
Manitoba High School Programming Contest

University of Manitoba

May 25, 2012 12:30-3:30 PM

Problem Packs

Notes:
• All input should be read from standard input (the

keyboard) and written to standard output (the
screen).

• No text boxes or input windows should be used.
• Any programming language resources are

allowed.

Problem 1 – Loan Payment

If you take out a loan for a fixed amount of time, what should your payments be?
The answer is complicated by the fact that you are charged interest, so you can't
just divide the amount of the loan to be repaid over the amount of time.

Fortunately, there's a formula for calculating the payment on a loan. Suppose
you have a loan for N months, and the amount you have loaned is P dollars.
Also, assume that the interest rate is r (as a decimal, i.e., 5 % would be r = 0.05).
Then the monthly payment on your loan is

P*r*(1+r)N/((1+r)N – 1)

Write a program that accepts three values, P, N and r, and then outputs the
amount to be paid each month. The first two values are integers (no decimal
point) greater than zero, and the last is a decimal number greater than 0 and less
than 1.

Input

Your program should accept three quantities on separate lines of input: first the
initial amount loaned (P), then the number of months of the loan (N), and then
the interest rate as a decimal (r).

Output

Your program should output the integers payment in this format:

“The monthly payment is $X. “

where X is a decimal number. Do not worry about rounding the output value.

Sample Input Sample Output
20000
60
0.069

The monthly payment is $1405.657672350561

Judging Data for Problem 1

Note: since this problem does not involve any looping, your program will
be run separately on each of the four input cases listed below.

Case 1:

20000
60
0.069

Case 2:

100000
1
0.01

Case 3:

100000
100
0.001

Case 4:

1000
15
0.055564

Problem 2 – Cooling Pies

You are in the business of cooling pies. You are not in charge of baking them.
Only cooling them.

You have determined that the rate at which a pie cools depends on three things:

1. the current temperature of the pie (Tp).
2. the current temperature of the room that the pie is being cooled in (Tr).
3. k, a constant, which depends on several factors, including the size of the

pie, the type of pie shell used, and (you think) the type of filling. k is a
negative number.

In particular, you notice that in one minute, the temperature of your pie will go
down by k(Tp – Tr) degrees (notice that k(Tp – Tr) < 0). However, the
temperature of your room is not stable. Initially, it is T0 degrees and increases by
Q degrees each minute: after one minute the temperature of the room will be T0
+ Q degrees, after two minutes it is T0 + 2*Q.

Write a program that will calculate the temperature of the pie after a given
number of minutes.

Input

The first line of input is a single number n that gives the number of test cases
you have to process. Then for each case, you have 5 values on one line: Tp (an
integer), Tr (an integer), k (a negative decimal), Q (an integer) and m (the
number of minutes of cooling, an integer).

Output

For each test case, output "Case #X" where X is a number starting at one, then
output the final temperature of the pie after m minutes.

Sample Input Sample Output
3
425 60 -0.01 3 1
425 60 -0.01 3 2
425 60 -0.01 3 3

Case #1 421.35
Case #2 417.7665
Case #3 414.248835

Judging Data for Problem 2

15
425 60 -0.01 3 1
425 60 -0.01 3 2
425 60 -0.01 3 3
425 60 -0.99 0 0
425 60 -0.99 3 0
350 68 -0.01 2 3
375 0 -0.05 1 15
400 -15 -0.3 4 60
400 0 -0.05 0 100
400 0 -0.05 0 0
1000 20 -0.003 0 300
1000 20 -0.002 0 3000
1000 20 -0.001 0 20000
1000 1 -0.001 0 100000
1000 -1000 -0.001 1 2000

Problem 3 – The Winnipeg Distance

You may know about the "Manhattan Distance", which is a way of calculating the
distance between two points in two-dimensional space. For points p = (x1,y1) and
q = (x2,y2), their Manhattan Distance is |x2 – x1| + |y2 – y1|. (Here |x| represents
the absolute value of the number x, which is the value of x without the sign, e.g.,
|-2| = |2| = 2.) This measurement is called the Manhattan Distance because it
represents the number of blocks you must drive to get between two spots when
you drive along a road system laid out as a grid.

But Manhattan is an island, while Winnipeg is clearly not. So we propose the
"Winnipeg Distance" for points in a two-dimensional region. Informally, the
Winnipeg Distance will be just like the Manhattan Distance, but with the
possibility of "taking the perimeter" if both points are near the boundary of the
city. If you take the perimeter, then you simply add the distance from your
starting point to the nearest point on the perimeter and the distance from your
ending point to its nearest point on the perimeter. (The distance travelled on the
perimeter does not count towards the distance, since that's just highway driving.)

The layout of Winnipeg in this example will be a rectangle of grid points where
the exterior of the grid is the perimeter. Every road intersects with the perimeter
at the edge of the grid (i.e., every road is connected to the perimeter twice).

Here is an example:

First notice that the point (0,0) is the upper left corner and the point (11,10) is the
lower right corner. The x coordinates increase from left to right and the y
coordinates increase from top to bottom.

Suppose we want to calculate the distance from A to B. A is at point (2,7) and B
is at point (7,1). The Manhattan distance from A to B is |2-7|+|7-1| = 11. This is
represented by the dotted line between A and B. But the Winnipeg distance is
represented by the dark line that goes from A to the perimeter (at point (0,7)) and
then from the point (7,0)) to B. Thus the Winnipeg distance from A to B is 3,
since the dark solid line is less than the dotted line.

Notice that the closest point to on the perimeter to a given point may be in any
of four directions: you could reach the perimeter by travelling east, north, south or
west, and your algorithm will need to check all four options.

Input

The first line of the file is the number of input test cases to examine. Then each
line is given by six integers. First are the dimensions of the city, given by the
maximum x-coordinate, then the maximum y-coordinate. Then are the x and y
coordinates of the first point, and finally the x and y coordinates of the second
point.

Output
For each pair of points, output the Manhattan distance, then the Winnipeg
distance. Notice that these may be the same. Output both distances on one line
as follows:

"Manhattan: XXX, Winnipeg: YYY"

where XXX and YYY are the Manhattan and Winnipeg distances.

Sample Input Sample Output
3
11 10 2 7 7 1
100 100 99 1 99 99
1000 1000 500 500 501 501

Manhattan: 11, Winnipeg: 3
Manhattan: 98, Winnipeg: 2
Manhattan: 2, Winnipeg: 2

Judging Data for Problem 3

30
11 10 2 7 7 1
100 100 99 1 99 99
1000 1000 500 500 501 501
440 70 122 39 407 13
10440 10070 5122 5039 5407 5013
126 861 68 709 71 664
10126 10861 5068 5709 5071 5664
135 415 14 359 109 77
785 614 701 602 517 517
83 259 74 217 66 168
973 998 527 352 800 422
387 739 312 31 141 370
478 495 393 176 284 386
51 546 3 425 18 401
198 401 77 261 126 388
457 78 50 57 88 24
560 369 319 280 18 244
541 174 198 27 427 149
94 331 10 48 11 19
800 287 197 35 667 117
786 44 684 40 506 26
638 243 18 205 443 229
559 475 257 67 32 305
833 721 682 350 713 627
377 517 298 46 217 22
210 326 119 53 85 212
112 974 79 569 29 159
839 570 793 380 476 530
434 425 312 341 235 107
310 229 86 60 184 144

Problem 4 – Kindergarten Policing

Arnold is starting his first day as a kindergarten teacher. Arnold is not really that
great at his job, so he puts a number on the back of each student. This way,
when Arnold gets all students to line up, he can figure out if any have wandered
away. In a rare moment of brilliance, he also puts the highest number on the one
student who never disappears anywhere, so he knows how many students he
should have in line.

Fortunately, Arnold has figured out that if a child is missing, only one will be
missing. Everyone may be there, but there will never be more than one child
missing.

Unfortunately, the students rarely line up in order, so Arnold is having a hard time
determining if any students are missing.

Write a program that reads in the student numbers and either prints out

"No one is missing."

or

"Student X is missing!"

where X is the number of the student not in line.

Input

The first line of the input gives the number of test cases to process. Each line
after that has several numbers, separated by one space. The number of
numbers in each line may differ (since some days, some children may be known
to be absent). All numbers will be positive, starting with 1 for the first child in the
class.

Output

Output one of the two messages for each line.

Sample Input Sample Output
2
1 2 3 5
5 1 3 2 4

Student 4 is missing!!
No one is missing.

Judging Data for Problem 4

7
1 2 3 5
5 1 3 2 4
5 4 3 2 1
1 2 3 4 5
10 1 2 3 7 8 5 6 4 9
10 1 2 3 7 8 5 6 4
6 5 3 1 2

Problem 5 – Stuck In Traffic

In this question, you will simulate the action of cars situated on a road. Each road
will be given a sequence of empty spaces and cars (which are represented by
their speed).

For instance, given a road that looks like this:

2 _ _ 0 _

the road has five "spaces", two of which are filled by cars:

Each car has a speed associated with it. If a car has speed v, then it will travel
forward v spaces on the road. For instance, if the speed of the black car is 2 and
the speed of the grey car is 0, then after one time step the road above would look
like this:

In our text representation, that would be represented as

_ _ 2 0 _

Notice that cars travel from left to right in our model. If a car reaches the end of
the road, it is ignored. Car speeds will be set so that no car will have to
pass another car during the update.

Write a program that reads in one road configuration, moves the cars according
to their speed, and outputs the next configuration of the road.

Input

The first line of the input will be a number that represents how many test cases
your program has to process. Each line after that will represent one road. It will
consist of underscore symbols _ and numbers from 0 – 9, representing cars by
their speeds. Note that there are no spaces on the lines (none between the
numbers, between the underscore symbols or between numbers and
underscores).

Output

For each road output the new configuration of cars, representing each car by
their speed (which is the same as the speed before the movement) and blank
spots on the road by the underscore symbol _. The road has the same length
before and after the movement of cars.

Sample Input Sample Output
3
2__0_
2__2_
11__0

__20_
__2__
_11_0

Judging Data for Problem 5

29
000
001
011
020
300

0__
1__
2__
3__
0
1
2
3
0_1
0_2__
0_3___
5______9_________8__________1_7__________6______9_________6________9_________02___
5______9_________8__________1_7__________6______9_________6________9_________02
_2__8__________7________8________9_________7_______6______2___4____6_______3____4____2__
__1_3___01_9_________0___1_6______4____6________4____1_1_
__1_3___01_9_________0___1_6______4____6________4___5__
3___3___2__4_____2___4______8________7_______5_____2___6______9____________
2_____2__9_________01__3______4_____4____1_9_________5_____2__
6_______5______9_________4____9_________4____3___2__4_______3___9_________7_______9__
9___________4____7_______9_________4____1_0_06_______8________9_________1_6________4____
_1_4____5_____5______2__05_____2__3___6_______4____5_____9_________5_____7_______9___
1_1__9__________2__9_________3___9__________6______9_________3___9_________7_______7_
2__5_____8________2__7________0_3___9__________1__3____2__0_9_________7_______

Problem 6 – Male-Preferred Primogeniture

For some royal families, who will be king or queen is determined by "male-
preferred primogeniture", which means that male children will be king (regardless
of age) before any female children will be queen, and that children of the queen
or king will succeed to the throne before any of the younger brothers or sisters of
that queen or king.

For instance, consider (a part of) the current British royal family, depicted below.
We do not consider any spouses in this diagram, since we're only concerned with
relationships between parents and children:

In this tree, children are ordered from left-to-right based on their age; Charles is
the oldest child of Elizabeth while Edward is the youngest.

After Queen Elizabeth, the next in line to the throne are Charles (male), William
(male), Harry (male), Andrew (male), Beatrice (female), Eugenie (female),
Edward (male), James (male), Louise (female), Anne (female), Peter (male) and
then Zara (female).

Write a program that takes a list of parent-child relationships and then prints out
the line of succession (the order in which people will take the throne) for that
family.

Input

There will be several test cases in each file. Each test case will start with a
number on a line by itself, with 1 being the first case. Each name in the family will
be unique, with no spaces. Each name is followed by the gender of the person
(M for male and F for female).

Elizabeth	

Charles	

William	 Harry	

Anne	

Peter	 Zara	

Andrew	

Beatrice	 Eugenie	

Edward	

Louise	 James	

For each family, the person currently king or queen is the first person listed on
the first line.

For each person listed, if they have children, they are listed after their name,
separated by a colon. For instance, Queen Elizabeth would be listed as

Elizabeth (F): Charles (M), Anne (F), Andrew (M), Edward (M)

The oldest child is listed first after the colon, followed by each child in order of his
or her age.

A family member who is a parent will not be listed before their parent has already
been listed, except for the current king or queen.

Output

For each case, first ouput "Case X" where X is the number of the case. Then
print the names of each of the family members, one per line, in order of their
succession to the throne. Do not print out their genders.

Sample Input Sample

Output
1
Elizabeth (F): Charles (M), Anne (F), Andrew (M), Edward (M)
Charles (M): William (M), Harry (M)
Anne (F): Peter (M), Zara (F)
Peter (M): Savanah (F), Isla (F)
Andrew (M): Beatrice (F), Eugenie (F)
Edward (M): Louise (F), James (M)

Case 1
Elizabeth
Charles
William
Harry
Andrew
Beatrice
Eugenie
Edward
James
Louise
Anne
Peter
Savanah
Isla
Zara

Judging Data for Problem 6

1
JohnI (M) : JohnII (M)
2
JohnI (M) : JohnII (M), JaneI (F)
3
JohnI (M) : JaneI (F), JohnII (M)
4
JaneI (F): JaneII (F), JohnI (M)
JaneII (F): AliceI (F)
5
Elizabeth (F): Charles (M), Anne (F), Andrew (M), Edward (M)
Charles (M): William (M), Harry (M)
Anne (F): Peter (M), Zara (F)
Peter (M): Savanah (F), Isla (F)
Andrew (M): Beatrice (F), Eugenie (F)
Edward (M): Louise (F), James (M)
6
AerysII (M): Rhaegar (M), ViserysIII (M), Danerys (F)
Rhaegar (M): Rhaenys (F), Aegon (M)
7
Edwyle (M): Rickard (M)
Rickard (M): Brandon (M), Ned (M), Benjen (M), Lyanna (F)
Ned (M): Robb (M), Sansa (F), Arya (F), Brandon (M), Rickon (M)

(test cases continue on next page)

8
JaneI (F): JaneII (F), JohnI (M)
JaneII (F): AliceI (F)
JohnI (M): JaneIII (F), JohnII (M)
JaneIII (F): AliceII (F)
JohnII (M): JaneIV (F), JohnIII (M)
JaneIV (F): AliceIII (F)
JohnIII (M): JaneV (F), JohnIV (M)
JaneV (F): AliceIV (F)
JohnIV (M): JaneVI (F), JohnV (M)
JaneVI (F): AliceV (F)
JohnV (M): JaneVII (F), JohnVI (M)
JaneVII (F): AliceVI (F)
JohnVI (M): JaneVIII (F), JohnVII (M)
JaneVIII (F): AliceVII (F)
JohnVII (M): JaneIX (F), JohnVIII (M)
JaneIX (F): AliceVIII (F)
JohnVIII (M): JaneX (F), JohnIX (M)
JaneX (F): AliceIX (F)
JohnIX (M): JaneXI (F), JohnX (M)
JaneXI (F): AliceX (F)
JohnX (M): JaneXII (F), JohnXI (M)
JaneXII (F): AliceXI (F)
JohnXI (M): JaneXIII (F), JohnXII (M)
JaneXIII (F): AliceXII (F)
JohnXII (M): JaneXIV (F), JohnXIII (M)
JaneXIV (F): AliceXIII (F)
9
A (M): B (M), C (M), D (M)
B (M): E (M), F (M), G (F)
C (M): H (M), I (F), J (M)
D (M): K (M), L (F), M (F)
E (M): N (F), O (M), P (M)
F (M): Q (F), R (M), S (F)
G (F): T (F), U (F), V (M)
H (M): W (F), X (F), Y (F)
I (F): Ichild (M)
J (M): Jchild (M)
K (M): Kchild (M)
L (F): Lchild (M)
M (F): Mchild (M)
N (F): Nchild (M)
O (M): Ochild (M)
P (M): Pchild (M)
Q (F): Qchild (M)
R (M): Rchild (M)
S (F): Schild (M)
T (F): Tchild (M)
U (F): Uchild (M)
V (M): Vchild (M)
W (F): Wchild (M)
X (F): Xchild (M)
Y (F): Ychild (M)

