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Abstract. The geometric thickness θ(G) of a graph G is the smallest
integer t such that there exist a straight-line drawing Γ of G and a par-
tition of its straight-line edges into t subsets, where each subset induces
a planar drawing in Γ . Over a decade ago, Hutchinson, Shermer, and
Vince proved that any n-vertex graph with geometric thickness two can
have at most 6n − 18 edges, and for every n ≥ 8 they constructed a
geometric thickness two graph with 6n − 20 edges. In this paper, we
construct geometric thickness two graphs with 6n − 19 edges for every
n ≥ 9, which improves the previously known 6n − 20 lower bound. We
then construct a thickness two graph with 10 vertices that has geomet-
ric thickness three, and prove that the problem of recognizing geometric
thickness two graphs is NP-hard, answering two questions posed by Dil-
lencourt, Eppstein and Hirschberg. Finally, we prove the NP-hardness
of coloring graphs of geometric thickness t with 4t − 1 colors, which
strengthens a result of McGrae and Zito, when t = 2.

1 Introduction

The thickness θ(G) of a graph G is the smallest integer t such that the edges of
G can be partitioned into t subsets, where each subset induces a planar graph.
Since 1963, when Tutte [21] first formally introduced the notion of graph thick-
ness, this property of graphs has been extensively studied for its interest from
both the theoretical [2, 5, 7] and practical point of view [17, 19]. A wide range
of applications, e.g., circuit layout design, simultaneous geometric embedding,
and network visualization, have motivated the examination of thickness in the
geometric setting [7, 11, 12, 14]. The geometric thickness θ(G) of a graph G is the
smallest integer t such that there exist a straight-line drawing (i.e., a drawing on
the Euclidean plane, where every vertex is drawn as a point and every edge is
drawn as a straight line segment) Γ of G and a partition of its straight-line edges
into t subsets, where each subset induces a planar drawing in Γ . If t = 2, then G
is called a geometric thickness two graph (or, a doubly-linear graph [14]), and Γ
is called a geometric thickness two representation of G. While graph theoretical
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thickness does not impose any restriction on the placement of the vertices in
each planar layer, the geometric thickness forces the same vertices in different
planar layers to share a fixed point in the plane. Eppstein [11] clearly established
this difference by constructing thickness three graphs that have arbitrarily large
geometric thickness.

Structural Properties. Geometric thickness has been broadly examined on
several classes of graphs, e.g., complete graphs [7], bounded-degree graphs [4,
10, 11], and graphs with bounded treewidth [8, 9]. Hutchinson, Shermer, and
Vince [14] examined properties of graphs with geometric thickness two. They
proved that these graphs at most 6n − 18 edges, and for every n ≥ 8 they
constructed a geometric thickness two graph with 6n − 20 edges. Even after
several attempts [7, 10] to understand the structural properties of geometric
thickness two graphs, the question whether there exists a geometric thickness
two graph with 6n− 18 edges remained open for over a decade. Answering this
question is quite challenging since although one can generate many thickness two
graphs with 6n− 18 or 6n− 19 edges, no efficient algorithm is known that can
determine the geometric thickness of such a graph. However, by examining the
point configurations that are likely to support geometric thickness two graphs
with large numbers of edges, we have been able to construct geometric thickness
two graphs with 6n− 19 edges (see Section 2).

Recognition. Although graph theoretical thickness is known for all complete
graphs [2] and complete bipartite graphs [5], geometric thickness for these graph
classes is not completely characterized. Dillencourt, Eppstein and Hirschberg [7]
proved an dn/4e upper bound on the geometric thickness of Kn, giving a nice
construction for representations with geometric thickness t = dn/4e. They also
gave a lower bound on the geometric thickness of complete graphs that matches
the upper bound for several smaller values of n. Their bounds show that the
geometric thickness of K15 is greater than its graph theoretical thickness, i.e.,
θ(K15) = 4 > θ(K15) = 3, which settles the conjecture of [16] on the relation
between geometric and graph theoretical thickness. Since the exact values of
θ(K13) and θ(K14) are still unknown, Dillencourt et al. [7] hoped that the relation
θ(G) > θ(G) could be established with a graph of smaller cardinality. In Section 3
we prove that the smallest such graph contains 10 vertices.

Since determining the thickness of an arbitrary graph is NP-hard [17], Dil-
lencourt et al. [7] suspected that determining geometric thickness might be also
NP-hard, and mentioned it as an open problem. The hardness proof of Mans-
field [17] relies heavily on the fact that θ(K6,8) = 2. Dillencourt et al. [7] men-
tioned that this proof cannot be immediately adapted to prove the hardness
of the problem of recognizing geometric thickness two graphs by showing that
θ(K6,8) = 3. This complexity question has been repeated several times in the
literature [8, 11] since 2000, and also appeared as one of the selected open ques-
tions in the 11th International Symposium on Graph Drawing (GD 2003) [6]. In
Section 4 we settle the question by proving the problem to be NP-hard.

Colorability. As a natural generalization of the well-known Four Color The-
orem for planar graphs [3], a long-standing open problem in graph theory is



to determine the relation between thickness and colorability [15, 20]. For every
t ≥ 3, the best known lower bound on the chromatic number of the graphs with
thickness t is 6t − 2, which can be achieved by the largest complete graph of
thickness t. On the other hand, every graph with thickness t is 6t colorable [15].
Recently, McGrae and Zito [18] examined a variation of this problem that given
a planar graph and a partition of its vertices into subsets of at most r vertices,
asks to assign a color (from a set of s colors) to each subset such that two ad-
jacent vertices in different subsets receive different colors. They proved that the
problem is NP-complete when r = 2 (respectively, r > 2) and s ≤ 6 (respectively,
s ≤ 6r− 4) colors. In Section 5 we prove the NP-hardness of coloring geometric
thickness t graphs with 4t − 1 colors. As a corollary, we strengthen the result
of McGrae and Zito [18] that coloring thickness t = r = 2 graphs with 6 colors
is NP-hard. Our hardness result is particularly interesting since no geometric
thickness t graph with chromatic number more than 4t is known.

2 Geometric Thickness Two Graphs with 6n − 19 Edges

Let K ′
9 be the graph obtained by deleting an edge from K9. In this section we

first construct a geometric thickness two representation Γ of K ′
9 that has 6n−19

edges. We then show how to add vertices in Γ such that for any n ≥ 9 one can
construct a geometric thickness two graph with 6n− 19 edges.
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Fig. 1. (a) Illustration for the shared edges (bold). (b) Initial point set. (c) A geometric
thickness two representation Γ of K′

9, where the planar layers are shown in red (dashed)
and blue (thin). Black edges can belong to either red or blue layer. Free quadrangles
are shown in green (shaded). Some edges are drawn with bends for clarity.

Hutchinson et al. [14, Theorem 6] proved that if any geometric thickness two
graph with 6n− 18 edges exists, then the convex hull of its geometric thickness
two representation must be a triangle. This representation is equivalent to the
union of two plane triangulations that share at least six common edges, i.e.,
the three outer edges and the other three edges are adjacent to the three out-
ervertices, as shown in black in Figure 1(a). Since each triangulation contains



3n− 6 edges, the upper bound of 2(3n− 6)− 6 = 6n− 18 follows. These prop-
erties of an edge maximal geometric thickness two representation motivated us
to examine pairs of triangulations that create many edge crossings while drawn
simultaneously. In particular, we first created a set of points interior to the con-
vex hull such that addition of straight line segments from each interior point
to the three points on the convex hull creates two plane drawings that, while
drawn simultaneously, contain a crossing in all but the six common edges. Fig-
ure 1(b) illustrates such a scenario. We then tried to extend each of these two
planar drawings to a triangulation by adding new edges such that every new edge
crosses at least one initial edge. We found multiple distinct point sets for which
all but one newly added edge cross at least one initial edge, resulting in multiple
distinct geometric thickness two representations with 2(3n − 6) − 7 = 6n − 19
edges. For example, see Figure 1(c), where the underlying graph is K ′

9.
Let Γ be a geometric thickness two representation. A triangle in Γ is empty

if it contains exactly three vertices on its boundary, but does not contain any
vertex in its proper interior, e.g., the triangle ∆ghi in Figure 1(d). A quadrangle
in Γ is free if it is created by the intersection of two empty triangles but does
not contain any vertices of Γ , as shown in Figure 1(d) in green.

Theorem 1. For each n ≥ 9, there exists a geometric thickness two graph with
n vertices and 6n− 19 edges that contains K9 minus an edge as a subgraph. For
each n ≥ 11, there exists a geometric thickness two graph with 6n−19 edges that
does not contain K8.

Proof. Since K ′
9 has a geometric thickness two representation, as shown in Fig-

ure 1(c), the claim holds for n = 9. We now claim that given an n-vertex ge-
ometric thickness two representation with 6n − 19 edges that contains a free
quadrangle, one can construct a geometric thickness two representation with
n+1 vertices and 6(n+1)−19 edges. One can verify this claim as follows. Place
a new vertex p interior to the free quadrangle. Since a free quadrangle is the
intersection of two empty triangles, one can add three straight line edges from p
to the three vertices of each empty triangle such that the new drawing in each
layer remains planar, as shown in Figure 2(a). Since the number of vertices in-
creases by one, and the number of edges increases by six, the resulting geometric
thickness two representation must have 6n− 19 + 6 = 6(n+ 1)− 19 edges.

Observe that there are at least four free quadrangles in the geometric thick-
ness two representation of K ′

9, as shown in Figure 1(d). Therefore, for each
i, 9 ≤ i ≤ 12, we can construct a geometric thickness two representation Γi with
i vertices and 6i − 19 edges that contain at least one free quadrangle. We use
these four geometric thickness two representations as the base case, and assume
inductively that for each 9 ≤ i < n there exists a geometric thickness two rep-
resentation Γi with i vertices and 6i − 19 edges that contains at least one free
quadrangle. We now construct a geometric thickness two representation with n
vertices and 6n− 19 edges that contains a free quadrangle. By induction, Γn−4

has a free quadrangle. We add four vertices to this quadrangle and complete the
triangulation in each planar layer by adding 24 new edges in total, as shown in
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Fig. 2. (a)–(b) Adding vertices to a geometric thickness two drawing. (c)–(d) A graph
with 11 vertices, 47 edges and geometric thickness two that does not contain K8.

Figure 2(b). Consequently, the new geometric thickness two representation Γn

contains 6(n− 4)− 19+ 24 = 6n− 19 edges. Since the newly added edges create
new free quadrangles, Γn also contains a free quadrangle.

The existence of such graphs that do not containK8 is proved using the graph
illustrated in Figure 2(c). The details are omitted due to space constraints. ut

3 Thickness Two Graphs with θ(G) ≥ 3

We enumerate all possible geometric thickness two drawings of K ′
9 using Aich-

holzer et al.’s [1] point-set order-type database. Figure 3 illustrates all the three
different configurations of nine points that support geometric thickness two draw-
ings of K ′

9. It might initially appear that Figures 3(a) and (b) are the same.
However, observe that g lies on the left half-plane of (d, e) in Figure 3(a) and
on the right-half plane of (d, e) in Figure 3(b). We enumerated these geometric
thickness two representations by performing the steps S1 and S2 below for every
point-set order-type P that consists of nine points.

S1. Construct a straight-line drawing Γ of K9 on P .
S2. For every edge e∗ in Γ , execute the following.

- Delete e∗ and test whether the proper intersection graph1 determined
by the remaining straight lines is 2-colorable. If the graph is 2-colorable,
then Γ is a geometric thickness two representation of K ′

9.
- Reinsert e∗ in Γ .

Let Γi, 1 ≤ i ≤ 3, be the drawings of K ′
9 depicted in Figures 3(a)–(c), re-

spectively. The seven black edges in each of these drawings do not contain any
crossing, i.e., these edges are shared in both triangulations. By Ei and E′

i we
denote the set of all edges, and the set of black edges in Γi, respectively. Let
E′′

i = Ei \E′
i. We verifty that the partition of the edges of E′′

i into red and blue
is unique by checking that the proper intersection graph Gi of E

′′
i is connected.

1 Each vertex in a proper intersection graph G of a set of straight line segments cor-
responds to a distinct line, and two vertices of G are adjacent if and only the corre-
sponding straight lines properly cross.
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Fig. 3. (a)–(c) Geometric thickness two representations of K′
9, where K′

9 = K9 \ (d, e).
Edges are drawn with polylines for clarity.

Fact 1 Let Γ be a geometric thickness two representation of K ′
9. Then the par-

tition of the straight-line edges of Γ , except the seven edges that do not contain
any proper crossing, into two planar layers is unique.

We now categorize the vertices of a K ′
9 into two types: unsaturated (vertices

of degree 7), and saturated (vertices of degree 8). The vertices d and e of Fig-
ures 3(a)–(c) are unsaturated, and all other vertices are saturated vertices. Take
a new vertex and make it adjacent to the two unsaturated vertices and any five
saturated vertices of a K ′

9. Let the resulting graph with 10 vertices be Gs. The
following theorem shows that θ(Gs) = 3 > θ(Gs) = 2, whose proof is omitted
due to space constraint. The idea of the proof is first to show a thickness two
representation of Gs, and then to show that Gs contains a vertex v that is not
straight-line visible to all of its neighbors in any geometric thickness two repre-
sentation of Gs \v. Finally, the proof shows that for every graph G with at most
9 vertices, θ(G) = θ(G).

Theorem 2. The smallest graph G (with respect to the number of vertices) such
that θ(G) = 3 > θ(G) = 2 contains 10 vertices.

4 Geometric Thickness Two Graph Recognition

Our proof that testing whether θ(G) ≤ 2 is NP-hard is inspired by a technique
of [13]. We reduce the 3SAT problem that given a CNF-system with a set U
of variables and a collection C of clauses over U , where each clause consists of
exactly three literals, asks whether there is a satisfying truth assignment for U .

Given an instance I(U,C) of 3SAT, we construct a graph G such that there
exists a satisfying truth assignment for U if and only if there exists a geometric
thickness two representation of G. Before describing the construction of G, we
observe some properties of the geometric thickness two representations of K ′

9.



R1

c1b

c1a c a2

xia

xif

xig

xic

xie

xib

xic xid

xie
xif

xig

G
1

G
2

(e)

e
d d

e

C1 C2

c b2

xid

xia xib

R 2 (i)(h)(g)(f)

(a) (b) (c) (d)

Fig. 4. (a) Hypothetical geometric thickness two representations of K′
9. (b)–(c) A path

through the unsaturated vertices, and its hypothetical representation. (d)–(e) A geo-
metric thickness two representation with 5 copies of ΓH , and its hypothetical represen-
tation. Note that the order (inside or outside) among the red (dashed) and blue (solid)
lines are not important. (f) A literal gadget, the arrows denote possible connections
with other gadgets. (g)–(h) Hypothetical representation of a literal gadget, when the
literal is (g) true, and (h) false. (i) Illustration for clause gadgets.

By Fact 1, observe that every geometric thickness two drawing of K ′
9 can be

denoted by one of the two hypothetical representations shown in Figure 4(a).
Each black (respectively, gray) vertex of Figure 4(a) is a saturated (respectively,
unsaturated) vertex2. We denote the two planar layers of a drawing by the red
layer Lr (containing the red edges) and blue layer Lb (containing the blue edges).
Each black edge can be assigned an arbitrary layer unless it is crossed by some
other edge. Observe from Figure 3 that if the unsaturated vertex d is surrounded
by a blue (respectively, red) triangle, then the other unsaturated vertex e is sur-
rounded by a red (respectively, blue) triangle. Therefore, if we create a path
connecting the unsaturated vertices of several copies of K ′

9, as shown in Fig-
ure 4(b), then the edges of that path must be of same color. Although here we
require the copies of K ′

9 to be non-overlapping and non-nesting, this will not be
significant for our reduction. In the hypothetical representation, we denote each
K ′

9 with either a black triangle (if its incident edges are of same color), or a gray
triangle (if its incident edges are of different colors).

Let G1 and G2 be two distinct copies of K ′
9. Let si and ui, be a saturated

and an unsaturated vertex of Gi, 1≤i≤2, respectively. Let H be the graph that
is obtained by merging s1 and u1 with u2 and s2, respectively, and then remov-
ing the resulting multi-edges (if any). Observe that a geometric thickness two
representation of H can be constructed by taking two copies of the drawing of
Figure 3(a), and then placing one copy on top of the other copy by rotating
it such that the two drawings share the edge (si, ui). Figure 4(d) illustrates a

2 As defined in Section 3, a vertex v is saturated if it has degree 8, and unsaturated if
it has degree 7.



hypothetical geometric thickness two drawing ΓH of H. Examining every can-
didate pair ((s1, u1), (s2, u2)) in the drawing of Figures 3(a)–(c) we can observe
that in every geometric thickness two drawing of H, the vertex u1(=s2) must lie
on the convex hull of the drawing of G1. Similarly, the vertex u2(=s1) must lie
on the convex hull of the drawing of G2. Consequently, H can be represented by
ΓH . Figure 4(e) shows how to connect several copies of ΓH to create a geometric
thickness two representation where no two ΓH properly cross, and then shows
its hypothetical representation. We sometimes use a black square to illustrate
the connection between two different drawings, as shown in Figure 4(e).

Construction of G. Assume that I(U,C) contains l literals and t clauses.
For every literal xi, 1 ≤ i ≤ l, construct a literal gadget Γxi as depicted in
Figure 4(f). Figure 4(g) is a simplified representation of the literal gadget, which
will correspond to the value true. On the other hand, Figure 4(h) (i.e., the mirror
embedding of Figure 4(f)) will correspond to the value false. We call the vertex
xig the central vertex of Γxi . By the lower-half of Γxi we denote the subgraph
induced by xic, xid, xie and xif . The vertices of Γxi that are not in the lower-
half, induce the upper-half. Construct the clause gadgets as shown in Figure 4(i).
Observe that the vertices R1 and R2 are incident to a set of rectangles, where
each rectangle (i.e., clause box ) Br corresponds to a clause Cr, 1 ≤ r ≤ t. The
top, left and right sides of Br constitutes a chain of ΓH , and the bottom side
is a path of three vertices. We merge the central vertices of the three literals
of Cr with a distinct vertex of the bottom side of Br. Let Eb be the set that
consists of the edges on the bottom side of the clause boxes. The construction
of the clause gadget ensures that the edges of Eb lie on the same planar layer,
w.l.o.g., on blue layer Lb. Then the clause boxes force the edges (crb, R2) to lie
on the other planar layer, i.e., the red layer Lr. For each literal gadget Γl, we
add an edge between R2 and the gadget such that the edge is forced to lie on
Lr. Similarly, for each literal gadget Γl, add an edge between the top side of the
clause box and the gadget such that the edge is forced to lie on Lb.

We now add some edges among the literal gadgets that correspond to the
same literal. For every literal xi, we order its literal gadgets according to their
appearance in different clauses. Let l1, l2, . . . , lt′ be the literal gadgets that cor-
respond to the literal xi. Then for each index q, 1 ≤ q < t′, we add an edge
between the vertex xie (respectively, xif ) of lq and the vertex xic (respectively,
xid) of lq+1. We denote all these edges by El. Figure 5(a) shows how the edges
in El forces the corresponding literal gadgets to have the same truth value.

Finally, we add a few more edges among the literal gadgets that belong to
the same clause. Let xi, xj , xk be the three literals of Cr. We then add a path
between xib and xja that contains three unsaturated vertices of two copies of
K ′

9, as shown in Figure 5(b). Similarly, we add a path between xka and xjb that
contains three unsaturated vertices of two copies of K ′

9.

Theorem 3. It is NP-hard to determine whether the geometric thickness of an
arbitrary graph is at most two.

Proof. Given an instance I(U,C) of 3SAT, we first construct the corresponding
graph G and then prove that I(U,C) has a satisfying truth assignment if and
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Two gadgets: (b) xj is true, xi, xk are false, (c) xi is true, xj , xk are false.

only if G has a geometric thickness two representation. The proof is similar
to the hardness proof for simultaneous straight-line embedding of two planar
graphs [13]; thus we give only an outline of the proof.

Assume first that I(U,C) is satisfiable. We now construct a geometric thick-
ness two representation of G. We draw the clause gadgets as shown in Figure 4(i).
Then for each literal, we assign a horizontal region and draw its corresponding
gadgets as shown in Figure 5. Finally, for each clause Cr = (xi ∨ xj ∨ xk), we
draw the paths between xib and xja, and xka and xjb such that no two edges on
the same layer cross, as follows. Observe that at least one literal in Cr is true. If
the literal in the middle, i.e., xj , is true, then we draw these paths as shown in
Figure 5(b). Observe that we can adapt this drawing for the case when one of
xi and xk, or both are true. Similarly, if the literal xi or xj is true, w.l.o.g., xi,
then we draw these paths as shown in Figure 5(c). Observe that we can adapt
this drawing for the case when one of xj and xk, or both are true.

Assume now that G has a geometric thickness two representation. Observe
that the graph induced by the edges in Lr in Figure 4(i) is a subdivision of a
triconnected planar graph. Consequently, by a theorem of Whitney [22], such
a graph has a unique combinatorial embedding up to homomorphisms of the
plane. We choose the planar embedding such that the edge (R1, R2) lies on the
outerface and the clause boxes obtain the same order as depicted in Figure 4(i).
Observe that upper-halves of the three literal gadgets of each clause are forced
to lie inside the corresponding clause box. Hence the paths between xib and xja,
and xka and xjb must be drawn inside the clause box. Consequently, at least one
of the literal gadget must correspond to true in each clause box, otherwise, there
must be a crossing in the same planar layer. Since the edges in El forces the
literal gadgets corresponding to the same literal to have consistent embeddings,
we find a satisfying truth assignment for I(U,C). ut



5 NP-hardness of Colorability

In this section we show the NP-hardness of coloring a graph with geometric
thickness t with 4t− 1 colors. By I(G,T,C) we denote the problem of coloring
a graph G with C colors, where θ(G) ≤ T . We first introduce a few definitions.
A join between two graphs is an operation that given two graphs, adds all
possible edges that connect the vertices of one graph with the vertices of the
other graph. By Gt we denote a class of thickness t graphs that satisfies the
following conditions: (1) G1 is the class of planar graphs. (2) If t>1, then Gt

consists of the graphs obtained by taking a join of K2 and G, where G ∈ Gt−1.
Observe that θ(Gt) ≤ t. We now have the following lemma, whose proof is

omitted due to space constraints.

Lemma 1. It is NP-hard to color an arbitrary graph G ∈ Gt with 2t+ 1 colors.

We use Lemma 1 to prove the NP-hardness of coloring geometric thickness
t graphs with 4t− 1 colors. We employ induction on t. If t = 1, then coloring a
planar graph (i.e., t = 1) with 4t− 1 = 3 colors is NP-hard [15]. We now assume
inductively that for any t′ < t, it is NP-hard to color a geometric thickness t′

graph with 4t′−1 colors. To prove the hardness of coloring a geometric thickness t
graph with 4t−1 colors, we reduce the hardness of coloring a geometric thickness
t− 1 graph with 2(t− 1) + 1 colors. Given an instance I(G, t− 1, 2(t− 1) + 1),
we construct a graph H such that θ(H) ≤ t and H is 4t−1 colorable if and only
if G is 2(t− 1) + 1 colorable.

Let the number of vertices in G be n. Take n copies H1,H2, . . . ,Hn of K2t,
and join each vertex of G with a distinct Hi, 1 ≤ i ≤ n. Finally, take a copy H ′

of K2t−1 and join it with every Hi. Let the resulting graph be H(G, t). To prove
that θ(H(G, t)) = t, we first review a construction of Dillencourt et al. [7] that
gives a thickness t representation ofK4t. They proved that the 4t vertices of aK4t

can be arranged in two rings of 2t vertices each, an outer ring and an inner ring,
such that it can be embedded using exactly t planar layers. The vertices of the
inner ring are arranged to form a regular 2t-gon. For each pair of diametrically
opposite vertices, a zigzag path is constructed as illustrated in Figure 6(a). This
path has exactly one diagonal connecting diametrically opposite points (i.e.,
the diagonal connecting the two gray points in the figure.) The union of these
zigzag paths, taken over all t pairs of diametrically opposite vertices, contains
all the edges of K2t in the inner ring, as shown in Figure 6(b). For each pair of
diametrically opposite vertices, we can draw rays from each vertex of the zigzag
path, in two opposite directions, so that none of the rays crosses any edge of the
zigzag path. These rays, in each direction, meet at a common point (e.g., p or
q) forming the outer ring, as shown in Figure 6(c).

Lemma 2. θ(H(G, t)) ≤ t, where t > 1 and G ∈ Gt−1.

Proof. We compute a thickness t representation of H(G, t), as follows. Since
G ∈ Gt−1, θ(G)≤t−1. Take a thickness t−1 representation of G and rotate it
(if necessary) such that no two vertices lie on the same vertical line. Let the



q

p

��
��
��
�� ����
��
��
��

(a)

(b) (d)(c)

Fig. 6. (a)–(c) Dillencourt et al.’s construction [7]. (a) A zigzag path in the inner ring.
(b) K2t, where t=3. (c) K4t, where t=3. (d) The geometric thickness two representation
of H(G, t), where t=3. Each subgraph Hi is determined by an inner ring. The vertices
of G are in the green region.

resulting drawing be Γ . Now construct an outer ring as in Dillencourt et al.’s
construction [7], and delete a vertex from the ring to obtain a thickness t drawing
of H ′, as shown in Figure 6(d). For each Hi, construct an inner ring that lies
along the vertical line determined by its corresponding vertex in Γ . Figure 6(d)
shows this correspondence with dotted lines. All the edges that connect the
vertices of G with the vertices of Hi (i.e., the edges in the light-gray region) lie
in the t-th layer. Note that the inner rings must be scaled down small enough
such that these edges do not create any edge crossing in the t-th layer. ut
Theorem 4. It is NP-hard to color an arbitrary geometric thickness t graph
with 4t− 1 colors.

Proof (Outline). If t = 1, then coloring a planar graph (i.e., t = 1) with 4t−1 = 3
colors is NP-hard [15]. Assume now that t > 1. Given an instance I(G, t−1, 2(t−
1)+ 1), where G ∈ Gt−1, we construct a corresponding graph H(G, t). We prove
that G is 2(t − 1) + 1 colorable if and only if H(G, t) is 4t − 1 colorable. The
details are omitted due to space constraints. ut
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