
COMP 3010 - Distributed Computing

Calendar Description: Introduction to distributed computing. Topics include task
models, server-side computing, data-base connectivity, information sharing.
Prerequisite: COMP 2140 and COMP 2150.

Outline

1. Introduction and Motivation (2 weeks)
A discussion on the need for distributed systems, fundamental principles and
standard issues. Topics include the basics of communications, resource naming
and location, failure modes and scalability. We also introduce the idea of scripting
languages for implementing distributed applications (mainly using Perl at this
point) and XML for encoding data for transmission. The emphasis is on XML
Schema (as opposed to DTDs – although they’re introduced and discussed as
well) and the ability to encode standard data structures (as a pre-cursor to XML-
RPC/SOAP) for transmission and parsing.

2. Web-based Computing (4 weeks)
A discussion of the HTTP protocol and server-side processing. The basic
messaging scheme is discussed along with the transmission of form data via GET
and POST methods. Server-side processing includes discussions on CGI
implementation, server side includes, Servlets, server pages (such as JSP), cookies
and session data management. Database are not discussed since the emphasis is
on the processing needed; students should be able to apply the material with that
of 3380 to implement a “proper” web application.

3. Distributed Programming (3 weeks)
A look at the implementation of distributed applications. We start with a look at
the standard client/server architectures and how these design decisions affect
implementation. Threads are not discussed even though they are required for
proper server implementation; students should be able to apply the material with
that of 3430 to implement a complete server. We look at different programming
models including sockets, RPC and RMI. These require a discussion on IPC
models.

4. Distributed Algorithms (4 weeks)
A look at classic algorithms and how they reflect on current distributed computing
problems (a lot of the algorithms link directly to peer-to-peer computing).
Algorithms include consensus/mutex, failure detection and recovery (including
Byzantine generals, election and ring algorithms), distributed time (both
Lamport’s and Fidge’s algorithms), and distributed deadlock.

Text: none

