
MANITOBA	HIGH	SCHOOL	PROGRAMMING	CONTEST:	
RESOURCE	GUIDE	FOR	TEACHERS	AND	STUDENTS	(2019)	

This	guide	documents	the	programming	environments	that	are	available	to	participants	in	the	Manitoba	
High	School	Programming	Contest	held	at	the	University	of	Manitoba	in	May	2019.	While	we	make	our	
best	effort	to	ensure	that	all	of	the	software	and	versions	are	available	as	described	below,	contest-day	
changes	are	sometimes	unavoidable.	

For	each	programming	language,	there	is	an	example	of	how	to	read	from	standard	input	in	the	format	
the	contest	requires.	All	contest	questions	will	require	one	or	more	values	read	from	standard	input.	
Other	forms	of	input	(such	as	from	data	files	or	graphical	interfaces)	cannot	be	accepted.	Excess	output	
(like	prompts	for	input)	may	result	in	a	contest	submission	being	rejected.	

For	input,	students	should	be	able	to	read	in	integer	and	decimal	values,	and	strings.	In	particular,	
problems	may	require:	

• reading	a	single	numeric	or	string	value	on	a	line	of	input;	
• reading	a	known	number	of	numeric	values	per	line	of	input:	this	may	be	specified	in	the	

problem,	or	read	from	input	or	calculated;	
• reading	an	entire	line	of	input	as	a	string	(and	performing	further	processing	on	it);	
• reading	a	known	number	of	lines	of	input,	either	specified	in	the	problem,	or	read	from	input	or	

calculated;	and	
• reading	and	processing	input	until	a	special	(“sentinel”)	value	is	input;	for	example,	reading	

positive	integers	and	stopping	when	a	negative	value	is	read.	Typically	the	sentinel	value	should	
not	be	processed.	

Most	environments	allow	copy	and	paste	of	data	into	standard	input;	it	is	a	good	idea	for	students	to	
have	their	test	data	typed	into	a	text	editor	so	they	can	avoid	re-typing	it	every	time	they	want	to	run	and	
test	their	programs.	In	addition	to	the	text	editing	features	of	the	programming	environments,	the	
computer	labs	have	the	standard	Windows	Notepad	application	installed,	along	with	Notepad++.	All	
computers	are	currently	running	Windows	7.	

All	program	output	must	be	printed	to	standard	output,	as	in	the	examples	for	each	of	the	supported	
programming	languages	given	later	in	this	guide.	No	other	forms	of	output	(such	as	output	to	files	or	
graphical	interfaces)	are	accepted.	

Currently,	we	support	the	Java,	C/C++,	and	Python	programming	languages.	

	 	

JAVA	

The	computer	systems	will	have	Java	8	installed.	It	is	available	from	a	command	prompt	for	any	students	
who	wish	to	compile	and	run	their	programs	that	way.	

There	are	many	ways	to	read	from	standard	input	in	Java,	but	the	standard	Java	Scanner	class	is	typically	
the	easiest.	The	following	example	program	will	read	a	single	integer	value	from	standard	input.	

import java.util.Scanner;
public class Example1 {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int data;
 data = in.nextInt();
 System.out.println("The value read in was: " + data);
 }
}

Note:	to	avoid	problems,	a	program	should	never	create	more	than	one	Scanner	for	standard	input:	don’t	
use	new Scanner(System.in)	more	than	once	in	a	program.	In	particular,	students	should	not	create	
the	Scanner	inside	a	loop;	create	at	the	beginning	of	the	program,	before	any	loops	begin.	Here	is	an	
example	of	reading	multiple	lines	of	input,	where	each	line	contains	an	integer	value	n	followed	by	n	real	
numbers,	exiting	when	n	is	negative.	

import java.util.Scanner;
public class Example2 {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int n = 0
 double data;
 while (n >= 0) {
 n = in.nextInt();
 if (n >= 0) {
 for (int i = 0; i < n; i++) { // Example input:
 data = in.nextDouble(); //
 System.out.print(data + " "); // 3 2.5 3.14 -1
 } // 2 1.777778 13.31
 System.out.println(); // 0
 } // 1 -2718.28182846
 } // 4 3 2 1 0
 } // -1
}

	 	

DrJava	

The	most-frequently	used	Java	development	environment	used	in	our	labs	is	DrJava.	It	is	the	
recommended	software	for	our	first-year	undergraduate	students.	The	labs	have	the	stable	2013	release	
installed,	which	only	supports	Java	7	and	8.	No	special	steps	are	required	in	order	to	execute	the	contest	
programs.	Students	can	simply	enter	and	run	them.	

	

	 	

Eclipse	

Eclipse	is	a	more	professional	development	environment	(IDE)	that	provides	features	to	help	write	code	
more	effectively.	Currently,	Eclipse	Luna	(2015)	is	installed	in	the	labs.	Notes	for	students	using	Eclipse:	

1. When	creating	a	new	Java	class	for	a	program,	keep	the	“Package”	blank,	even	though	Eclipse	will	
warn	you	that	“The	use	of	the	default	package	is	discouraged”.	Packages	are	not	allowed	for	
contest	submissions.	

2. Since	contest	programs	will	usually	read	input	before	producing	any	output,	Eclipse	will	not	
automatically	open	a	window	for	input.	Students	will	need	to	open	the	window	before	running	
their	program	the	first	time,	by	selecting	Window/Show	View/Console.	

	

	 	

NetBeans	

NetBeans	is	another	professional	IDE	available	in	our	labs.	NetBeans	version	8	is	currently	installed.	Notes	
for	students	using	NetBeans:	

1. When	creating	a	new	Java	class,	NetBeans	will	automatically	insert	a	package	declaration	at	the	
top.	This	can	be	left	in	place	for	running	and	testing	the	program.	But	before	submitting	their	Java	
source	code	file	using	the	contest	software,	students	must	delete	this	line	and	save	the	Java	file.	
They	can	undo	the	change	if	they	want	to	continue	to	work	on	the	program	in	NetBeans,	and	
delete	it	before	each	submission.	

	

	 	

BlueJ	

BlueJ	is	an	education-focussed	object-oriented	Java	development	environment.	Because	BlueJ	provides	a	
custom	interface	around	“standard”	Java,	students	must	do	the	following	in	order	to	create	a	program	
that	can	be	accepted	by	our	contest	software:	

1. The	entire	solution	must	be	in	a	single	BlueJ	class,	since	the	contest	software	only	allows	
uploading	a	single	Java	file.	

2. The	class	must	contain	a	Java	main	program	exactly	like	the	Java	example	given	earlier:	public
static void main(String[] args) {	etc.	Note	that	this	line	must	match	exactly:	
incorrect	names	or	case	will	prevent	the	contest	software	from	running	their	submission.	If	
students	do	not	typically	use	main	programs,	they	should	bring	this	reminder	with	their	contest	
notes.	

3. Students	should	test	their	program	by	running	the	main	method.	It	must	be	the	starting	point	for	
their	solution.	Pass	no	arguments	to	the	main	method.	

4. Input	must	still	come	from	standard	input.	Before	running	the	program	for	the	first	time,	
students	may	need	to	open	the	Terminal	window	(from	the	View	menu).	

	

	 	

C++	

The	computer	systems	have	GNU	C++	(MinGW)	and	Microsoft	Visual	Studio	installed.	

Students	may	choose	to	write	programs	that	use	either	C	or	C++	style,	but	they	must	be	valid	C++	
programs	using	the	file	extension	filename.cpp.	Standard	input	in	C++	typically	uses	iostream:	

#include <iostream>
int main() {
 int data;
 std::cin >> data;
 std::cout << "The value read in was: " << data << std::endl;
}

DevC++	

Dev-C++	5.7.0	is	installed	in	the	labs.	It	can	build	and	run	C	and	C++	programs	using	GNU	C	and	MinGW.	

	

Visual	Studio	

Microsoft	Visual	Studio	2012	for	C++	is	also	available.	
However,	submissions	must	not	use	non-standard	Visual	
Studio	C++	extensions	are	permitted.	The	following	
guidelines	must	be	followed:	

1. There	must	not	be	an #include "stdafx.h"
line	in	the	submitted	program.	This	can	either	be	
removed	before	submitting,	or	students	can	
disable	precompiled	headers	when	creating	their	
project,	as	shown	in	the	image	on	the	right.	

2. Use	a	regular	main	function	as	the	starting	point	
for	your	program.	

3. If	you	need	to	add	an	additional	empty	input	
statement	at	the	end	of	the	program	to	keep	the	
output	window	open,	remove	it	before	
submitting	your	solution.	

	

No	other	Visual	Studio	languages	are	permitted.	

	 	

PYTHON	

ActivePython	2.7.8.10	is	available	from	the	command	line.	Students	will	have	to	use	an	external	editor	like	
Notepad++	to	write	their	programs.	

	

