P that minimizes the maximum inter-
ference is NP-complete [9]. A polynomial-time algorithm
exists that returns a solution with maximum interference
O(
√
n), where n = |P | [22]. Even in one dimension, for

every n there exists a set of n points P such that any
graph on P has maximum interference Ω(

√
n) [48]. All

such known examples involve specific constructions (i.e.,
exponential chains). We are interested in investigating a
more realistic class of wireless networks: those whose
node positions observe common random distributions
that better model actual wireless ad hoc networks.

When nodes are positioned on a line (sometimes called
the highway model), a simple heuristic is to assign to
each node a radius of transmission that corresponds to
the maximum of the distances to its respective nearest
neighbours to the left and right. In the worst case, such
a strategy can result in Θ(n) maximum interference
when an optimal solution has only Θ(

√
n) maximum

interference [48]. Recently, Kranakis et al. [32] showed
that if n nodes are positioned uniformly at random on
an interval, then the maximum interference provided by
this heuristic is Θ(

√
log n) with high probability.

1.2 Overview of Results

In this paper, we examine the corresponding interference
minimization problems in two and higher dimensions.
We generalize the nearest-neighbour path used in the
highway model to the Euclidean minimum spanning
tree (MST), and show that with high probability, the
maximum interference of the MST of a set of n points se-
lected uniformly at random over a d-dimensional region
[0, 1]d is O(log n), for any fixed d ≥ 1. Our techniques
differ significantly from those used by Kranakis et al. [32]
to achieve their results in one dimension. As we show
in Section 3, our results also apply to a broad class of
random distributions, denoted D, that includes both the
uniform random distribution and realistic distributions
for modelling random motion in mobile wireless net-

works, as well as to a large class of connected spanning
graphs that includes the MST.

In Section 3.4 we present a local algorithm that
constructs a topology whose maximum interference is
O(log n) with high probability when node positions are
selected according to a distribution in D. Previous local
algorithms for topology control (e.g., the cone-based
local algorithm (CBTC) [33]) attempt to reduce transmis-
sion radii (i.e., power consumption), but not necessarily
the maximum interference. Similarly, others attempt to
minimize interference but do not guarantee connectivity
(e.g., the k-neighbours algorithm [6]). Although reducing
transmission radii at many nodes is often necessary to
reduce the maximum interference, the two objectives dif-
fer; specifically, some nodes may require large transmis-
sion radii to minimize the maximum interference. Ours
is the first local algorithm to provide a non-trivial upper
bound on maximum interference. Our algorithm can be
applied to any existing topology to refine it and further
reduce its maximum interference. Consequently, our so-
lution can be used either independently, or paired with
another topology control strategy. Section 6 presents the
analysis of an empirical evaluation of our algorithm with
a suite of simulation results on static, mobile, and real
GPS track data.

In Section 4 we consider the problem of minimizing
the average interference and show that the expected
interference of the MST of a set of n points selected
uniformly at random over the unit d-cube [0, 1]d is O(1).

In Section 5 we briefly examine the worst-case maxi-
mum interference, i.e., points are not necessarily drawn
from a random distribution and may be positioned
adversarially. We disprove a conjecture of Devroye and
Morin [15] relating the maximum interference of the
Euclidean minimum spanning tree to the optimal max-
imum interference attainable. We do so by constructing
a set P of n points on the line and show that every
connected communication graph on P has maximum
interference Ω(

√
n) and, furthermore, that the MST of

P has maximum interference O(
√
n).

1.3 Model and Definitions
We represent the position of a wireless node as a point
in Euclidean space, Rd, for some fixed1 d ≥ 1. For
simplicity, we refer to each node by its corresponding
point. Similarly, we represent a wireless network by its
communication graph, a geometric graph whose vertices
are a set of points P ⊆ Rd. Given a (simple and undi-
rected) graph G, we employ standard graph-theoretic
notation, where V (G) denotes the vertex set of G and
E(G) denotes2 its edge set. We say vertices u and v are
k-hop neighbours if there is a simple path of length k from

1. In the majority of instances, two or three dimensions suffice to
model an actual wireless network. Our results are presented in terms
of an arbitrary d since this permits expressing a more general result
without increasing the complexity of the corresponding notation.

2. Note, E(G) denotes the edge set of a graph G, whereas E[X]
denotes the expected value of the random variable X .
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Fig. 1: A set of points P = {a, b, c, d, e} in R2 and
two communication graphs on P , denoted G1 and G2,
illustrating radii of transmission by their corresponding
discs. Nodes b and c can communicate in G1 and G2

because dist(b, c) ≤ min{r(b), r(c)}. Node b receives in-
terference from node a in G1 and G2 because dist(a, b) ≤
r(a), but the two nodes cannot communicate in G1

because dist(a, b) > r(b). The maximum interference in
G1 is 4, achieved at node c. The maximum interference
in G2 is 3, achieved at nodes b, c, and d. G2 is an optimal
solution for P , i.e., OPT(P ) = 3.

u to v in G. When k = 1 we say u and v are neighbours.
The k-hop neighbourhood of a node u is the union of the
sets of its k′-hop neighbours for all k′ ≤ k.

We assume each node has a range of communication
that is equal in every direction (i.e., a radius of transmis-
sion), that different nodes can have different transmis-
sion radii, and we consider bidirectional communication
links, each of which is represented by an undirected
graph edge connecting two nodes. Specifically, each
node p has some radius of transmission, denoted by the
function r : P → R+, such that a node q receives
a signal from p (possibly interference) if and only if
dist(p, q) ≤ r(p), where dist(p, q) = ‖p − q‖2 denotes
the Euclidean distance between points p and q in Rd.
Similarly, a node q can communicate with p if and only
if dist(p, q) ≤ min{r(p), r(q)}. Interference at a node q
is defined by the number of nodes from which it can
receive a signal, whereas connectivity in the communi-
cation graph is determined by the nodes with which q
can communicate. For simplicity, suppose each node has
an infinite radius of reception, regardless of its radius of
transmission; that is, a node q can receive interference
from any node p if r(p) is sufficiently large, regardless
of r(q). See Figure 1 for an example.

Definition 1 (Communication Graph). A graph G is a
communication graph with respect to a point set P ⊆ Rd

and a function r : P → R+ if
1) V (G) = P , and
2) for all vertices p and q in V (G),

{p, q} ∈ E(G)⇔ dist(p, q) ≤ min{r(p), r(q)}. (1)

Together, set P and function r uniquely determine the
corresponding communication graph G. Alternatively,
a communication graph can be defined as the closure
of a given embedded graph. Specifically, if instead of
being given P and r, we are given an arbitrary graph H

embedded in Rd, then the set P is trivially determined by
V (H) and a transmission radius for each node p ∈ V (H)
can be assigned to satisfy (1) by

r(p) = max
q∈Adj(p)

dist(p, q), (2)

where Adj(p) = {q | {q, p} ∈ E(H)} denotes the
set of vertices adjacent to p in H . The communication
graph determined by H is the unique edge-minimal
supergraph of H that satisfies Definition 1. We denote
this graph by H ′ and refer to it as the closure of graph
H . Therefore, a communication graph G can be defined
either as a function of a set of points P and an associated
mapping of transmission radii r : P → R+, or as the
closure of a given embedded graph H (where G = H ′).

Definition 2 (Interference). Given a communication graph
G, the interference at a node p ∈ V (G) or at a point p ∈ Rd

is

interG(p) = |{q | q ∈ V (G), dist(q, p) ≤ r(q)}| ,

the maximum interference of G is

inter(G) = max
p∈V (G)

interG(p),

and the average interference of G is

interAvg(G) =
1

|V (G)|
∑

p∈V (G)

interG(p).

In other words, the interference at p, denoted
interG(p), is the number of nodes q such that p lies
within q’s radius of transmission3. This does not imply
the existence of the edge {p, q} in the corresponding
communication graph G; such an edge exists if and only
if the relationship is reciprocal, i.e., q also lies within p’s
radius of transmission.

Given a point set P , let G(P ) denote the set of con-
nected communication graphs on P . Let OPT(P ) de-
note the optimal maximum interference attainable over
graphs in G(P ). That is,

OPT(P ) = min
G∈G(P )

inter(G)

= min
G∈G(P )

max
p∈V (G)

interG(p).

Similarly, let OPTAvg(P ) denote the optimal average
interference attainable over graphs in G(P ). That is,

OPTAvg(P ) = min
G∈G(P )

interAvg(G).

Thus, given a set of points P representing the positions
of wireless nodes, the maximum interference minimization
problem is to find a connected communication graph G
on P that spans P such that the maximum interference

3. In some definitions of interference a node cannot cause interfer-
ence with itself. When p is a node in V (G), the respective values
of interference for the two definitions differ by an additive factor of
one. We include p in the tally to allow a more general measure of
interference whose definition applies consistently at any point p in
Rd, regardless of whether p coincides with a node in V (G).
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is minimized (i.e., its maximum interference is OPT(P )).
Similarly, the average interference minimization problem is
to find a connected communication graph G on P that
spans P such that the average interference is minimized
(i.e., its average interference is OPTAvg(P )).

We examine the maximum and average interference
of the communication graph determined by the closure
of MST(P ), where MST(P ) denotes the Euclidean mini-
mum spanning tree of the point set P . Our results apply
with high probability, which refers to probability at least
1 − n−c, where n = |P | denotes the number of network
nodes and c ≥ 1 is an arbitrary fixed constant.

2 RELATED WORK

2.1 Minimizing Maximum Interference under the
Bidirectional Model

We consider the bidirectional interference model (de-
fined in Section 1.3). This model was introduced by
von Rickenbach et al. [48], who gave a polynomial-
time approximation algorithm that finds a solution with
maximum interference O(n1/4 · OPT(P )) for any given
set of points P on a line, and a one-dimensional con-
struction showing that OPT(P ) ∈ Ω(

√
n) in the worst

case, where n = |P |. Halldórsson and Tokuyama [22]
gave a polynomial-time algorithm that returns a solution
with maximum interference O(

√
n) for any given set of

n points in the plane. Buchin [9] showed that finding an
optimal solution (one whose maximum interference is
exactly OPT(P )) is NP-complete in the plane. Tan et al.
[47] gave an O(n3nO(OPT(P )))-time algorithm for finding
a solution with interference OPT(P ) for any given set of
points P on a line. Kranakis et al. [32] showed that for
any set of n points P selected uniformly at random from
the unit interval, the nearest-neighbour path (MST(P )′)
has maximum interference Θ(

√
log n) with high prob-

ability. Sharma et al. [46] consider heuristic solutions
to the two-dimensional problem. Finally, recent results
by Devroye and Morin [15] extend some of the results
presented in this paper and answer a number of open
questions definitively to show that with high probability,
when P is a set of n points in Rd selected uniformly
at random from [0, 1]d, inter(MST(P )′) ∈ Θ((log n)1/2),
OPT(P ) ∈ O((log n)1/3), and OPT(P ) ∈ ω((log n)1/4).

2.2 Minimizing Maximum Interference under the Uni-
directional Model

If communication links are not bidirectional (i.e., edges
are directed) and the communication graph is required
to be strongly connected, then the worst-case maximum
interference decreases. Under this model, von Ricken-
bach et al. [49] and Korman [30] give polynomial-time
algorithms that return solutions with maximum inter-
ference O(log n) for any given set of points in the plane,
and a one-dimensional construction showing that in the
worst case OPT(P ) ∈ Ω(log n). Korman also shows
that for any P there exists a solution with interference

O(OPT(P )) for which no node requires a radius of
transmission larger than the length of the longest edge in
MST(P ). Bilò and Proietti [5] show that no polynomial-
time o(log n)-approximation algorithm is possible unless
NP ∈ DTIME(nlog logn) for any given set of n points in a
general metric space. Bilò and Proietti extend this lower
bound to the bidirectional interference model.

2.3 Minimizing Average Interference
In addition to results that examine the problem of
minimizing the maximum interference, some work has
addressed the problem of minimizing the average in-
terference. Lou et al. [37] give respective algorithms for
finding a set of radii that minimizes the average inter-
ference for any set P of n points in O(n3) time if P ⊆ R
and nO(n log(dmax/dmin)) time if P ⊆ R2, where dmax(G)
and dmin(G) are defined as in Theorem 3. Moscibroda
and Wattenhofer [39] give a polynomial-time O(log n)-
approximation algorithm for any set of n points in a
general metric space and show that no polynomial-
time o(log n)-approximation algorithm is possible unless
NP ∈ DTIME(nlog logn).

3 MINIMIZING MAXIMUM INTERFERENCE IN
RANDOM NETWORKS

3.1 Generalizing One-Dimensional Solutions
Before presenting our results on random sets of points,
we begin with a brief discussion regarding the possi-
bility of generalizing existing algorithms that provide
approximate solutions for one-dimensional instances of
the maximum interference minimization problem (in an
adversarial deterministic input setting).

Since the problem of identifying a graph that achieves
the optimal (minimum) interference is NP-hard in two or
more dimensions [9], it is natural to ask whether one can
design a polynomial-time algorithm to return a good ap-
proximate solution. Although von Rickenbach et al. [48]
give a Θ(n1/4)-approximate algorithm in one dimension
[48], the current best polynomial-time algorithm in two
(or more) dimensions by Halldórsson and Tokuyama [22]
returns a solution with maximum interference O(

√
n); as

noted by Halldórsson and Tokuyama, this algorithm is
not known to guarantee any approximation factor better
than the immediate bound of O(

√
n). The algorithm of

von Rickenbach et al. uses two strategies for constructing
respective communication graphs, and returns the graph
with the lower maximum interference; an elegant argu-
ment that depends on Lemma 1 bounds the resulting
worst-case maximum interference by Θ(n1/4 ·OPT(P )).
The two strategies correspond roughly to a) MST(P )′

and b) classifying every
√
nth node as a hub, joining

each hub to its left and right neighbouring hubs to form
a network backbone, and connecting each remaining
node to its closest hub. The algorithm of Halldórsson
and Tokuyama applies ε-nets, resulting in a strategy
that is loosely analogous to a generalization of the hub
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strategy of von Rickenbach et al. to higher dimensions.
One might wonder whether the hybrid approach of
von Rickenbach et al. might be applicable in higher
dimensions by returning MST(P )′ or the communication
graph constructed by the algorithm of Halldórsson and
Tokuyama, whichever has lower maximum interference.
To apply this idea directly would require generalizing
the following property established by von Rickenbach
et al. to higher dimensions:

Lemma 1 (von Rickenbach et al. [48] (2005)). For any set
of points P ⊆ R,

OPT(P ) ∈ Ω
(√

inter(MST(P )′)
)
.

However, von Rickenbach et al. also show that for
any n, there exists a set of n points P ⊆ R2 such that
OPT(P ) ∈ O(1) and inter(MST(P )′) ∈ Θ(n), which
implies that Lemma 1 does not hold in higher dimen-
sions. Consequently, techniques such as those used by
von Rickenbach et al. do not immediately generalize to
higher dimensions.

3.2 Randomized Point Sets
Although using the hybrid approach of von Rickenbach
et al. [48] directly may not be possible, Kranakis et
al. [32] recently showed that if a set P of n points is
selected uniformly at random from an interval, then the
maximum interference of the communication graph de-
termined by MST(P )′ is Θ(

√
log n) with high probability.

Here we show that if points are selected randomly from
d-dimensional Euclidean space, where d ∈ O(1), the
maximum interference of MST(P )′ is O(log n) with high
probability. We start with some basic definitions.

Definition 3 (Primitive Edge). Assume that a communica-
tion graph G is the closure of some embedded graph H . An
edge {p, q} ∈ E(G) is called primitive with respect to H if
{p, q} ∈ E(H) and min {r(p), r(q)} = dist(p, q).

Observe that because G is the closure of H , the radius
of any node u is equal to the distance to its farthest
neighbour in H and therefore, every node is incident
to at least one primitive edge.

Definition 4 (Bridge). An edge {p, q} ∈ E(G) in a commu-
nication graph G is bridged if there is a path joining p and q
in G consisting of at most three edges distinct from {p, q} such
that for each of the three edges {x, y}, dist(x, y) < dist(p, q),
or dist(x, y) = dist(p, q) and {x, y} is primitive.

Given a set of points P in Rd, let T (P ) denote the set
of all communication graphs G with V (G) = P such that
G is the closure of some embedded graph H and such
that no primitive edge in E(G) is bridged.

Further, let C(R, r, d) be the minimum number of d-
dimensional balls of radius r required to cover a d-
dimensional ball of radius R. The following property
holds since Rd is a doubling metric space for any
constant d [23] (equivalently, Rd has constant doubling
dimension [17], [20]):

Proposition 2. If d ∈ Θ(1) and R/r ∈ Θ(1), then
C(R, r, d) ∈ Θ(1).

For a given communication graph G, we de-
fine dmax(G) and dmin(G) as the lengths of the
longest and shortest edges of G, respectively. That
is, dmax(G) := max{s,t}∈E(G) dist(s, t) and dmin(G) =
min{s,t}∈E(G) dist(s, t). Halldórsson and Tokuyama [22],
Maheshwari et al. [38], and Lou et al. [37] give central-
ized algorithms for constructing graphs G, each with
maximum interference O(log(dmax(G)/dmin(G))). As we
show in Theorem 3, this bound holds for any graph G
in the class T (P ). In Section 3.4 we describe a local
algorithm for constructing a connected graph in T (P )
on any given point set P .

Theorem 3. Let P be a set of points in Rd. For any graph
G ∈ T (P ),

inter(G) ∈ O
(

log

(
dmax(G)

dmin(G)

))
.

Proof: We first normalize the scale of P to simplify
the proof. Let Q = {p·α | p ∈ P} denote a uniform scaling
of P by a factor of α = 1/dmin(G) and let H denote the
corresponding communication graph. That is, {u, v} ∈
E(G)⇔ {u·α, v ·α} ∈ E(H). Similarly, scale transmission
radii such that each node’s transmission radius in Q is
α times its corresponding node’s transmission radius in
P . Thus,

dmin(H) = 1 and dmax(H) =
dmax(G)

dmin(G)
. (3)

Consider some node p and let U be the set
of nodes that cause interference at p, i.e., U =
{u ∈ V : dist(u, p) ≤ r(u)}. Let g = dlog dmax(H)e. We
partition the set U into g+ 1 subsets U0, U1, . . . , Ug , such
that for each 0 ≤ i ≤ g, Ui =

{
u ∈ U : r(u) ∈ [2i, 2i+1)

}
.

We will show that for all i ∈ {0, . . . , g},

|Ui| ≤ C(2i+1, 2i−2, d) · C(2i+2, 2i−2, d). (4)

Applying Proposition 2, this implies |Ui| ∈ O(1) and
thus |U | ∈ O(log(dmax(H))), from which the claim of the
theorem follows.

Let us therefore fix some i ∈ {0, . . . , g} and assume
for the sake of contradiction that (4) does not hold. First
recall that every node v ∈ V is adjacent to some primitive
edge of length r(v). Hence, every node u ∈ Ui is adjacent
to some primitive edge of length r(u) ∈ [2i, 2i+1). We can
thus define a mapping ω : Ui → V such that for every
u ∈ Ui, {u, ω(u)} is a primitive edge of length r(u) ∈
[2i, 2i+1). Also note that all nodes in Ui are contained
in a ball with centre p and radius 2i+1. By Proposition
2, this ball can be covered with C(2i+1, 2i−2, d) balls of
radius 2i−2. Thus, because we assume (for contradiction)
that (4) does not hold, by the pigeonhole principle, there
must be a ball Bi of radius 2i−2 that contains a set U ′i
of at least C(2i+2, 2i−2, d) + 1 nodes from Ui. We define
Wi := {ω(u) : u ∈ U ′i}. Because nodes in U ′i are in ball Bi



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XXX, NO. YYY, ZZZ 6

(of radius 2i−2) and for all u ∈ U ′i ⊆ Ui, dist(u, ω(u)) ≥ 2i,
we have

Wi ∩ U ′i = ∅. (5)

We consider two cases: i) there are two nodes u1, u2 ∈
U ′i such that ω(u1) = ω(u2), and ii) for any two nodes
u1, u2 ∈ U ′i , ω(u1) 6= ω(u2).
CASE 1. We define w := ω(u1) = ω(u2). Without loss of
generality, assume that dist(u1, w) ≤ dist(u2, w). Because
u1 and u2 are both in ball Bi, dist(u1, u2) ≤ 2i−1 and
therefore dist(u1, u2) < dist(u1, w) ≤ dist(u2, w). Since
{u1, w} is a primitive edge, the edge {u2, w} is bridged.
Because also {u2, w} is a primitive edge, this is a contra-
diction to the assumption that G ∈ T (P ).
CASE 2. We have |Wi| = |U ′i | ≥ C(2i+2, 2i−2, d) + 1. Since
every node in Wi lies in a ball of radius 2i−2 + 2i+1 <
2i+2, and because a ball of radius 2i+2 can be covered
with C(2i+2, 2i−2, d) + 1 balls of radius 2i−2, there must
be a ball of radius 2i−2 that contains at least two nodes
w1 and w2 from Wi. Assume that u1, u2 ∈ U ′i such that
ω(u1) = w1 and ω(u2) = w2. Without loss of generality,
assume that either dist(u2, w2) ≥ dist(u1, w1) ≥ 2i.
Because dist(u1, u2) ≤ 2i−1, dist(w1, w2) ≤ 2i−1, and
because {u1, w1} is primitive, this implies that {u2, w2}
is bridged. Because {u2, w2} is a primitive edge too, this
is a contradiction to the assumption that G ∈ T (P ).

A contradiction is derived in both cases. Therefore, (4)
holds and thus the claim of the theorem follows.

In the next lemma, we show that MST(P )′ is in
T (P ). Consequently, T (P ) always includes a connected
communication graph. To ensure that MST(P ) is unique
we assume a global order ≺ on the set of edges such
that for any four nodes a, b, c, and d, dist(a, b) <
dist(c, d)⇒ {a, b} ≺ {c, d}. E.g., it suffices to compare the
coordinates of each edge’s endpoints lexicographically
when dist(a, b) = dist(c, d). We assume that MST(P ) is
the unique minimum spanning tree that is also minimal
with respect to the global order ≺.

Lemma 4. For any set of points P ⊆ Rd, MST(P )′ ∈ T (P ).

Proof: By definition, all primitive edges are edges
of MST(P ). Suppose there is a primitive edge {p, q} ∈
E(MST(P )) that is bridged. Therefore, there is a path T
from p to q in MST(P )′ that contains at most three edges,
such that for each edge {x, y} 6= {p, q} of T , dist(x, y) <
dist(p, q) or dist(x, y) = dist(p, q) and {x, y} is primitive
and thus also {x, y} ∈ E(MST(P )). Assume that {p′, q′}
is the largest edge in T with respect to the global order
≺. We must have dist(p′, q′) = dist(p, q), as otherwise all
edges in T will be smaller than {p, q} with respect to
the order ≺, hence a smaller MST can be constructed
by replacing {p, q} with one of edges of T . Since {p, q}
is bridged by T , the edge {p′, q′} has to be a primitive
edge and therefore {p′, q′} ∈ E(MST(P )). However, this
is a contradiction to the assumption that MST(P ) is the
minimal MST with respect to the order ≺ as it is possible
to get a smaller MST by replacing {p′, q′} with another
edge of T .

Theorem 3 implies that the interference of any graph
G in T (P ) is bounded asymptotically by the logarithm
of the ratio of the longest and shortest edges in G.
While this ratio can be arbitrarily large in the worst
case, we show that the ratio is bounded for many typical
distributions of points. Specifically, if the ratio is O(nc)
for some constant c, then the maximum interference is
O(log n).

Definition 5 (D). Let D denote the class of distributions
over [0, 1]d such that for any D ∈ D and any set P of
n ≥ 2 points selected independently at random according to
D, the minimum distance between any two points in P is
greater than n−c with high probability, for some constant c
(independent of n).

Corollary 5. For any integers d ≥ 1 and n ≥ 2, any
distribution D ∈ D, and any set P of n points, each
of which is selected independently at random over [0, 1]d

according to distribution D, with high probability, for all
graphs G ∈ T (P ), inter(G) ∈ O(log n).

Proof: Let dmin(G) = min{s,t}∈E(G) dist(s, t) and
dmax(G) = max{s,t}∈E(G) dist(s, t). Since points are con-
tained in [0, 1]d, dmax(G) ≤

√
d. Points in P are dis-

tributed according to a distribution D ∈ D. By Defini-
tion 5, with high probability, dmin(G) ≥ n−c for some
constant c. Thus, with high probability, we have

log

(
dmax(G)

dmin(G)

)
≤ log

( √
d

n−c

)
. (6)

The result follows from (6), Theorem 3, and the fact that
log(nc

√
d) ∈ O(log n) when d and c are constant.

Lemma 6. Let D be a distribution with domain [0, 1]d, for
which there is a constant c′ such that for any point x ∈ [0, 1]d,
we have D(x) ≤ c′, where D(x) denotes the probability
density function of D at x ∈ [0, 1]d. Then D ∈ D.

Proof: Let p1, p2, . . . , pn, be n ≥ 2 independent
random points in [0, 1]d with distribution D. Let c′′ =

1 + log c′+2
d and let Ei, 1 ≤ i ≤ n, denote the event that

there is a point pj , j 6= i, such that dist(pi, pj) ≤ n−c
′′

. Let
the random variable dmin be equal to mini6=j dist(pi, pj).
We have

Pr(dmin ≤ n−c
′′
) = Pr

 ∨
1≤i≤n

Ei

 ≤ ∑
1≤i≤n

Pr(Ei), (7)

where the inequality holds by the union bound. To estab-
lish an upper bound on Pr(Ei), consider a d-dimensional
ball Bi with centre pi and radius n−c

′′
. The probability

that there is point pj , j 6= i, in that ball is at most c′ times
the volume of Bi ∩ [0, 1]d. The volume of Bi ∩ [0, 1]d is at
most (2n−c

′′
)d. Therefore, Pr(Ei) ≤ c′(2n−c

′′
)d for every
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1 ≤ i ≤ n. Thus, by (7), we get

Pr(dmin > n−c
′′
) ≥ 1−

∑
1≤i≤n

Pr(Ei)

≥ 1− n · c′
(

2n−c
′′
)d

= 1− c′2d

nd+log c′+1

≥ 1− c′2d

n · 2d+log c′

= 1− 1

n
.

Therefore, D ∈ D. Note, here c = c′′ in Definition 5.

Corollary 7. The uniform distribution with domain [0, 1]d is
in D.

By Corollaries 5 and 7 we can conclude that if a set P
of n ≥ 2 points is distributed uniformly in [0, 1]d, then
with high probability, any communication graph in G ∈
T (P ) will have maximum interference O(log n). This is
expressed formally in the following corollary:

Corollary 8. Choose any integers d ≥ 1 and n ≥ 2. Let P
be a set of n points, each of which is selected independently
and uniformly at random over [0, 1]d. With high probability,
for all graphs G ∈ T (P ), inter(G) ∈ O(log n).

3.3 Mobility
Our results apply to the setting of mobility (e.g., mo-
bile ad hoc wireless networks). Each node in a mobile
network must periodically exchange information with
its neighbours to update its local data storing posi-
tions and transmission radii of nodes within its local
neighbourhood. The distribution of mobile nodes de-
pends on the mobility model, which is not necessarily
uniform. For example, when the network is distributed
over a disc or a box-shaped region, the probability
distribution associated with the random waypoint model
(RWP) [25] achieves its maximum at the centre of the
region, whereas the probability of finding a node close
to the region’s boundary approaches zero [24]. Since the
maximum value of the probability distribution associ-
ated with a RWP model is constant [24], by Corollary 5
and Lemma 6 we can conclude that at any point in time,
the maximum interference of the network is O(log n)
with high probability. In general, this holds for any ran-
dom mobility model whose corresponding probability
distribution has a constant maximum value.

3.4 Local Algorithm
As discussed in Section 1.1, existing local algorithms
for topology control attempt to reduce transmission
radii, but not necessarily the maximum interference. By
Lemma 4 and Corollary 5, if P is a set of n points
selected according to a distribution in D, then with high
probability inter(MST(P )′) ∈ O(log n). Unfortunately, a
minimum spanning tree cannot be generated using only

local information [29]. Thus, an interesting question is
whether each node can assign itself a transmission radius
using only local information such that the resulting
communication graph belongs to T (P ) while remain-
ing connected. We answer this question affirmatively
by presenting a local algorithm (LOCALRADIUSREDUC-
TION), that assigns a transmission radius to each node
such that if an initial communication graph Gmax is
connected, then the resulting communication graph is a
connected spanning subgraph of Gmax that belongs to
T (P ). Consequently, the resulting topology has maxi-
mum interference O(log n) with high probability when
nodes are selected according to any distribution in D.
Our algorithm can be applied to any existing topology
to refine it and reduce its maximum interference. Thus,
our solution can be used either independently, or paired
with another topology control strategy.

For the distributed algorithm, we assume that each
edge e has a unique identifier ID(e). For example, these
can be obtained locally by using unique node iden-
tifiers. The edge identifiers allow to define a global
order ≺ on all the possible edges of the communication
graph as follows. For any two edges {u1, v1} , {u2, v2} ∈
E(Gmax), we have {u1, v1} ≺ {u2, v2} if and only if
dist(u1, v1) < dist(u2, v2) or dist(u1, v1) = dist(u2, v2) and
ID({u1, v1}) < ID({u2, v2}).

Let P be a set of n ≥ 2 points in Rd and let rmax : P →
R+ be a function that returns the maximum transmission
radius allowable at each node. Let Gmax denote the
communication graph determined by P and rmax. We
suppose that Gmax is connected. Further, assume that
Adjmax(u) is the set of neighbours of a node u in Gmax.
Algorithm LOCALRADIUSREDUCTION assumes that each
node is initially aware of its maximum transmission
radius, its spatial coordinates, and its unique identifier.

The algorithm begins with a local data acquisition
phase, during which every node broadcasts its identity,
maximum transmission radius, and coordinates in a
node data message. Each message also specifies whether
the data is associated with the sender or whether it is
forwarded from a neighbour. Every node records the
node data it receives and retransmits those messages
that were not previously forwarded. Upon completing
this phase, each node is aware of the corresponding
data for all nodes within its 2-hop neighbourhood. The
algorithm then proceeds to a local transmission radius
reduction phase, which does not require any additional
communication. Consequently, each node only requires
knowledge of its 2-hop neighbourhood and the algo-
rithm is local.

We say that an edge {u, v} of Gmax is redundant iff there
is a path at most 3 connecting u and v such that for every
edge {x, y} of the path, we have {x, y} ≺ {u, v}. Let H
be the graph consisting of all edges of Gmax that are
not redundant. The communication graph G is defined
as the closure of graph H , i.e., G = H ′. Consequently,
each node u chooses r(u) to be the largest distance
to a neighbour v ∈ Adjmax(u) such that {u, v} is not
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LOCALRADIUSREDUCTION(u)
1 r′(u)← 0
2 for each v ∈ Adjmax(u) do
5 if dist(u, v) > r′(u) and ¬REDUNDANT(u, v) then
6 r′(u)← dist(u, v)

17 return r′(u)

Alg. 1: LOCALRADIUSREDUCTION(u)

REDUNDANT(a, b)
1 result← false
2 for each v ∈ Adjmax(a) do
3 if v ∈ Adjmax(b) and

{a, v} ≺ {a, b} and {v, b} ≺ {a, b} then
4 result← true
5 for each w ∈ Adjmax(v) do
3 if w ∈ Adjmax(b) and {a, v} ≺ {a, b} and

{v, w} ≺ {a, b} and {w, b} ≺ {a, b} then
7 result← true
8 return result

Alg. 2: REDUNDANT(a, b)

redundant. The details are given in Algorithm 1.
Algorithm LOCALRADIUSREDUCTION is 2-local, that

is, each node only needs to learn about the initial state
of nodes at distance at most 2 in Gmax. Further, the local
computation time at each node is bounded by O(∆3),
where ∆ denotes the maximum vertex degree in Gmax.
Each call to the subroutine BRIDGE costs at most O(∆2)
time and there are at most ∆ calls to BRIDGE from each
node.

Theorem 9. The communication graph constructed by Al-
gorithm LOCALRADIUSREDUCTION is in T (P ) and it is
connected if the initial communication graph Gmax is con-
nected.

Proof: Let G denote the communication graph con-
structed by Algorithm LOCALRADIUSREDUCTION. We
first prove that G is in T (P ). By construction, G is the
closure of the graph H consisting of all edges of Gmax

that are not redundant. An edge {u, v} is redundant if it
is the largest with respect to the global order ≺ in some
cycle of length at most 4 in Gmax. Consequently, H has
no cycles of length less than 5. For contradiction, assume
that there is an edge {u, v} ∈ E(G) which is bridged and
which is primitive (with respect to H). Then, there is a
path T of length at most 3 that connects u and v such that
for each edge {x, y} of T , either dist(x, y) < dist(u, v) or
dist(x, y) = dist(u, v) and {x, y} is primitive (with respect
to H). Hence, G contains a cycle of length at most 4 such
that the longest edges of the cycle are all primitive (and
thus also edges of H). This cannot be because from each
such cycle of Gmax the largest edge with respect to ≺ is
not included in H .

It remains to prove that G is connected if Gmax is con-
nected. For contradiction, assume that G and therefore
also H is not connected and consider a set S ⊂ V, S 6= ∅
such that H does not contain an edge between S and
V \ S. Let e = {u, v} be the smallest edge of Gmax

(with respect to ≺) over the cut (S, V \ S). Edge {u, v}
cannot be redundant because every cycle of Gmax that

contains {u, v} has to contain at least one other edge
{u′, v′} across the cut (S, V \ S) and by assumption
{u, v} ≺ {u′, v′}.

More generally, since transmission radii are only de-
creased, it can be shown that Gmin and Gmax have the
same number of connected components by applying
Theorem 9 on every connected component of Gmax.

4 MINIMIZING AVERAGE INTERFERENCE IN
RANDOM NETWORKS

We now examine the problem of minimizing the average
interference in a set of points whose positions are se-
lected uniformly and independently at random over the
unit square in the plane. To the authors’ best knowledge,
this work is the first to examine average interference in
a random setting.

We refer to the following lemma by Wan et al., where
the radius of a set P ⊆ Rd is

radP = min
p∈P

max
q∈P

dist(p, q).

Consequently, there exists a point p ∈ P such that a disc
of radius radP centred at p covers P [50].

Lemma 10 (Wan et al. [50] (2002)). For any set P ⊆ R2 of
points with radius one,∑

e∈E(MST(P ))

‖e‖2 ≤ 12.

In this section, we show that for any set P of points
selected uniformly and independently at random in a
unit square, E[interAvg(MST′(P ))] ∈ O(1). Interestingly,
this result does not hold for every distribution in D (see
Definition 5). For clarity of the proofs, throughout this
section, we assume that the distance between each pair
of nodes is unique, i.e., that points in P are in general
position.

Lemma 11 is similar to an earlier result of Penrose [43].
Penrose’s result does not immediately imply Lemma 11
and, as such, we include our proof for completeness.

Lemma 11. For any set P ⊆ [0, 1]2 of n points selected
uniformly and independently at random, with high prob-
ability, the longest edge in MST(P ) has length lmax ∈
O
(√

(log n)/n
)

.

Proof: Choose any real number c ≥ 2. We divide

[0, 1]2 into a square grid with
⌊√

n/(c log n)
⌋2

square

cells, each with side length
⌊√

c log n/n
⌋
≥
√
c log n/n.

We say two distinct cells are adjacent if they share a side.
The distance between any two points in adjacent cells is
at most

l =
√

5
⌊√

c log n/n
⌋
∈ Θ

(√
log n/n

)
.

Assume each cell contains at least one node. If we select
one representative node in each cell, connect every node
in each cell to its representative node, and connect repre-
sentative nodes in adjacent cells, the resulting graph will
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be connected with a maximum edge length of l. If every
cell contains a node, then the longest edge in MST(P )
has length at most l. Therefore, to prove the lemma it
suffices to show that every cell contains at least one node
with high probability.

The probability that a given cell does not contain any
node is at most

(
1−

⌊√
n

c log n

⌋−2)n

≤
(

1− c log n

n

)n

≤ exp

(
−c log n

n
· n
)

= n−c.

By a union bound, the probability that every cell contains
at least one node is at least 1 − n1−c, which completes
the proof.

Definition 6 (Communication Coverage). Given a com-
munication graph G and any node p ∈ V (G), the commu-
nication coverage of p is the region within the transmission
range of node p, which we denote covG(p). That is covG(p)
is the disc of radius r(p) centred at p. We define the commu-
nication coverage of G as

cov(G) =
⋃

p∈V (G)

covG(p).

The following lemma shows that for any set of points
P , the average interference within cov(MST′(P )) is con-
stant. Note that this result applies to a continuum of
points in the plane, and not only to interference at
discrete points in P .

Lemma 12. For any set of points P ⊆ R2, the average
interference in cov(MST′(P )) is O(1), i.e.,

1

| cov(MST′(P ))|

∫∫
cov(MST′(P ))

interMST′(P )(x, y) dx dy ∈ O(1).

Proof: Choose any set of points P = {p1, . . . , pn}
in R2. Let q be a point selected uniformly at
random in cov(MST′(P )). It suffices to show that
E[interMST′(P )(q)] ∈ O(1). Without loss of general-
ity, suppose that P has radius one. We partition
cov(MST′(P )) into n disjoint regions R1, . . . ,Rn such
that for each i, Ri includes all the points in R2 that are
within the transmission ranges of exactly i nodes in P .
For each i, let ei denote the longest edge in E(MST(P ))
incident to the point pi ∈ P . Note that ei and ej are not
necessarily distinct for i 6= j. However, for every i, there
is at most one j 6= i such that ei = ej .

E[interMST′(P )(q)] =

∑n
i=1 i|Ri|

| cov(MST′(P ))|

=

∑n
i=1 i|Ri|∑n
i=1 |Ri|

=

∑n
i=1 | covMST′(P )(pi)|∑n

i=1 |Ri|

=

∑n
i=1 π‖ei‖2∑n
i=1 |Ri|

≤
2
∑

e∈E(MST(P )) π‖e‖2∑n
i=1 |Ri|

(8)

≤
2
∑

e∈E(MST(P )) π‖e‖2∑
e∈E(MST(P ))

‖e‖2
4
√
3

(9)

= 8π
√

3.

(9) follows from (8) by the fact that the lozenges with
ei as their largest diameters (with angles π/3− ε) do not
overlap [50].

Lemma 13. Let l be a positive real number, let S be a square
of size l×l, and let P a set of n points in S. If the transmission
range of nodes is determined by MST(P ), then the average
interference in S is O(1), that is

1

l2

∫∫
S

interMST′(P )(x, y) dx dy ∈ O(1).

Proof: Choose any set of points P = {p1, . . . , pn} in
S. Let q be a point selected uniformly at random in S. It
suffices to show that E[interMST′(P )(q)] ∈ O(1). Without
loss of generality, suppose l = 1/

√
2. Note that the radius

of P is at most one as the diameter of S is one. We
partition S into n disjoint regions R1, . . . ,Rn such that
for each i, Ri includes all the points in R2 that are within
the transmission ranges of exactly i nodes in P . For each
i, let ei denote the longest edge in E(MST(P )) incident
to the point pi ∈ P . We have

E[interMST′(P )(q)] =

∑n
i=1 i|Ri|
|S|

= 2

n∑
i=1

i|Ri|

= 2

n∑
i=1

| covMST′(P )(pi) ∩ S|

≤ 2

n∑
i=1

| covMST′(P )(pi)|

= 2

n∑
i=1

π‖ei‖2

≤ 4
∑

e∈E(MST(P ))

π‖e‖2

≤ 4 · 12 (10)
= 48,

where (10) is by Lemma 10.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XXX, NO. YYY, ZZZ 10

Lemma 14. For any set of points P = {p1, . . . , pn} ⊆ R2

and any px ∈ P ,

interMST′(P )(px) ≤ interMST′(P\{px})(px) + 6. (11)

Proof: Without loss of generality, we show (11) holds
when px = p1. For any pair {pi, pj} ⊆ {p2, . . . , pn},
we show that if the edge {pi, pj} ∈ E(MST(P )), then
{pi, pj} ∈ E(MST(P \ {p1})). By contradiction, suppose
there exists a pair {pi, pj} ⊆ {p2, . . . , pn} such that
{pi, pj} ∈ E(MST(P )) and {pi, pj} /∈ E(MST(P \ {p1})).
By removing {pi, pj}, MST(P ) is divided into two con-
nected components, C1 and C2. Since MST(P \ {p1})
is connected, there must an edge {pk, pl} such that
pk ∈ C1 and pl ∈ C2. Note that {pk, pl} 6= {pi, pj} by
our assumption that {pi, pj} /∈ E(MST(P \ {p1})). Also,
k 6= 1 and l 6= 1 since p1 is not in V (MST(P \ {p1})).
Furthermore, dist(pk, pl) < dist(pi, pj) because otherwise
by replacing the edge {pk, pl}with {pi, pj}we can reduce
the sum of the lengths of edges in MST(P \ {p1}). This
derives a contradiction, however, as we can reduce the
sum of length of edges in MST(P ) by replacing {pi, pj}
with {pk, pl}. The above argument shows that the trans-
mission range of any non-neighbour of p1 determined
by MST(P \ {p1}) is not more than its transmission
range determined by MST(P ). We conclude the proof
by noting that for any set of points Q, the maximum
degree of MST(Q) is at most six, hence p1 has at most
six neighbours in MST(P ).

Theorem 15. Let n be a positive integer. Let
interAvg(MST′(P )) be a random variable equal to the
average interference of a set P of n points distributed
uniformly and independently at random in [0, 1]2. Then

E[interAvg(MST′(P ))] ∈ O(1).

Proof: Let P = {p1, . . . , pn} be a set of n points
selected uniformly at random in [0, 1]2.

E[interAvg(MST′(P ))] = E

[
1

n

n∑
i=1

interMST′(P )(pi)

]

=
1

n

n∑
i=1

E
[
interMST′(P )(pi)

]
(12)

= E
[
interMST′(P )(p1)

]
, (13)

where (12) holds because the expected value of a sum
of random variables (independent or not) is equal to
the sum of the individual expectations, and (13) holds
by the fact that, due to symmetry, for every {pi, pj} ⊆
{p1, . . . , pn},

E
[
interMST′(P )(pi)

]
= E

[
interMST′(P )(pj)

]
.

Since p1 is selected uniformly and independently at
random, by Lemma 13, we get

E[interMST′(P\{p1})(p1)] ∈ O(1).

Furthermore, by Lemma 14, we have

interMST′(P )(p1) ≤ interMST′(P\{p1})(p1) + 6.

Thus,

E[interMST′(P )(p1)] ≤ E[interMST′(P\{p1})(p1)] + 6

∈ O(1),

which completes the proof.

5 WORST-CASE MAXIMUM INTERFERENCE

We disprove a conjecture of Devroye and Morin [15]
relating the maximum interference of the Euclidean min-
imum spanning tree to the optimal maximum interfer-
ence attainable. We do so by constructing a set P of
n points on the line and show that every connected
communication graph on P has maximum interference
Ω(
√
n) and, furthermore, that the MST of P has maxi-

mum interference O(
√
n).

As shown by von Rickenback et al. [48], for any set of
n points P ⊆ R,

OPT(P ) ∈ Ω

(√
inter(MST′(P ))

)
, (14)

and OPT(P ) ∈ O
(√
n
)
. (15)

Halldórsson and Tokuyama [22] showed (15) also holds
for any set of n points P ⊆ R2. Devroye and Morin
conjectured the following:

Conjecture 16 (Devroye and Morin [15] (2012)). For any
fixed d and any set of n points P ⊆ Rd,

OPT(P ) ∈ O
(√

inter(MST′(P ))

)
. (16)

If true, Conjecture 16 and (14) would imply that for
any set of n points P ⊆ R,

OPT(P ) ∈ Θ

(√
inter(MST′(P ))

)
. (17)

We disprove Conjecture 16 by the following proposition:

Proposition 17. For any n ≥ 1 there exists a set of n points
P ⊆ R such that OPT(P ) ∈ Θ (

√
n) and inter(MST′(P )) ∈

Θ (
√
n).

Proof: Choose any n′ ≥ 1 and let n = b
√
n′c2. We

define a set P of n points. If n < n′, define a set P ′ of
n′ points by adding any n′ − n points to P . Observe
that OPT(P ′) ∈ Θ(OPT(P )) and inter(MST′(P ′)) ∈
Θ(inter(MST′(P ))).

von Rickenback et al. [48] define an exponential chain
as a sequence of points on the line such that each gap
between adjacent points is twice the length of the pre-
ceding gap. Let P0 denote an exponential chain of dn/2e
points in which the first two points are separated by a
gap of length 1. Since for each k > 1, 2k >

∑k−1
i=0 2i, it

follows that every node in MST′(P0) causes interference
at the first node, resulting in inter(MST′(P0)) ∈ Θ(n).
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Fig. 2: logarithmic-scale illustration of spacing between
adjacent points in P (not to scale)

We modify the exponential chain in set P0 by adding
a gap of length 2

√
n+k following the gap of length 2k in

P0, for each k ∈ {0, 1, . . . , bn/2c − 1}. Let P denote the
new set of n points (see Figure 2).

Observe that any node can cause interference to at
most two nodes to its right; interference at nodes to its
left, however, can be significantly greater. Therefore, each
of the first

√
n nodes causes interference in at most

√
n+1

other nodes.
We now show that inter(MST′(P )) ≤ 2

√
n+ 3. Choose

any i ∈ {
√
n+ 1, . . . , n/2− 1}.

2
√
n+i < 2

√
n+i + 2i−1 − 2i−

√
n−2

= 2i−1 +

i−1+
√
n∑

j=i−
√
n−1

2j

=

i−1+
√
n∑

j=i−1
2j +

i−1∑
j=i−

√
n−1

2j

=

i−1∑
j=i−1−

√
n

[
2
√
n+j + 2j

]
. (18)

By (18), no edge of length 2
√
n+i in MST′(P ) can cause

interference at any edge beyond the first 2
√
n edges

immediately to its left. Since interference caused to the
right of any edge is limited to at most its next two
right neighbours and each node interferes with itself,
therefore,

inter(MST′(P )) ≤ 2
√
n+ 3 ∈ O(

√
n). (19)

Next, we show that inter(MST′(P )) ∈ Ω(
√
n). Choose

any i ∈ {
√
n+ 1, . . . , n/2− 1}.

2
√
n+i =

√
n+i−1∑
j=0

2j + 1

>

√
n+i−1∑

j=i−
√
n

2j

=

√
n+i−1∑
j=i

2j +

i−1∑
j=i−

√
n

2j

=

i−1∑
j=i−

√
n

[
2
√
n+j + 2j

]
. (20)

By (20), any edge of length 2
√
n+i in MST′(P ) causes

interference at the 2(
√
n − 1) edges immediately to its

left. Therefore,

inter(MST′(P )) ≥ 2(
√
n− 1) ∈ Ω(

√
n). (21)

By (19) and (21), inter(MST′(P )) ∈ Θ(
√
n).

Next we show that any longer edge (any edge not in
MST(P )) causes interference at the first node. Any such
edge must span two adjacent edges of MST(P ), whose
respective lengths are 2i and 2i+

√
n for some i. Choose

any i ∈ {
√
n+ 1, . . . , n/2− 1}. Since

2i+
√
n + 2i >

i+
√
n−1∑

j=0

2j +

i−1∑
j=0

2j ,

any edge not in MST(P ) causes interference at the
leftmost node.

Choose any communication graph GP on P . Consider
the partition of P into a sequence of Θ(

√
n) blocks, each

containing Θ(
√
n) points.

CASE 1. Suppose every node in some block is adjacent
only to its immediate neighbours. Locally, this block is
analogous to MST′(P ), resulting in interference Ω(

√
n)

within the block and inter(GP ) ∈ Ω(
√
n).

CASE 2. Suppose every block contains some node that
is not in MST(P ). Consequently, each block contains
a node that interferes with the first node, resulting in
Ω(
√
n) at the first node, since there are Θ(

√
n) blocks.

Therefore,
OPT(P ) ∈ Ω

(√
n
)
. (22)

The result follows by (19) and (22) since OPT(P ) ≤
inter(MST′(P )).

6 SIMULATION

We evaluated the performance of Algorithm LOCALRA-
DIUSREDUCTION in three settings (simulated static wire-
less networks, simulated mobile wireless networks, and
real GPS track data) and compared it against four topol-
ogy control algorithms: i) the cone-based local topology
control (CBTC) algorithm [33], ii) the k-neighbour algo-
rithm [6], iii) local computation of the intersection of
the Gabriel graph and the unit disc graph (with unit ra-
dius rmax) [8], and iv) fixed-radius topologies (unit disk
graphs of radius rmax ∈ {100, 200, 300}). Performance
was evaluated by comparing average maximum inter-
ference, expected average interference, average physical
degree, and average energy cost (the sum of the squares
of the transmission radii [6]). These results are displayed
in Figures 3 (static), 4 (mobile), and 5 (GPS).

An edge {u, v} exists in the communication graph
generated by the k-neighbour algorithm if and only if u
is one of the k nodes nearest to v (by Euclidean distance)
and v is one of the k nodes nearest to u. Given the
value k, nodes can generate such a communication graph
locally. Given p ∈ (0, 1), the value of k is assigned such
that the resulting communication graph is connected
with probability at least p.

When simulating Algorithm LOCALRADIUSREDUC-
TION, each node collects the list of nodes in its 2-hop
neighbourhood in two rounds, applies the algorithm to
reduce its transmission radius and then broadcasts its
computed transmission radius, allowing neighbouring
nodes a final opportunity to eliminate asymmetric edges
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and further reduce their transmission radii while main-
taining connectivity in the network.

We used the random waypoint model (RWP) [25] and
real mobility trace data to simulate mobile networks. For
the RWP model we applied the approximated probabil-
ity distribution described by Bettstetter and Wagner [3]
to position nodes independently at random across the
network and generate independent snapshots in each
simulation iteration. Using the mobility trace data, we
estimated a probability density distribution which was
used to generate independent snapshots.

6.1 Simulation Parameters
We set the simulation region’s dimensions to 1000 metres
× 1000 metres. For both static and dynamic networks,
we varied the number of nodes n from 50 to 1000 in
increments of 50. We fixed the maximum transmission
radius rmax for each network to 100, 200, or 300 metres.
To compute the average maximum interference and the
expected average interference for static networks, for
each n and rmax we generated 100,000 static networks,
each with n nodes and maximum transmission radius
rmax, distributed uniformly at random in the simula-
tion region. In the RWP model, for each n and rmax,
we randomly generated 100,000 independent networks
using the following approximation for nodes’ spatial
distribution [3], [4]:

f(x, y) ≈ 9

16x3my
3
m

(x2 − x2m)(y2 − y2m),

where xm = 500, ym = 500, x ∈ [−xm, xm], and
y ∈ [−ym, ym] . For a better approximation, we refer
readers to [24]. To use the real mobility trace data of
Piorkowski et al. [44], which includes GPS coordinates
for trajectories of 537 taxi vehicles, we selected 500
vehicles with the largest trace samples, each has over
8000 sample points. We varied the number of nodes from
50 to 500 in increments of 50.

6.2 Simulation Results
As demonstrated by our simulation results, the average
maximum interference of unit disc graph topologies
increases linearly with n (see Figure 3a). Since these
plots are significantly larger (i.e., they correspond to
worse performance) than the other plots in all four
evaluation criteria, unit disc graph plots are excluded
from subsequent figures to permit more detailed com-
parison. Although both the local Gabriel and CBTC
algorithms performed significantly better than the unit
disc graphs, the lowest average maximum interference
was achieved by the LOCALRADIUSREDUCTION and k-
neighbour algorithms, for which the corresponding plots
grow logarithmically with n, as seen in Figures 3b,
4a, and 5a. Note that the LOCALRADIUSREDUCTION
algorithm reduces the maximum interference to O(log n)
with high probability, irrespective of the initial maxi-
mum transmission radius rmax. LOCALRADIUSREDUC-
TION has average maximum interference slightly greater

than k-neighbour (Figures 3b, 4a, and 5a), but lower
expected average interference, average physical degree,
and average energy cost (Figures 3c–3e, 4b–4d, and 5b–
5d).

Simulation results obtained using a RWP model
closely match those obtained on a static network because
the distribution of nodes at any time during a random
walk is nearly uniform [12]. The spatial distribution of
nodes moving according to a RWP model is not uniform,
and is maximized at the centre of the simulation region
[24]. Consequently, the density of nodes is high near the
centre, resulting in greater interference at these nodes.

Finally, we evaluated the algorithm LOCALRADIUSRE-
DUCTION using real mobility trace data of Piorkowski
et al. [44], consisting of GPS coordinates for trajectories
of 537 taxi vehicles recorded over one month in 2008,
driving throughout the San Fransisco Bay area. We se-
lected the 500 largest traces, each of which has over 8000
sample points. To implement our algorithm, we selected
n taxis among the 500 uniformly at random, ranging
from n = 50 to n = 500 in increments of 50. As seen
in Figure 5, the results are similar to those measured in
our simulation. The k-neighbours algorithm produced
disconnected communication graphs (containing multi-
ple connected components) in 2.5% of instances, even
when the value of k was increased significantly (e.g., up
to k = 30). This is likely explained by the highly non-
uniform distribution of nodes in the track data. This dif-
ference is significant, however, because the k-neighbours
algorithm does not guarantee that the returned topology
is connected, failing to satisfy the primary objective of
the interference minimization problem for some input
instances.

7 CONCLUSION

Using Algorithm LOCALRADIUSREDUCTION, each node
determines its transmission radius as a function of
its 2-hop neighbourhood. Alternatively, suppose each
node could select its transmission radius at random
using a suitable distribution over [dmin(G), dmax(G)]. Can
such a strategy for assigning transmission radii ensure
connectivity and low maximum interference with high
probability? Similarly, additional topologies and local
algorithms for constructing them might achieve O(log n)
expected maximum interference. It can be shown that
every graph whose longest edge has length O(

√
log n/n)

has expected maximum interference O(log n). Devroye
et al. [14, Section 2.3] show that the longest edge in
a Gabriel graph has length O(

√
log n/n) with high

probability. Our experimental results suggest that the
CBTC local topology control algorithms may also pro-
vide O(log n) expected maximum interference. Since the
CBTC topology of a set of points P is not in T (P ) in
general, whether this bound holds remains to be proved.

As mentioned in Section 2, multiple open questions
related to interference on random sets of points were
resolved recently by Devroye and Morin [15]. Several
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Fig. 3: Comparing the LOCALRADIUSREDUCTION algorithm against other local topology control algorithms on a
simulated static wireless network. Plots for the fixed-radius algorithm are omitted from Figures 3b–3c to allow the
remaining plots to be more easily differentiated.
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Fig. 4: Comparing the LOCALRADIUSREDUCTION algorithm against other local topology control algorithms on a
simulated mobile network.
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Fig. 5: Comparing the LOCALRADIUSREDUCTION algorithm against other local topology control algorithms on
recorded mobile vehicular GPS tracks. The communication graphs returned by the k-neighbours algorithm were
disconnected in 2.5% of cases. Performance results for the connected and disconnected graphs are not differentiated
in the plots.
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questions remain open related to the algorithmic prob-
lem of finding an optimal solution (one whose maximum
interference is exactly OPT(P )) when node positions
may be selected adversarially. The complexity of the
interference minimization problem in one dimension
remains open; at present, it is unknown whether the
problem is polynomial-time solvable or NP-hard [47].
While the problem is known to be NP-complete in
two dimensions [9], no polynomial-time approximation
algorithm nor any inapproximability hardness results
are known. Several closely related problems also remain
open, including the problem of finding a c-connected
graph whose associated maximum interference is min-
imized for a given input point set and a given fixed
integer c, as well as to examine the interference mini-
mization problem using models for wireless networks
that consider physically-based representations for inter-
ference (see Section 1.1).
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guaranteed delivery in ad hoc wireless networks. Wireless Net.,
7(6):609–616, 2001.

[9] K. Buchin. Minimizing the maximum interference is hard. CoRR,
abs/0802.2134, 2008.

[10] M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger.
Does topology control reduce interference? In Proc. MobiHoc,
pages 9–19, 2004.

[11] M. Damian, S. Pandit, and S. V. Pemmaraju. Local approximation
schemes for topology control. In Proc. PODC, pages 208–218, 2006.

[12] A. Das Sarma, D. Nanongkai, and G. Pandurangan. Fast dis-
tributed random walks. In Proc. PODC, pages 161–170, 2009.

[13] A. Dessmark and A. Pelc. Tradeoffs between knowledge and time
of communication in geometric radio networks. In Proc. SPAA,
pages 59–66, 2001.

[14] L. Devroye, J. Gudmundsson, and P. Morin. On the expected
maximum degree of Gabriel and Yao graphs. Adv. Appl. Prob.,
41(4):1123–1140, 2009.

[15] L. Devroye and P. Morin. A note on interference in random point
sets. In Proc. CCCG, volume 24, pages 201–206, 2012.

[16] S. Durocher, E. Kranakis, D. Krizanc, and L. Narayanan. Balancing
traffic load using one-turn rectilinear routing. J. Interconn. Net.,
10(1–2):93–120, 2009.

[17] P. Fraigniaud, E. Lebhar, and Z. Lotker. A doubling dimension
threshold θ(log logn) for augmented graph navigability. In Pro-
ceedings of the European Symposium on Algorithms (ESA), volume
4168 of LNCS, pages 376–386. Springer, 2006.

[18] E. Gilbert. Random plane networks. J. SIAM, 9(4):533–543, 1961.
[19] O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer. Complexity

in geometric SINR. In Proc. MOBIHOC, pages 100–109, 2007.
[20] A. Gupta, R. Krauthgamer, and J.R. Lee. Bounded geometries,

fractals, and low-distortion embeddings. In Proc. FOCS, pages
534–543, 2003.

[21] W. K. Hale. Frequency assignment: Theory and applications. Proc.
IEEE, 68(12):1497–1514, 1980.
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