

DEPARTMENT OF COMPUTER SCIENCE

Manitoba High School Programming Contest 2018
May 25 2018 12:30 – 3:30

Contest Rules:

• Do not open this package until instructed to do so.
• All solutions must be entered completely during the contest.

No electronic copies of pre-written code are permitted.
• You may submit as many solutions as you like to each problem;

however, incorrect solutions will be assessed a time penalty.
• Contest score is based on the most problems successfully solved; ties

are won by shortest total time taken, including any penalties.
• A correct submission must solve the given problem and produce correct

output for the given test data within a reasonable time.
• Programming style will not be considered during judging.
• Any programming language resources and notes are allowed.
• No other Internet access is allowed during the contest.

Submission Requirements / Pre-submission Checklist:

A. All input must be read from standard input (in Java, System.in).
Only Problem 1 does not require input. Do not open input files.

B. All output must be written to standard output (in Java, use
System.out.print or println).

C. Your output format must follow the problem requirements exactly.
D. Submit the source code file (.java, .c, etc.–NOT .class, .exe, etc.).
E. Java programs must be in a single file and not placed in a package

(no package statements; import statements are OK).
F. Java programs must be complete; they require a main method.

NOTE: TEXT IN RED WAS FIXED DURING THE COMPETITION.

Problem 1 – Positively Functional

You have done an experiment and modeled a certain phenomena by the function

𝑓 𝑡 =
100 sin 𝑡

𝑡! − 30𝑡! + 200𝑡

You are interested in those values of t that are whole numbers between 1 and
100 where this function is defined and the value of f(t) is greater than zero.

Write a program that prints out only the values of t where the value of the
function is greater than zero.

For instance, at t=1, the value of the function is (approximately) 0.4921, but at
t=4, the value of the function is -0.1971. Thus, your program should print out 1,
but not 4. Similarly, your program should print out 97 since the value of the
function at t=97 is 0.0000584.

Input

This program does not have any input.

Output
Write the values t between 1 and 100 (inclusive) where the function f(t) is defined
and the value of f(t) is greater than zero. Output each value of t on its own line.

Sample Output
1
2
3
7
[some values deleted]
97

Problem 2 – Passwords

You work as a programmer for an e-commerce website. Your company requires
all your customers to create an account with a username and password. Your
boss, who is not a computer scientist, wants to make sure that the passwords
that are used are “secure” by insisting on more and more elaborate
requirements. Each week, he has a new requirement. The first few requirements
were ok, like “the password must contain at least eight characters” and “the
password must contain a letter and a number”. But now things have gotten out of
hand. This week, your boss has instituted a new rule: “every password must
contain two upper case Ts anywhere in the password, or a lower case t followed
at some point by a lower case o.” Under this new rule, TrT135a6 would be
acceptable, as would abct1abco, but arTsandCrafts would not.

Write a program that accepts a single string and determines if it satisfies your
boss’ most recent rule. You don’t need to worry about other rules, since you’ve
already written programs to check all of them.

Input

The input is a single string of characters. The characters are letters (upper case
and lower case), digits, and the special characters

, . / < > ? ; : ’ ” [{] } \ | ` ~ !
@ # $ % ^ & * () - _ = +

There are no spaces, tabs or other whitespace in the characters.

Output

For the password, output either Password ‘good’ or Password ‘bad’,
including the single quotation marks, on a line.

Sample Input 1 Sample Output 1
arTsandCrafts Password 'bad'

Sample Input 2 Sample Output 2
oTTer Password 'good'

Judging Data for Problem 2

Case Input
1 arTsandCrafts

2 oTTer

3 otter

4 TrT135a6

5 abct1abco

6 otT.??tt

7 WriTeApRoGRaMtHaTacCepTSaStrINg

8 __][__PASSWORD___]

9 Totally

10 ToTally

Problem 3 – Brainheck

Brainheck is an esoteric programming language that has only 8 commands,
encoded as single characters: `<>+-.,[]`. Any other characters in a Brainheck
program (including whitespace) are ignored.

In short, a program written in Brainheck has:

• Access to an infinitely large array,
• A pointer that indicates the current position in the array, with instructions

to move left `<` or right `>` in the array,
• Instructions to add `+` or subtract `-` a value from the current position in

the array,
• Instructions to print `.` or read into `,` the current position in the array,
• Instructions that resemble the behaviour of a while loop: `[` and `]`.

A program written in Brainheck is valid if, and only if, every `[` has a matching
`]` that appears after (to the right) of it in the program. There are no other
restrictions on the language.

Your job is to write a Brainheck validator. Your program should read in an entire
Brainheck program and print `VALID` if the program is a valid Brainheck program
or `INVALID` if the program is not a valid Brainheck program.

Input
The input is a Brainheck program on a single line of input. (In the sample inputs
below, long lines are word-wrapped.)

Output
Output either VALID or INVALID as described above.

Sample Input 1 Sample Output 1
[->+<] VALID

Sample Input 2 Sample Output 2
][->][INVALID

Sample Input 3 Sample Output 3
++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>-
>>+[<]<-]>>.>---.+++++++..+++.>>.<-
.<.+++.------.--------.>>+.>++.

VALID

Judging Data for Problem 3

Case Input
1 [->+<]

2][->][

3 ++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-
]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------
.>>+.>++.

4 -+-

5 +a-b-c+

6 >.<

7 []

8 [][]

9][

10][][

11 [[]]

12 [-[-]-]---[-]

13 [][[[[[]]]Mu][]][][[K[De]G][vbh[]Y][SCqK[T]]kI[l][
[P][][]]M]U[]CR[Q+].+r[]Dqi[]KQxEy[u[g>]][nPeb][][
Rl[[zp][z[R[nBN[lKI.n[][E[[]][y]]gM.f-FZ[[[+[][UM
noM[.[OWHkxm]TO[z[>]]g]][eAy]J[FT][dG+O[][r[][[[Ue
Sg[[[[Q[.]cn[]]]Y[[fS]x]zA]][CGB[X[X[ulv]]G[]Rz]Xo
yf]wa[mc.[uJmX[[]pC]]]RR<[tMPK[]j]ET][w][-a[][H
pl[[]]]]]]]]]]]]]]]]]

14 Rk[[]b.h][][+f][uk[F[]]]VO[][wamX[c[][D]KyHPkdQ[<Y
[s[M]hr[]]]]]T[[J[r]S[[[[[]E]]]][T[[[gN]D][]]Dl]]n
][vr][BO]eNl[][Zrs]PQf[[nn[]G]o]i[F>]eJMR[][]La[T]
[OwS][[].D[uJ][]][IC[-]][][[>+[[[[[]]]]][iw[]Jj]]]
N<[]q[g[]g]x[TIup]n[Lv[[aE<ddT>WQjc[]p[]]ZZ<]RO][[
vzv[R]wB.[[][fL][]i]v]]T[[r<Ih]vY[vw[]][En[]]o][[T
]]

15 [zf]oFIeB]fuJP-R+[uE[[]oj][]]][]o]ig>]][LhPjuM]]yA
apcB.hP[e.o][]WOLub]]g][OjF]]R[[h[]]YKkxUV[mSZR[[[
I]]z]Z[[]][[+][[[jLv]][]][[R][[I[][[t]Hx]wY]r]]z[[
[]]n[e+]g+vkh[]B[]h][YH[[e-]]W]r][P]][]]E][n[YY]O]
pXh[]]<K[W[KZ[J][bKI[]]]v]SpMbSvUY[AF]]u]heC]Y][[q
]]Mnas]]]E[[[Bj]qFrN]<]X]y[]][xj[[]]I[KQEap[TS][]N

16 DD[b]Y[[p.][Tv]]yv]]][am]Y][[dH>[][CV[TGx]Dkwi][]]
R[LqL[][]]u]W[][]][V]M[]d][>]j]A]T]dgjY[u]]t]]u[]E
N[[x[]]y[]Be[QUJcem][[-gfp]+[i]rG[>]N[[]]g]]b<[[>[
K]]O[]]]YshKEG]]]]Sqt[]][pvpR]APV]P]s]]q]s]W[[OO+]
]P][]]Eh[e[]][[]nI][h]qK[p][QrsXdP]vjl][t[JQ[ruSba
k>[G[]U]]]t[-rp]]]r][]x[][JOAZ[<X[[O]]IW-H]]Z]N[][

17]]K[][][[]AK]>]n[IP]<-VFG[Mh][Yofgy[jJip]PcQ[[<[dM
]L][MU[[UK]]][.gY]M[D][tv][K]][eGIuG[]]vI]E[[]w[[Y
[J[D>[-rn]E[[w]OX]v][Wp]P]]T]r[[]iX.qh>]pw][V[]][C
[]K[.[[[qz+OSV]yc[[[P[G[[[Phz][[E]]WI[][]X[]R]c][[
Ec[[Gp[]ki]]v-t]]h]R[][qGbk+[][[[]v[r]]iN][j][]]][
]O.[[Cx]][[PsGY][ez]a][][T-[]Ss[]E[[[[]Xc[i]R.k]L[
]]]]]]]

18 [][[[[[]]]u][]][][[K[e]G][vh[]Y][SCqK[T]]kI[l][[P]
[][]]M]U[]CR[Q+].+r[]Dqi[]KQxEy[u[g>]][nPeb][][Rl[
[zp][z[R[nBN[lKI.n[][E[[]][y]]gM.f-FZ[[[+[][UMnoM[
.[OWHkxm]TO[z[>]]g]][eAy]J[FT][dG+O[][r[][[[UeSg[[
[[Q[.]cn[]]]Y[[fS]x]zA]][CGB[X[X[ulv]]G[]Rz]Xoyf]w
a[mc.[uJmX[[]pC]]]RR<[tMPK[]j]ET][w][-a[][[[]]]]]]
]]bb]]]]aa]]]]

Problem 4 – Zombie Hordes

It’s the zombie apocalypse and you are trying to seal yourself in a warehouse
with several entrances. You’ve found that near each entry in the warehouse are
piles of boxes of different sizes that you can use to seal the entry. Each of the
boxes has the same height, which is exactly the height of the entry, but they have
different widths. Through trial and deadly, horrible error, you’ve found that the
best configuration is to put exactly three boxes side by side in an entry so that
their combined width is exactly the width of the entry. When using the boxes, you
can only use each box once.

For instance, near an entry of width 100 you have boxes of width 15, 20, 41, 44,
50, 60, 90, 100. In this situation, you can push the boxes of width 15, 41 and 44
into the entry to exactly fit the width.

Write a program that determines if there is a way to seal the entry or not, given
its width and the width of the boxes near the entry.

Input

Each input file contains two lines: the first line contains one integer, giving the
width of the entry. The second line has a list of integers, all less than or equal to
the width of the entry, giving the widths of boxes that are available near the entry.

Output

Output safe if there is a combination of three boxes that fits in exactly in the
entryway. If there is no combination that fits exactly, write nooo with three o’s.

Sample Input 1 Sample Output 1
100
15 20 41 44 50 60 90 100

safe

Sample Input 2 Sample Output 2
31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

nooo

Judging Data for Problem 4

Case Input
1 100

15 20 41 44 50 60 90 100
2 100

1 2 3 4
3 31

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
4 100

1 2 3 4 5 6 7 8 9 10
5 100

35 36 37 38 39 40 41 42 43 44 45 46
6 10

2 3 4
7 120

92 96 88 82 62 86 41 110 77 50 31 33 19 50 27 90
37 53 16 60 117

8 247
157 23 26 95 215 215 229 183 14 11

9 207
79 79 57 205 179 29 53 175 71 170 100 161 119 116
110 27 53 194 198 142 143 169 115 156 190 100 186
118 78 118 22 187 199 41 56 29 75 80 113 36 171 56
148 110 172 161

10 165
4 73 4 133 5 12 162 145 112 12 151 21 23 39 125 69
156 66 44 122 130 117 70 104 67 50 127 85 67 121
37 127 109 150 118 1 144 70 116 87 93 75 126 66 93
23 37 53

11 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

12 5
3 2

Problem 5 – Sudoku

Sudoku is a puzzle where numbers are placed in a grid. In this version, we use
the numbers 1-4 and the grid has size 4x4. When completed successfully, a
Sudoku puzzle has the numbers 1-4 appear one time in each row, one time in
each column and one time in each of the four 2x2 squares in the corners of the
grid. For instance, the following shows a successful and unsuccessful Sudoku
puzzle:

1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

As you can see, the puzzle on the left is completed successfully: each row,
column and square (defined by the bold lines) has the numbers 1-4 exactly once.
However, the puzzle on the right is not successful: it contains the number 4 twice
in (for example) the bottom row of the puzzle. The number four is an error.

Write a program that reads in sixteen numbers from 1-4 and determines if the
puzzle was successfully completed or not. If the Sudoku puzzle was successful,
write “good”. But if the puzzle is not successful, report the first duplicate value in
the puzzle. A duplicate value is any entry that has the same value above it, to the
left of it, or in the same square with it (when read left-to-right, then top-to-bottom,
i.e., in English reading order). If there are several duplicates, report the first one
in left-to-right, top-to-bottom order.

For instance, in the incorrect puzzle on the right
above, the first duplicate is the 4 in the bottom-
left hand corner: it is a duplicate in its column,
its row, as well as in the bottom-right 4x4
square. In the puzzle on the right, the first duplicate is the 3 in the second row
and second column (shown in bold). This is a duplicate of 3 in the second row, as
well as in the upper-left hand square of the puzzle. Note that the 3 to the left is
not a duplicate in the left-to-right top-to-bottom order, and that there are other
duplicates in this puzzle.

Input
The input consists of four lines of integers, each with four integers on each line.
The integers will be values from 1 to 4.

Output
The output for the program should either be the word “good” (without quotation
marks) or two integers, giving the row and column of the first duplicate value. The

1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 4

1 2 3 4
3 3 1 2
1 2 4 3
 4 3 2 1

row and column numbers should be between 0 and 3 (inclusive): the top row is
row number 0 and the left-most column is column number 0.

Sample Input 1 Sample Output 1
1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

good

Sample Input 2 Sample Output 2
1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

1 1

Judging Data for Problem 5

Case Input
1 1 2 3 4

3 4 1 2
2 3 4 1
4 1 2 3

2 1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

3 1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

4 1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

5 1 2 3 1
1 2 3 1
1 2 3 1
1 2 3 1

6 1 1 3 4
2 3 4 1
3 4 1 2
2 1 4 3

7 4 1 2 3
2 3 1 4
3 2 4 1
1 4 3 4

8 3 1 4 2
2 4 3 1
1 4 2 4
4 2 1 3

9 3 4 1 2
1 2 3 4
2 3 4 1
4 1 2 3

10 3 4 1 2
1 2 3 4
4 3 2 1
2 1 4 3

11 4 3 2 1
2 1 3 4
1 2 4 2
3 4 1 2

12 2 1 4 3
4 3 1 2
3 4 2 1
4 2 3 4

Problem 6 – DHL Playoffs

You are the organizer of a local hockey league called the DHL - the Disorganized
Hockey League. The league is a place for people that are really, really
disorganized people to be involved in a league sport. And after a painfully long
season, it's time for playoffs! Unfortunately, the playoffs have been especially
difficult for you to coordinate, as the playoffs are during your holidays and the
games have been scheduled by the teams.

The playoffs have been scheduled as follows: teams randomly show up to the
rink to play games. If two teams are there at the same time, they play a game.
When two teams play, they record the result on a white board and the losing
team goes home: they are out of the playoffs. The winning team comes back on
another day to play another game with another team that is still in the playoffs.
This continued until one team was left, who is the winner of the league.

You have reconstructed the playoff brackets, that is, the list of who played who to
give the champions, but because of the organization of the playoffs, some teams
played fewer games than others in the playoffs. You would like to calculate the
hardest path in the playoffs: given how the playoffs happened, what is the
maximum number of games a team would have had to win to be champions. Be
careful: we’re not asking what the maximum number of games any team won in
the playoff brackets. We’re asking: “if we think of how many games each team
would have had to win to be champions in the bracket, what is the maximum
number for all the teams?”

For instance, consider the following playoff bracket:

In this bracket, the Anarchy are the champs, but both the Mess and the
Confusion had the hardest path: they would have had to win four games to win
the DHL championship.

Input
The input for the problem is given as a list of games. Each part of the bracket in
the playoff has been numbered and each line of input describes a game. The
lines can have one of two forms:

1. “a X b c” where a,b and c are integers and X is a team name. This says
that “in game a, the winners of games number b and c played and the

Chaos

Anarchy
Anarchy

BedlamMess
Confusion
Mess Mess

Bedlam

Entropy MessMess
Bedlam

winner was team X”. The team name is a string (no spaces) of at most 16
characters (letters and numbers). The bracket numbers b and c are
guaranteed to appear before this line in the input.

2. “a X” where a is an integer and X is a team name. This line says “in position

a is team X”. The team names are strings of characters (no spaces) of
length at most 16. This represents a team that is playing in a “first round”
playoff game (i.e., this represents a team that is about to play its first playoff
game).

The last line of the input gives the result of the championship game (i.e., the
team listed in the last line of the input is the champion).

Output
Output a single integer z representing the worst case number of wins any team
would have to have in the playoff structure to be champions.

Sample Input 1 Sample Output 1
11 Confusion
10 Mess
9 Bedlam
8 Chaos
7 Entropy
6 Mess 10 11
5 Mess 6 7
4 Bedlam 8 9
3 Bedlam 4 5
2 Anarchy
1 Anarchy 2 3

4

Sample Input 2 Sample Output 2
1 Giraffes
2 Dogs
3 Iguanas
4 Jellyfish
5 Dogs 1 2
6 Iguanas 3 4
7 Dogs 5 6
8 Eels
9 Dogs 7 8
10 Alligators
11 Alligators 9 10
12 Cats
13 Alligators 11 12
14 Bears
15 Alligators 13 14

6

Judging Data for Problem 6

Case Input
1 11 Confusion

10 Mess
9 Bedlam
8 Chaos
7 Entropy
6 Mess 10 11
5 Mess 6 7
4 Bedlam 8 9
3 Bedlam 4 5
2 Anarchy
1 Anarchy 2 3

2 1 Giraffes
2 Dogs
3 Iguanas
4 Jellyfish
5 Dogs 1 2
6 Iguanas 3 4
7 Dogs 5 6
8 Eels
9 Dogs 7 8
10 Alligators
11 Alligators 9 10
12 Cats
13 Alligators 11 12
14 Bears
15 Alligators 13 14

3 10 name10
6 name6
34 name10 10 6
23 name23
38 name10 34 23
13 name13
14 name14
33 name13 13 14
39 name10 38 33
9 name9
45 name10 39 9
21 name21
17 name17
2 name2
24 name17 17 2
18 name18
26 name17 24 18
3 name3
19 name19
27 name3 3 19
30 name17 26 27
37 name21 21 30
20 name20
0 name0
35 name20 20 0

(case continues on next page)

43 name21 37 35
8 name8
4 name4
22 name22
25 name4 4 22
15 name15
29 name4 25 15
31 name8 8 29
16 name16
5 name5
32 name16 16 5
1 name1
11 name11
28 name1 1 11
40 name16 32 28
41 name8 31 40
12 name12
7 name7
36 name12 12 7
42 name8 41 36
44 name21 43 42
46 name10 45 44

4 13 Team13
33 Team33
37 Team37
41 Team41
18 Team18
67 Team41 41 18
27 Team27
72 Team41 67 27
73 Team37 37 72
77 Team33 33 73
81 Team13 13 77
16 Team16
17 Team17
50 Team16 16 17
26 Team26
57 Team16 50 26
28 Team28
43 Team43
9 Team9
87 Team43 43 9
22 Team22
4 Team4
20 Team20
51 Team4 4 20
54 Team22 22 51
88 Team43 87 54
89 Team28 28 88
90 Team16 57 89
19 Team19
25 Team25
58 Team19 19 25
10 Team10
59 Team19 58 10
45 Team45
74 Team19 59 45
1 Team1
75 Team19 74 1

(case continues on next page)

48 Team48
79 Team19 75 48
92 Team16 90 79
30 Team30
38 Team38
65 Team30 30 38
8 Team8
82 Team30 65 8
46 Team46
83 Team30 82 46
35 Team35
32 Team32
40 Team40
61 Team32 32 40
76 Team35 35 61
24 Team24
6 Team6
69 Team24 24 6
80 Team35 76 69
49 Team49
85 Team35 80 49
86 Team30 83 85
0 Team0
91 Team30 86 0
94 Team16 92 91
7 Team7
21 Team21
68 Team7 7 21
34 Team34
44 Team44
5 Team5
55 Team44 44 5
12 Team12
47 Team47
62 Team12 12 47
70 Team44 55 62
11 Team11
78 Team44 70 11
84 Team34 34 78
93 Team7 68 84
96 Team16 94 93
29 Team29
42 Team42
31 Team31
53 Team42 42 31
15 Team15
60 Team42 53 15
63 Team29 29 60
36 Team36
64 Team29 63 36
14 Team14
23 Team23
52 Team14 14 23
66 Team29 64 52
2 Team2
71 Team29 66 2
3 Team3
39 Team39
56 Team3 3 39

(case continues on next page)

95 Team29 71 56
97 Team16 96 95
98 Team13 81 97

5 6 Team6
28 Team28
14 Team14
49 Team28 28 14
51 Team6 6 49
33 Team33
12 Team12
61 Team33 33 12
30 Team30
35 Team35
56 Team30 30 35
19 Team19
13 Team13
52 Team19 19 13
59 Team30 56 52
27 Team27
60 Team30 59 27
63 Team33 61 60
64 Team6 51 63
4 Team4
68 Team6 64 4
1 Team1
31 Team31
47 Team1 1 31
26 Team26
3 Team3
42 Team26 26 3
54 Team1 47 42
9 Team9
69 Team1 54 9
2 Team2
0 Team0
25 Team25
10 Team10
38 Team25 25 10
41 Team0 0 38
44 Team2 2 41
29 Team29
58 Team2 44 29
16 Team16
24 Team24
48 Team16 16 24
18 Team18
20 Team20
32 Team32
39 Team20 20 32
46 Team18 18 39
62 Team16 48 46
7 Team7
5 Team5
22 Team22
43 Team5 5 22
50 Team7 7 43
15 Team15
65 Team7 50 15
66 Team16 62 65

(case continues on next page)

67 Team2 58 66
11 Team11
36 Team36
45 Team11 11 36
23 Team23
21 Team21
37 Team23 23 21
17 Team17
53 Team23 37 17
55 Team11 45 53
34 Team34
8 Team8
40 Team34 34 8
57 Team11 55 40
70 Team2 67 57
71 Team1 69 70
72 Team6 68 71

6 1 Team1
2 Team2
3 Team1 1 2

7 63 Team63
62 Team62
61 Team61
60 Team60
59 Team59
58 Team58
57 Team57
56 Team56
55 Team55
54 Team54
53 Team53
52 Team52
51 Team51
50 Team50
49 Team49
48 Team48
47 Team47
46 Team46
45 Team45
44 Team44
43 Team43
42 Team42
41 Team41
40 Team40
39 Team39
38 Team38
37 Team37
36 Team36
35 Team35
34 Team34
33 Team33
32 Team32
31 Team62 62 63
30 Team60 60 61
29 Team58 58 59
28 Team56 56 57
27 Team54 54 55
26 Team52 52 53
25 Team50 50 51

(case continues on next page)

24 Team48 48 49
23 Team46 46 47
22 Team44 44 45
21 Team42 42 43
20 Team40 40 41
19 Team38 38 39
18 Team36 36 37
17 Team34 34 35
16 Team32 32 33
15 Team60 30 31
14 Team56 28 29
13 Team52 26 27
12 Team48 24 25
11 Team44 22 23
10 Team40 20 21
9 Team36 18 19
8 Team32 16 17
7 Team56 14 15
6 Team48 12 13
5 Team40 10 11
4 Team32 8 9
3 Team48 6 7
2 Team32 4 5
1 Team32 2 3

8 61 Jets
60 Ducks
59 Jets 60 61
58 Coyotes
57 Jets 58 59
56 Bruins
55 Jets 56 57
54 Sabres
53 Jets 54 55
52 Flames
51 Jets 52 53
50 Hurricanes
49 Jets 50 51
48 Blackhawks
47 Jets 48 49
46 Avalanche
45 Jets 46 47
44 Jackets
43 Jets 44 45
42 Stars
41 Jets 42 43
40 Wings
39 Jets 40 41
38 Oilers
37 Jets 38 39
36 Panthers
35 Jets 36 37
34 Kings
33 Jets 34 35
32 Wild
31 Jets 32 33
30 Canadiens
29 Jets 30 31
28 Predators
27 Jets 28 29

(case continues on next page)

26 Devils
25 Jets 26 27
24 Islanders
23 Jets 24 25
22 Rangers
21 Jets 22 23
20 Senators
19 Jets 20 21
18 Flyers
17 Jets 18 19
16 Penguins
15 Jets 16 17
14 Sharks
13 Jets 14 15
12 Blues
11 Jets 12 13
10 Lightning
9 Jets 10 11
8 Leafs
7 Jets 8 9
6 Canucks
5 Jets 6 7
4 Knights
3 Jets 4 5
2 Capitals
1 Jets 2 3

