Faster Optimal Algorithms For Segment Minimization
With Small Maximal Value *

Therese Bied|, Stephane Duroch&rCeéline Engelbeeh Samuel Fiorirtl, and
Maxwell Yound'

! David R. Cheriton School of Computer Science, University\aterloo, ON, Canada
{biedl,m22young@uwaterloo.ca
2 Department of Computer Science, University of Manitoba,,MMBnada
durocher@cs.umanitoba.ca
® Département de Mathématique, Université Libre de BilaggBrussels, Belgium
{celine.engelbeen,sfiorif@ulb.ac.be

Abstract. The segmentminimization problem consists of finding thellesizset
of integer matricessegmentgthat sum to a given intensity matrix, such that each
summand has only one non-zero value (fegment-valieand the non-zeroes
in each row are consecutive. This has direct applicatiofsténsity-modulated
radiation therapy, an effective form of cancer treatment.

We study here the special case when the largest vdlue the intensity
matrix is small. We show that for an intensity matrix with omsv, this prob-
lem is fixed-parameter tractable (FPT)Afy our algorithm obtains a significant
asymptotic speedup over the previous best FPT algorithmalé show how
to solve the full-matrix problem faster than all previoukhown algorithms. Fi-
nally, we address a closely related problem that deals wittinmizing the num-
ber of segments subject to a minimwwam-on-timedefined as the sum of the
segment-values. Here, we obtain an almost-quadratic speed

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effeetform of cancer treatment,
where radiation produced by a linear accelerator is dedtvéo the patient through a
multileaf collimator (MLC). The MLC is mounted on an arm then revolve freely
around the patient so that he or she can be irradiated froeradeangles. We focus
on the so-calledstep-and-shoanhode, where the radiation is delivered in a series of
steps. In each step, two banks of independent metal leawbs MLC are positioned
to obstruct certain portions of the radiation field, whilaving others exposed. Neither
the head of the MLC, nor its leaves move during irradiatiotreatment plan specifies
the amount of radiation to be delivered along each angle.

For any given angle, the radiation field is discretized ancbdgosed inton x n
pixels, wheremn is typically the number of pairs of leaves of the MLC. Thisetetines
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2 Biedl, Durocher, Engelbeen, Fiorini, Young

ﬁ@

Fig. 1. An example of a segmentation of an intensity matrix whidre- 4.
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a decomposition of the radiation beam intox n beamletsThe amount of radiation is
represented as an x n intensity matrixA of non-negative integer values, whose entries
represent the amount of radiation to be delivered througletiresponding pixel.

The leaves of the MLC can be seen as partially covering rows; gor each row
i of A there are two leaves, one of which may slide inwards fromefted cover the
elements in columnsto ¢ — 1 of that row, while the other may slide inwards from the
right to cover the elements in columnst 1 to n. Thus the entries oft that are not
covered form an intervadl, r] := {{, £+ 1,...,r} of consecutive columns. After each
step, the amount of radiation applied in that step (this ¢Hearcger step) is subtracted
from each entry ofd that has not been covered. The irradiation is completed ahen
entries ofA have reached.

Setting leaf positions in each step requires time. Miningzihe number of steps
reduces treatment time, which increases patient comfod,can result in increased
patient throughput, reduced machine wear, and overallcegtigost of the procedure.
Minimizing the number of steps for a given treatment plarhis primary objective of
this paper.

Formally, asegments am x n binary matrixs such that ones in each row 6fare
consecutive. Each segmesithas an associated non-negative integer weight which we
call the segment-valuedenoted byvs(S) or simply »(S) whenS is understood. We
call a segment &-segment if its value ig. A segmentatiof A is a set of segments
whose weighted sum equals So,S is a segmentation of if and only if we have
A =73 5csv(S5)S. Figure 1illustrates the segmentation of an intensity iatr

The (minimum-cardinality) segmentation problég; given an intensity matrixi,
to find a minimum cardinality segmentation.4f We also consider the special case of a
matrix A with one row, which we call theingle-row segmentation problein contrast
with the more generdull-matrix segmentation problemith m rows.

We also briefly examine a different, but closely reldedminproblem: find a min-
imum cardinality segmentation among those with minimbe@am-on-timedefined as
the total valuéy_ ;. s v(5) of the segmentatioh As the segmentation problem focuses
on the time incurred for establishing leaf positions, ojting the beam-on-time also
has implications for making procedures more efficient byuoitg the time spent ad-
ministering the treatment corresponding to the segmeptagshlves.

Related Work: The segmentation problem is known to be NP-complete in tloagt
sense, even for a single row [9, 2, 3], as well as APX-comfilteBansalet al. [4]

provide a24/13-approximation algorithm for the single-row problem andegbetter
approximations for more constrained versions. Work by i@skt al.[10] shows that

4 The lex-min problem is also known as thgin DT-min DCproblem where DT stands for
decomposition timé.e., the beam-on-time) and DC stands for decompositicdicality (i.e.,
the number of segments); however, we refer to this as theniexproblem throughout.
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the singleeolumnversion of the problem is NP-complete and provides sometrioia
lower bounds given certain constraints. Work by Leaml.[16] gives two approxima-
tion algorithms for the fulln x n segmentation problem, and Biestlal. [6] extend this
work to achieve better approximation factors.

A number of heuristics are known [3,18, 11, 14] as well as apghnes for obtain-
ing optimal (exact) solutions [7, 1, 17]. Particularly nedat to our work is that of Cam-
bazardet al. [8] who show that the segmentation of a single row is fixecapuater
tractable (FPT); specifically, they give an algorithm whécihieves an optimal segmen-
tation inO(p(H)? n) time, whereH is the largest value int andp(H) is the number
of partitions ofH .

Kalinowski [15] studies the lex-min problem and gives paymial time algorithms
for the case whei/ is a constant. In the single-row case, he give®©@p(H)? n) time
algorithm. The solution output by this first algorithm isatgptimal for the minimum-
cardinality segmentation problem (this follows from knowesults, e.g. [4]). For gen-
eralm x n intensity matrices, he provide{}a(QH«/ﬁm n2H+2y time algorithm. From
this second algorithm, one can derive an algorithm for thle/fux n minimum seg-
mentation problem with time complexity(2¥ I°/% m n*!+3) by guessing the beam-
on-time7 of a minimum cardinality segmentation and appending a rothi¢antensity
matrix to increase its minimum beam-on-timeftpit can be shown that' € O(H? n).

Our Contributions: We summarize our contributions below:

— For the single-row segmentation problem, we provide a fastact algorithm. In
particular, our algorithm runs i®(p(H) H n) time, which is polynomial im so
long asH € O(log?®n). In comparison to the result of Cambazatdal. [8], our
algorithms is faster by a factor & (p(H )/ H).

Significant challenges remain in solving the full-matrixoplem and here we achieve
two important results:

— For generalH, we give an algorithm that yields an optimal solution to th#-f
matrix segmentation problem ifi(m n' /2(1=9) (1)) time for an arbitrarily small
constant > 0. In contrast, applying the variant of Kalinowski's algdmit men-
tioned above yields a worst-case run-timefafm n*+2). Therefore, our result
improves the run-time by more thai(n?3).

— For H = 2, the full matrix problem can be solved optimally i»(m n) time in
contrast to theD(mn?) time implied by the previous result for geneddl. This
result also has implications for the approximation aldoris in [6] where it can be
employed as a subroutine to improve results in practice.

Finally, we address the lex-min problem:

— For generalH, we give an algorithm that yields an optimal solution to th#-f
matrix lex-min problem in time& (m nH/Q(%—f)H). In comparison to the previous
best result by Kalinowski [15], our algorithm improves thum+time by more than
2(n?).

Therefore, our algorithms represent a significant asyngpggeed-up and the tech-
niques required to achieve these improvements is noratrDue to space restrictions,
we omit some proofs and details; these can be found in [5].
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2 Single-row segmentation

In this section, we give an algorithm for the single-row segtation problem that is
FPT in H, the largest value in the intensity matrik Since A has only one row, we
represent it as a vectot[1..n]. Let A[j] := A[j] — A[j — 1] for j € [n + 1] (for the
purpose of such definitions, we will assume tHjf] = A[n + 1] = 0.) We say that
there is anarkerbetween indey — 1 andj if A[j] # 0, i.e., if the value in4 changes.

Any segmentation of a row can tstandardizeds follows: (1) Every segmertt
beging(i.e., has its first non-zero entry) aedds(i.e., has its last non-zero entry) adja-
centto a marker. For if it doesn’t, then some other segmemi(st end wher&' begins
(or vice versa), and by moving all these endpoints to theastanarker, we retain a
segmentation without adding new segments. (2) Whenevegraese ends at a marker,
then no other segment of the same value begins at that m&ikentherwise the two
segments could be combined into one. Note that standaiatizatta segmentation can
only decrease the number©gegments for all; hence it can only improve the cardi-
nality of the segmentation and its beam-on time.

For the single-row problem, we can improve segments evehdurCall a segmen-
tation of A[1..n] compacif any two segments in it begin at different indices end end at
different indices. Similarly as above one can show:

Lemma 1. For any segmentatios of a single row, there exists a compact segmentation
S with [8'| < |S].

Our algorithm uses a dynamic programming approach that otespan optimal
segmentation of any prefix[1..;5] of A. We say that a segmentation.¢fl..;] is almost-
compactf any two segments in it begin at different indices, and amyg segments in
it either end at different indices or both end at ingeXVe will only compute almost-
compact segmentations; this is sufficient by Lemma 1. We coenthe segmentation
conditional on the values of the last segments in it.

Let S be a segmentation of vectet{1..5]; eachS € S is hence a vectof[1..j].
Define thesignatureof S to be the multi-set obtained by taking the valy&) of each
segment ending ii. Note that the signature of a segmentatiomff.. ] is a partition
of A[j], i.e., a multi-set of positive integers that sum4gj] < H. We use operations
such asJ, N, set-difference, subset, adding/deleting elements géred to multi-sets
in the obvious way.

The key idea of our algorithm is to compute the best almostgart segmentation
of A[1..j] subject to a given signature. Thus define a funcfi@s follows:

Given an integef and a partitionp of A[j], let f(j,¢) be the minimum number of
segments in an almost-compact segmentasian A[1..j] that has signature.

We will show thatf(j, ¢) can be computed recursively. To simplify computation we
willuse f(0, -) as a base case; we assume i@ = A[n + 1] = 0. The only possible
partition of0 is the empty partition, and s&(0, #) = 0 is our base case.

Given a partitionp of A[j], let®;_q(¢) be the set of those partitions dffj — 1]
that can be obtained from by deleting at most one element, and then adding at most
one element. The following recursive formula fbcan be shown:

Lemma?2. Forj > 1, f(j,¢) = min {f(j—1,¢)+]l¢ -]}
YEP;_1(d)

=1
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Theorem 1. The single-row segmentation problem can be solve@(p(H) H - n)
time andO(n + p(H)H) space, where(H) is the number of partitions df .

Proof. The idea is to computg(j, ¢) with Lemma 2 recursively with a dynamic pro-
gramming approach; the optimal value can then be founf{in+ 1, #). To achieve
the time complexity, we need to store the partitions in aadlé data structure. The key
property here is that any partitiahof A[j] < H hasO(v/H) distinct integers in the
set[H] := {1,..., H}. Thus, we can describe a partitiondn/H) space. We store
partitions using a trie where each node u9¢#7) space but allows access to the correct
child in constant time; a partition can then be locate®{v/H ) time.

So to computg’(n + 1, #), go throughy = 1, ..., n and through all partitions of
A[j]. For each distinct integeére ¢, compute the partitiosr € @;_1(¢) obtained by
deletingt and then adding one element so thas a partition ofA[j — 1]. Look up+
(and the value of (j — 1, ¢) stored with it) in the trie, ad¢fl¢ — || to it, and update
f(J, ¢) if the result is smaller than what we had before. Analyzirgsthloops, we see
that the runnning time i€ (n - p(H) - VH - v/ H) as desired. O

Note that the algorithm is fixed-parameter tractable wipeet to parametdi . It

is known thatp(H) < e VED [12], so this algorithm is in fact polynomial as long
asH € O(log2 n). In the present form, it only returns the size of the smaltes-
mentation, but standard dynamic programming techniquedeaused to retrieve the
segmentation in the same run-time with@flog n) space overhead.

3 Full-matrix segmentation

In this section, we give an algorithm that computes the opltsegmentation for a full
matrix, and which is polynomial as long &5is a constant.

3.1 Segmenting a row under constraints

The difficulty of full-matrix segmentation lies in that rowannot be solved indepen-
dently of each other, since an optimal segmentation of arfatrix does not mean that
the induced segmentations of the rows are optimal. Confidexample

111 111 000
222 =1000]+ (222
333 111 222

which is optimal, but the induced segmentation for the thimd is not optimal.

If S is a segmentation, then let;(S) be the number of-segments irS; note that
this defines a multi-set ovgH | which we refer to as thewlti-set M (S) defined by
segmentatiors. We now want to compute whether a ro#f1..n] has a segmentation
S such thatM(S) C v for some given multi-set. We do this again with dynamic
programming, by further restricting the segmentation t® finst j elements and by
restricting its signature. Thus define:

Given an integelj, a partitions of A[j], and a multiset> over [H], define
1'(4, ¢, v) to bel if there exists a segmentatighof A[l..j] with signatures
and multi-setM (S) C v. Definef(j, ¢, v) to be0 otherwise.
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For example, consided = [1 3 2 4], ¢ = {1,3} andv = {1,1,1,2,3}. Then
1’ (4, ¢,v) asks whether we can segmehtuch that at indext we use ond-segment
and ong-segment, and overall we use at most tHraegments, at most odesegment,
and at most ong-segment. The answer in this case is y@s3(2 4] = [1 1 0 0] +
[0220]+[0001]4+[000 3]),sof(4,¢,v) = 1. Note that we were allowed one
more 1-segment than was actually used; this is acceptable sircentiti-set of the
segmentation is allowed to be a subset of

We claim thatf’(-, -, -) has a simple recursive formula. The base case is ggaif
andf’(0,%,v) = 1 for all possible multi-sets. Forj > 1, we can comput¢’(j, ¢, v)
from f'(j — 1, -, -) as follows (details are in the full paper):

Lemma3. Forall j > 1,
f/(j7¢7y)_ ma, f/(j_171/;71/_(¢_1/;))' (1)

= X
¢ is a partition of A[j — 1]

We will illustrate it with the above example of = [1 32 4], ¢ = {1,3} and
v = {1,1,1,2,3}. Let ¢y = {2} andv’ = {1,1,2}. Thenf'(3,4,v’) = 1 since
[132] =[110]+ [022]. Furthermore, we havg — ¢ = {1,3} andv — (¢ — ¢) =
{1, 1,2} = v'. Therefore, the formula says thé{(4, ¢, v) should bel, which indeed it
is.

We now turn to the run-time of actually computirfg In the above definition, we
have not imposed any bounds enother than that it is a multi-set ovgi |. But clearly
we can restrict the multi-sets considered. Assume for a moithat we know an opti-
mal segmentatios™ of the full matrix. We call a multi-set relevantf v C M(S*).
Clearly it suffices to computg for all relevant multi-sets.

To find (a superset of) relevant multi-sets without knowi$g we exploit that
M(S8™) cannot contain too many segments of the same value. Reedlhtmarker
is a place where the values within a row changepjdie the number of markers in row
i, andp = max; p;. One can show the following:

Lemma 4. If all rows of A have at mosp markers, then there exists a minimum cardi-
nality segmentation that has at mgsgt2 segments of valuefor all ¢ € [H].

Now let M be all those multi-sets ov¢H | where all multiplicities are at mogy/2;
this contains all relevant multi-sets. We store these inHadimensional array with
indices in[0..p/2]; this takesO((p/2)") space, and allows lookup of a multi-set in
O(H) time. We can then compute the valuésj, ¢, v) with Algorithm 1.

The run-time of this algorithm is analyzed as follows. Compgi”’ (given v, ¢
ande) can certainly be done i@ (H) time. To look upf’(j — 1,1, v’), we first look
upv in the array inO(H) time. With each multi-set € M, we store all partitions of
A[j — 1] and of A[;] (for the current value of), and with each of them, the values of
F(j—1,4,v)andf’(j, v, v), respectively. Looking up or changing these values (given
v andq) can then be done i@ (v/H) time by storing partitions in tries.

So lines 9-11 requir®(H) time. They are executes H) times from line 8p(H)
times from line 6,|M] times from line 5, andh + 1 times from line 4; the run-time is
henceO(n(p/2 + 1) p(H)*H).
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Algorithm 1

1: LetM be all multi-sets where all multiplicities are at megt.
2: for all multi-setsr in M do

3: Initialize £'(0,0,v) = 1.
4: forj=1,...,n+1do
5: for all multi-setse in M do
6: for all partitionsg of A[j] do
7: Initialize f'(4,6,v) =0
8: for all partitionsy of A[j — 1] do
9: Compute/’ = v — (¢ — )
10: if f'(7—1,4,v")=1then
11: Setf!(j, ¢, ) = 1 andbreak
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for

As for the space requirements, we need to store all relevaitti-sets, and with
each, all partitions ofi[j — 1] and A[j], which takeg)(IT) space per partition. So the
total space i©) (p(H)H (p/2)H).

Lemma 5. Consider one rowA[1..n]. In O(n(p/2)% p(H)*H) time andO(p(H)H
(p/2)) space we can compute dh-dimensional binary arrayF such that for any
mi,....,mg < p/2we haveF(my,...,my) = 1if and only if there exists a segmen-
tation of A[1..n] that uses at most, segments of valuefor ¢ € [H].

3.2 Full-matrix

To solve the full-matrix problem, compute for all rowshe tableF; described in
Lemma 5. This takes tim@(mn(p/2)" p(H)? H) total. The space i© (p(H)H (p/2)")
per row, but once done with a roiwve only need to keep th@((p/2)) values for the
corresponding tabl&;; therefore, in total, it i$) (max{m, p(H)H }(p/2)").

Now, in O(m(p/2)H) time find the numbersny, ..., mg for which F; (m, ...,
myr) is 1 forall rowsi and for whichm; + - - - + myr is minimized. Then by definition
we can find a segmentatiaf) for each row: that has at most:; segments of value
for¢ € [H]. We can combine these segmentations in the natural way IE2¢6§) to
obtain a segmentatiafi of A with at mostm, segments of valuefor ¢ € [H]. This
shows that an optimal segmentation has at most- - -+ m g segments, and since we
used the minimum possible such sum, no segmentation canttee thein this bound.
Since the computation for this can be accomplished by sogradl (p/2)% multi-sets
acrossn rows, we have the following result:

Theorem 2. The full-matrix segmentation problem can be solve@mn(p/2)" p(H)?
H) time andO (max{m, p(H)H }(p/2)) space if each row has at mgstarkers.
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Note that one could view our result as FPT in parametéf is p. However, nor-
mally p will be large. In particular, if a natural pre-processinggsts applied that re-
moves from each row aoft any consecutive identical numbers (this does not affect the
size of the optimum solution), them = n + 1. We therefore prefer to re-phrase our
theorem to express the worst-case run-time in terms,af and H only. Note thap <
n + 1 always, so the run-time becom@§mn+1p(H)2 H/2). Recall thatp(H) <
e VE < 26V and, thereforeHp(H)? < Hed2VA = 2ls(H)+5.2/Hlg(e) <
28-6VH implying thatp(H)2H /2% € 0(2~(1=9)H) for arbitrarily smalle > 0 if H is
sufficiently large.

Corollary 1. The full-matrix segmentation problem can be solve@{mn ™ +1 /2(1-) )
time, where: > 0 is an arbitrarily small constant, an@(mnf!) space.

3.3 Further improvements of the complexity

We sketch a further improvement that removes a facto# éfom the running time.
Recall that the functiorf’(j, ¢, ) was defined to bé if and only if there exists a
segmentatiors of A[l..j] with signature¢ and multi-setM(S) C v. In its place,
we can instead define a functigfi(j, ¢, ), which contains the minimum number of 1-
segments in a segmentatiSrof A[1.. ;5] with signatures and multi-setM (S) C v+v;.
Here,v, is the multi-set that has:y (v1) = oo andm, (M) = 0 for all ¢ # 1. In other
words, the segmentation that defingsis restricted in the number ¢fsegments only
for¢ > 1, and the restriction om-segments is expressed in the return-valug¢’afin
particular, the value of’(j, ¢, v) is independent of the first multiplicity of, and hence
must be computed only for thosewith m; (v) = 0; there are onlyp/2 + 1)%~! such
multi-setsv.

It remains to argue that’ can be computed efficiently, with a similar formula as for
/. Thisis quite simple. To comput’(j, ¢, v), try all possible partitiong of A[j—1],
computer’ = v — (¢ — ), and letv” be v’ with its first multiplicity changed td).
Look up the valuegf”’(j — 1,4, v") and add to it the number of 1s én— . This gives
one possible candidate for a segmentation; we find the besbyminimizing over all
1. We leave the formal proof of correctness to the reader.

We can hence compufé (n+1, 8, v) forall (p/2)% =1 multi-sets/ in O(n(p/2) 1
p(H)*H) time. Doing this for all rows, we can compute the maximum & alues
7 (n+1,0,v) over all rows. The optimum segmentation can then be founchbps-
ing the one that minimizes this maximum plis|| over allv. As before, this only adds
an extraO(m) factor to the run-time, which is hene@(mn(p/2)" ~'p(H)*H), and
similarly as before this can be simplified@{mn !’ /2(1=<)),

Theorem 3. The full-matrix segmentation problem can be solve@ jmn ™ /2(1=<))
time, fore > 0 an arbitrarily small constant, and(mn* ~1) space.

3.4 Solving the lex-min problem

Recall that the lex-min problem is that of finding a minimunndiaality segmentation
among those with minimunbeam-on-timedefined as the total valug, ;s v(.5) of
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the segmentation. Here, we show how to apply our techniquestiieve a speed up
in solving this problem. To this end, we need the notion ofdbmplexity of rowA[i]
which is defined as:
1 n+1 n+1 n+1
c(All]) = 5 > 1AL =Y max{0, A[[j]} = Y —min{0, A[{][j]},
j=1 j=1 j=1
where as before\[:][j] := A[7][j] — A[{][j — 1] forj € [n + 1].

Importantly, is was shown in [14] that the minimum beam-ongtican be computed
efficiently; itise(A4) := max;{c(A[4]) }. To solve the lex-min problem, we simply have
to change our focus regarding the B&bf interesting multi-sets. Instead of the relevant
multi-sets as used earlier, we need all multi-setsuch thathilt - my(v) equals
the minimum beam-on time. Létl,., be the set of these multi-sets and their subsets.
While Lemma 4 no longer applies, we still obtain a useful bon the sizeVi.,,
whose proof s in the full paper.

Lemma 6. If all rows of A have at mosp markers, then there exists a minimum car-
dinality segmentation among all those that have minimunmbea time that has at
mostp — 1 t-segments for alt € [H]. Moreover, fort > H/2, there are at mosp/2
t-segments.

We can hence find and store a (super-sethdf), by using all entries in ar# -
dimensional arrayd, p]L7/2 x [0, p/2]1%/?1, and there ar@(p'’ /27/2) such multi-
sets. We will computg” (n + 1, , ) for all such multi-set&, and then pick a multi-set
v for which ||v||+ 3212, m. (v) is minimized, and for which!_ | tm, (v) equals:(A4).
This is then the multi-set used for a minimum segmentatioaranthose with minimum
beam-on time; we can find the actual segmentation by rengatie computation of
7 (n+1,0,v).

By the same analysis used for the minimum cardinality segatiem problem, and
the improvement described in the previous Section 3.3, we:ha

Theorem 4. The lex-min problem can be solved Gi{mn' /2(z=¢)) time and with
O(mn*~1) space.

Recall that Kalinowski’s algorithm in [15] has a time comyitg of O (2 H - m -
n2H#+2) So we obtain a significant improvement in the time compyextnally, we
note that it is intuitively reasonable that our algorithnm dze applied to the lex-min
problem since the restriction on the space of feasible moisthat the beam-on time be
minimized can be captured by modifying appropriately theo$enteresting multi-sets
Mex .

4 The special case oH = 2

For H = 2 (i.e., a 0/1/2-matrix), the algorithm of Section 3.3 has-time O(mn?). As
we show in this section, however, yet another factot ohn be shaved off by analyzing
the structure of the rows more carefully. In a nutshell, tinection /" of Section 3.3
can be computed from the structure of the row alone, witheetiing to go through
all possible signatures; we explain this now. ThroughoutiSe 4, we assume that all
entries in the intensity matrix are 0, 1, or 2.
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4.1 Singlerow forH = 2

As before, letd[1..n] be a single row of the matrix. Consider a maximal intefyal;”']

such thatA[;’..7"] has all its entries equal tb We call A[;'..j"'] a towerif A[j' — 1]
andA[j"” + 1] both equabl, asimple steyif one of A[j' — 1] and A[j" + 1] equalsl and

the other0, and adouble stemtherwise. (As usual we assume thHd0] = A[n + 1] =

0.) We usef, s andu to denote the number of towers, simple steps and double, steps
respectively. Figure 2 illustrates how interpretidff] = ¢ ast blocks atop each other
gives rise to these descriptive names.

Fig. 2. Two kinds of simple steps, a tower, and a double-step.

Recall thatc(A[i]) = Z;;l max{ A[i][4], 0} is the complexity of a row of a full

matrix 4; we usec(A4) for the complexity of the single rowt under consideration.
Lemma 7. Defineg(d) as follows:

c(A) —2d ifd <t,
gld):=< e(4)—t—d ift<d<s+t,
c(A)—2t—s ift+s<d.

Then foranyl > 0, //(n+1,9,{0,d}) = g(d). In other words, any segmentatismof
A with at mostd segments of valug has at leasy(d) segments of value Moreover,
there exists a segmentation that has at mbsegments of value 2 and at mast/)
segments of value 1.

Proof. Let § be a segmentation of that uses at mostsegments of value 2. As before,
we assume tha$ has been standardized, which can be done without increéising
number of 2-segments. Therefore, any tower, step or datbfeefA is either entirely
covered by a 2-segment, or it does not intersect any 2-sdgmen

Let so, 12 andus be the number of steps, towers, and double-steps that arelgnt
covered by a 2-segment. We claim the the number of 1-segroB6its ¢(A) — s; — 214,
and can prove this by induction 6f + t5 + us. If so +t3 + ug = 0, thensS has only
1-segments, and sin¢kgis standardized, the number of 1-segments eqyéls. If, say,

15 > 0, then letd’ be the vector obtained fror by removing a tower that is covered by
a 2-segment (i.e., by replacing the 2s of that tower by 0sl)|eti$’ be the segmentation
of A’ obtained fromS by removing the 2-segment that covers that tower. Thehas
t, =t — 1 towers covered by 2-segments, and furthermdre) = ¢(A4) — 2. Since
S andS’ have the same number of 1-segments, the claim easily foligvisduction.
Similarly one proves the claim by inductionsf > 0 orus > 0.

Therefore the number of 1-segmentsdns ¢(A4) — s; — 2¢;. We also know that
s2 +t2 + uz < d. So to get a lower bound on the number of 1-segments, we should
minimizec(A) — s; — 25, subject tos; + ¢ + uz < d and the obviou$ < s, < s,

0 <ty <tand0 < up < u. The bound now easily follows by distinguishing whether
d < t (the minimumis at; = d, s; = ux = 0),0rt < d < t+ s (mnimum att; = ¢,
sg=d—1t,ug = 0)ort + s < d (minimum atty = ¢, s = s, ug = 0.)
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For the second claim, we obtain such a segmentation by using/, ¢ } 2-segments
for towers, thennin{d — ¢, s} 2-segments for stairs if > ¢, and cover everything else
by 1-segments. O

The crucial idea foiff = 2 is that sincey(-) can be described explicitly with only
three linear equations that can easily be computed, we e@nspace and time by not
storingf” (n + 1,0, {0, d}) explicitly as an array of length/2 + 1, and not spending
O(n - p/2) time to fill it.

4.2 Full matrix segmentation for H = 2

As in Section 3.3, to solve the full-matrix problem we needita the valued* that
minimizesd + max; { f/'(n+ 1,0, {0,d})} =: D, wheref/ (-) is functionf” (-) = ¢(-)
for row 7. We can hence find the optimal segmentatiomadis follows. Compute the
complexity and the number of towers and stairs in each roig;tttkkesO(mn) time
total. Eachf/’(-) is then the maximum of three lines defined by these numberséie
d+ max; {f/'(n +1,%,{0,d})} is the maximum ofim lines. We hence can compute
D (and with itd*) by taking the intersection of the upper half-spaces defilnethe
3m lines (this can be done ift(m) expected time easily, and ((m) worst-case time
with a complicated algorithm [13]), and then finding the gpmint with the smallest
y-coordinate in it.

Once we foundi*, we can easily compute a segmentation of each row that has at
mostD — d* segments of valué and at most/* segments of valu (see the proof of
Lemma 7) and combine them into a segmentation of the full imatith the greedy-
algorithm; this can all be done ifi(mn) time. Thus the overall run-time @(mn).

Theorem 5. A minimum cardinality segmentation of an intensity matrithwalues in
{0, 1,2} can be found irD (mn) time.

An immediate application of this result is that it can be camed with theO(log k)
approximation algorithm in [6]. While approximation guatee remains unchanged,
this should result in improved solutions in practice whitg substantially increasing
the running time.

One naturally asks whether this approach could be extertdeider values of{.
This would be feasible if we could find (say féf = 3) a simpler expression for the
function /" (n + 1,0, {0, dz2,ds}), i.e. the minimum number of 1-segments given that
at mostd; 2-segments ands-3-segments are used. It seems likely that this function
would be piecewise linear (just likdd) was), but it is not clear how many pieces there
are, and whether we can compute them easily from the steudfuthe row. Thus a
faster algorithm foir/ = 3 (or higher) remains to be found.

5 Conclusion

In this work, we developed several algorithms that providestdc running time im-
provements for the minimum cardinality problem. At this mioia couple interesting
problems remain open. Does the full-matrix problem admifa Fesult ifm > 1 but
m is small (i.e., a small number of rows)? Is the full-matrieblemW[1]-hard inH ?
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