
University of Manitoba 
Open Programming Contest 
September 25, 2010 
 
General Instructions: 
 

1. Submit solutions using the PC^2 software. 
2. The questions are not listed in order of difficulty. 

Some questions will be easier than others, and 
these are not necessarily the problems listed first. 

3. All input should be read from standard input.  



Problem 1 – BOGO 
 
Jim works at a clerk at a store that perpetually has a "buy one get one free" 
(BOGO) sale.  Technically, the store's policy is "buy one item, get another item of 
equal or lesser value for free".  Unfortunately, Jim's customers rarely understand 
which items they should pay for and which they should get for free.  They always 
buy an even number of items, though.  
 
Write a program that takes an even number of prices of items, and calculates the 
minimum total price the customer can pay for all the items with they "buy one, get 
one cheaper item free" rule.  

Input 
 
The input consists of several lines of input. Each line should be processed as a 
separate customer.  Each line consists of an unknown (but even) number of 
floating-point numbers, each separated by a space.  These represent the prices 
of the items.  

Output 
 
For each line, output "Customer pays $x" where x is the minimum amount that 
the customer can pay with the BOGO rule.   
 
Sample Input Sample Output 
13 15 17.7 19.1 
13.37 31.41 14.14 9001.01 
1 4.1 4.1 4.1 

Customer pays $34.1 
Customer pays $9015.15 
Customer pays $8.2 

 
 
 



 Problem 2 – Multi-tap Input 
 

In non-smart cell phones, text input can be handled by a 
technique called multi-tap. With multi-tap, you use the 
letters on each key, and press a key multiple times to 
access different letters. For instance, to get the letter 'a', 
you press the 2 key once, but to get 'n', you press the 6 
key twice (the first press gives you 'm', the second 
switches 'm' to 'n').  A slight pause by the user will indicate 
the end of inputting one character and a beginning of the 
input of the next character.  
 
The letters 'q' and 'z', not originally part of the letters on a 

phone, force the keys 7 and 9 to have four characters each. All other keys have 3 
characters. 
 
Write a program which, given a word (a string of lower case letters with no 
spaces), outputs the sequence of keystrokes using multi-tap. If a key is pressed 
multiple times, it should appear that many times in the input. A pause is indicated 
by a single space.  

Input 
 
Each line of input contains a single word (all lower case, no spaces). Process 
each line until the end of the file.  

Output 
 
For each line, output the correct multi-tap output. 
 
Sample Input Sample Output 
parasitic 
quizzical 

7 2 777 2 7777 444 8 444 222  
77 88 444 9999 9999 444 222 2 555 

 
 
 
 



Problem 3 – Sliding Square Puzzle 
 
Noyes Chapman, the Postmaster of Canastota, New York invented the well-
known 15 Puzzle, in 1880. The puzzle consists of 15 squares, numbered from 1 
to 15, that are placed in 4x4 grid leaving one grid cell empty. The player makes a 
move by sliding squares to the adjacent empty cell, which will reveal another 
empty cell. The goal is to reorder the squares until the numbers are in increasing 
order leaving the bottom-right hand square empty. 
 
In this problem, you will be asked to write a program that finds the minimum 
number of moves required to solve the simpler 8 Puzzle which consists of a 3x3 
grid with 8 squares numbered from 1 to 8. For example, the initial configuration 
may be: 
 

1 3 5 
4 8 2 
7 6  

 
The puzzle is solved when the following configuration is reached: 
 

1 2 3 
4 5 6 
7 8  

 
If no solution exists within 20 moves, the configuration is considered to be 
unsolvable. 

Input 
 
The first input line contains a single integer c, which is the number of board 
configuration. Each board configuration is represented by 9 integers, which 
corresponds to the 9 squares starting from the upper-left hand corner to the 
bottom-right hand corner. The empty square is represented by 0.  

Output 
For each board configuration, output the minimum number of moves required to 
solve it followed by the newline character. If the configuration is unsolvable, then 
output “Unsolvable.” followed by the newline character. 



 
Sample Input Sample Output 
3 
1 2 3 
4 5 6 
0 7 8 
1 3 5 
4 8 2 
7 6 0 
0 8 7 
6 5 4 
3 2 1 

2 
8 
Unsolvable. 

 



Problem 4 – Thin it to win it 
 
Mike has been given the job of thinning the carrots in his garden.  According to 
the directions on the packet of seeds, you should plant seeds close to each other 
but after the seeds sprout they should be "thinned" to allow 5 cm between each 
carrot.  
 
Several factors affect the carrots: some seeds don't sprout and not all carrots 
grow at the same rate. So, by the time Mike is ready to thin the plants, there are 
a variety of distances between the carrots and a variety of sizes of carrots.  Mike 
also plants different varieties of carrots, which should be thinned to different 
distances.  
 
Mike wants to determine which carrots to pull. He gives you two arrays of 
integers: the distance between the plants (in cm) and the sizes of the carrot (an 
estimate of the volume of the carrot, in mm3).   He would like to know the biggest 
volume of carrots that can remain in the ground where each carrot is at least the 
minimum distance from their neighbour in the row.   
 
For example, consider an example where there are four carrots in a row: 

 
 
If the minimum distance is 5 cm, then Mike would pull out carrots c2 and c3, 
leaving carrots c1 and c4 with a total volume of 200 mm3.  

Input 
 
The first line of input gives the number of rows of carrots to process. For each 
row of carrots, the first two numbers are on a single line; they give the minimum 
distance D between carrots and the number of carrots n. The next two lines of 
input are 

• the volumes of carrots: this line has n integers, specifying the volumes of 
the n carrots (in order). 

• the distance between carrots: this line has n-1 integers, specifying the 
distance between the n carrots (in the same order as the volumes).  

Output 
 
For each line, give the maximum volume of carrots that can be left in the row 
after thinning. 

!"#$ %"#$ &"#$

%'' %' (' %''

#% #( #! #&

$$
!

$$
!

$$
!

$$
!



 
 
Sample Input Sample Output 
3 
5 4 
100 10 20 10 
3 1 4 
5 3  
10 100 10 
4 4 
4 6 
90 40 30 20 10 55 
2 1 5 3 2 

110 
100 
165 

 
 
 



Problem 5 – Magnets: how do they work??  
 
 
A set of magnetic objects are placed on a flat surface. After being released, 
some of these magnets will be forced towards others.  When the system 
stabilizes, some magnets will have grouped together.  How many such groups 
are there in the final configuration?  
 
Our model of the attraction between the objects is: 

• each object has a magnitude, given by a positive integer. The larger the 
magnitude, the stronger the attracting power the object has. 

• all objects attract other objects in all possible directions (i.e., there are no 
poles on our magnetic objects, and nothing repels anything else). 

• we calculate the force between two objects of magnitude m1 and m2 which 
are r units apart by m1m2/r2.   

• all objects need the same force applied to them to move. This is given as 
the “moving force” FM for the system. (This may vary due to the type of 
surface being used.) So if two objects are to move towards each other, 
their force must exceed FM. Once two objects begin moving, they continue 
to do so until they meet. We assume the same force is required regardless 
of how many objects are in a group of objects. 

• when two objects with magnitude m1 and m2 are attracted to each other, 
their new magnitude is the sum of their individual magnitudes. Their 
position is the midpoint of the line segment between their two positions.  

• when multiple pairs of objects can be attracted to each other, we consider 
those with the greatest total force between them to be attracted first. No 
tiebreaking which will impact the final outcome will be required.  

 
An initial configuration is given by the size of the square surface, the moving 
force, the number of objects and their positions and magnitudes.  From this, 
calculate the number of distinct groups of objects after all movement has 
concluded. 

Input 
 
The first line of the input consists of a single integer, which gives the number of 
surfaces to test.  
 
The first line of each surface is two integers: F (the minimum force to move to 
objects) and r (the number of objects on the surface).  The next r lines each 
consist of three integers: the (x,y)-coordinates of the object, followed by its 
magnitude. 



 

Output 
 
For each surface, output: "Surface #x: YY groups." where x is the number 
of the test (starting from 1) and YY is the final number of groups of objects on the 
surface. 
 
Sample Input Sample Output 
3 
5 3 
1 1 4 
3 1 2 
3 2 3 
2 4 
0 0 1 
0 1 1 
1 0 1 
1 1 1 
2 3 
0 0 2 
0 1 2 
3 1 1 

Surface #1: 2 groups. 
Surface #2: 4 groups. 
Surface #3: 2 groups. 

 



Problem 6 – Diagonally 
 
Imagine an n-by-n square grid of numbers written by starting at the upper-left 
hand corner and writing the numbers 1 through n2 clockwise, spiralling in to the 
centre.  So for n=5, the square would look like this: 
 

1 2 3 4 5 
16 17 18 19 6 
15 24 25 20 7 
14 23 22 21 8 
13 12 11 10 9 

 
Imagine the diagonal that goes from the upper-left hand corner (always labelled 
1) to the centre of the square (always labelled n2).  What is the sum of the entries 
on this diagonal? In the case of n=5 it is 1+17+25 = 43. 

Input 
 
The first input line contains a single integer c, which is the number of test cases. 
The next c lines each containing a single 16-bit odd number. This is the size of 
the grid to be tested. 

Output 
For each input line (except the first), output the sum of the diagonal from the 
upper-left hand corner to the centre of an n-by-n grid labelled as above. 
 
Sample Input Sample Output 
4 
5 
9 
1001 
12345 

43 
245 
334334501 
627121989933 

 


