
University of Manitoba
Open Programming Contest
September 24, 2011

General Instructions:

1. Submit solutions using the PC^2 software.
2. The questions are not listed in order of difficulty.

Some questions will be easier than others, and
these are not necessarily the problems listed first.

3. All input should be read from standard input.

Problem 1 – Locks

In a large building, each door is equipped with a sensor which can tell when
someone locks or unlocks a door. Each time either of these events occurs, a
letter is written in a log file: L for locked and U for unlocked. The room that is
locked or unlocked is not written to the log file. A sample log file would look like
ULLUULULULUUULUULLLUU.

This log file is reviewed by the security guards, who are usually concerned with
whether any doors in the building have been left unlocked. But recently, the
guards have noticed that some door sensors have been malfunctioning. The
doors still report all lock events, but have begun to miss some of the unlock
events. That is, not every U that should be in the log file actually appears
there. So some logs indicate that more doors have been locked than have been
unlocked, or an order of locks and unlocks that indicate a malfunction.

A new empty log file is started at the beginning of each day, when all doors are
locked. Lock and unlock events must alternate for each door; no door can have
two lock events in a row, nor two unlocks in a row.

Given this situation, you are asked to write a log file analyzer which reports
suspicious logs to the security guards. Given a log file (a sequence of Ls and
Us) you should report one of three messages:

1. “malfunction”: print this when there is a malfunction in one of the
mechanisms used to report unlockings.

2. “unlocked door”: use this when there is at least one door which can be
proven to be left unlocked.

3. “plausible”: use this when neither “malfunction” or “unlocked door” can be
established with certainty.

Input

The input is a series of lines, each consisting of a string consisting of U and L
only.

Output

For each line of input, output the case number (beginning at 1) as "Case x: "
(where x is an integer) and then one of the three outcomes, followed by a period.

Sample Input Sample Output
LU
UL
UUL

Case 1: malfunction.
Case 2: plausible.
Case 3: unlocked door.

Problem 2 – Consul

"Consul" the educated monkey is a monkey
that can multiply. No wait. I’m just being told
that Consul is in fact a vintage toy monkey
that can be manipulated to multiply small
numbers.

The toy consists of two moving legs that
change the position of a window over a
triangle of numbers. When the two legs
point at i and j with 1< i < j < 12 the
window will read i*j.

A picture of Consul is provided. For
completeness, the triangle of numbers in
the picture looks like this

12
11 24
10 22 36
9 20 33 48
8 18 30 44 60
7 16 27 40 55 72
6 14 24 36 50 66 84
5 12 21 32 45 60 77 96
4 10 18 28 40 54 70 88 108
3 8 15 24 35 48 63 80 99 120
2 6 12 20 30 42 56 72 90 110 132

Write a program which given an input n outputs the triangle used by Consul to
multiply numbers 1 < i < j ≤ n.

Input

The input file consists of several lines. Each line consists of a single positive
integer, which is at least two and at most 100.

Output

For each input integer n, output the triangle of numbers described above. Each
number should be separated from its neighbours on the same line by a single
space.

Sample Input Sample Output
3
5

3
2 6
5
4 10
3 8 15
2 6 12 20

Problem 3 – Binaristic Sequence

Each infinite sequence of integers defines a characteristic sequence over {0,1}.
The characteristic sequence is defined by si = 1 if i is in the sequence, and
si=0 if i is not in the sequence. For instance, the first few prime numbers are
2,3,5,7,11,13,17,... so its characteristic sequence is

001101010001010001...

Note that the sequence begins with i=1.

We now define another sequence from the characteristic sequence (call it the
binaristic sequence). Consider blocks of the sequence of increasing length
(starting with 1) and then treat these as binary numbers. For instance, for the
characteristic sequence of prime numbers, we get

0 01 101 0100 01010 …

which as a binary numbers are

0 1 5 4 10 …

Given an integer n, what is the n-th element of the binaristic sequence for the
prime numbers?

Input

The first line gives the number of test cases in the file. Each subsequent input
line consists of a single integer less than or equal to 32.

Output

For each input integer n, give the n-th element of the binaristic sequence for the
prime numbers.

Sample Input Sample Output
3
2
3
4

1
5
4

Problem 4 – Arbitrary Precision Cardinal Points

Everyone knows the cardinal points on a
compass: North, East, South and West.
These correspond to angles of 0 degrees,
90 degrees, 180 degrees and 270 degrees,
respectively (but N is also 360 degrees).
Then we have NE (North-east), SE (South-
east), SW (South-west) and NW (North-
west), which are the midpoints between the
respective cardinal points. For instance, SE
is at 135 degrees. Finally, the points such
as NNE are the midway points between (in
this case) NE and N: it is the point North of
North-east. NNE corresponds to 22.5 degrees.

In this problem, we extend the concept of cardinal points to arbitrary precision,
capable of representing any degree value between 0 and 360 (but not including
360). It is an extension of the previous argument: If X and Y are arbitrary
precision labels representing two cardinal points (with no labelled cardinal points
written between them), and X is the longer label (i.e., is longer as a string) then
the midpoint of the interval from X to Y is labelled by AX where A (one of
{N,E,S,W}) is the direction from X to the midpoint.

(There is one exception: if X and Y have the same length, then they must both be
one of the four cardinal points (N,E,S,W) and the midpoint is one of NE,SE,SW
or NW.)

For example, N is 0 degrees = 360 degrees and NNW is 337.5 degrees. The
midpoint of these two points is 348.75 degrees. It is N of NNW, so it would be
labelled NNNW (it is not labelled WN, since NNW is the longer of the two
endpoint labels). An example of showing the 32 primary cardinal points is given
in the picture.

Write a program that is capable of converting a degree measurement d with 0 <=
d < 360 into the closest arbitrary precision cardinal point. The numbers will be the
degree measurement from cardinal points obtained by dividing intervals at most
10 times.

Input

The first line of input is a number n, which indicates the number of cases in the
input. The next n lines each consist of a single floating point number d with 0 ≤ d
< 360.

Output

For each line in the file except the first line (the number of cases), output the
cardinal point corresponding to the number d on a line by itself.

Sample Input Sample Output
5
180
22.5
348.75
117.333984375
152.314453125

S
NNE
NNNW
SSESSEESESE
ESEEESSESSE

Problem 5 – S-I-R

We can develop a simple model of infectious diseases in a fixed population by
dividing the population into three disjoint sets: the set of susceptible people (size
S), the set of infected people (size I) and the set of recovering people (size R).
 Every member of the population is in one of those three groups. The model is
updated over a number of time steps.

In the model, once you are infected, you are no longer susceptible and after a
period of infection, you move to the recovering group. No one dies from this
disease. With this model, there are two parameters:

1. b - the average fraction of people an infected person comes into contact
with each time period, expressed as a number between 0 and 1.

2. g - the average recovery rate for an infected person, in number of time
periods.

From this, the changes in the population over a time period can be modelled by
the changes in the three sets. Let ΔS,ΔI and ΔR be the changes in the sizes of
the three sets of people over one time period. Then

ΔS = -bSI
ΔI = bSI - gI
ΔR = gI

Given a initial set of S susceptible individuals and I infected individuals (with no
recovering individuals), values for b and g, and a number of time steps t, print
the number of susceptible, infected and recovering people after t time steps.
(Consider the initial situation to be time step 0.)

Input

The first line of input is a single number N, which is the number of test cases to
examine. Each subsequent line begins with a string (the name of the disease)
and the four values: S, I, b, g and t, in that order.

Output

For each disease, output the name of the disease, followed by a colon and space
and the values of S, I and R, in that order, each separated by a space. Round all
values to the nearest integer. Each output should be on one line.

Sample Input Sample Output
3
measles 1000000 1000 0.0000016 0.001 100
chickenpox 1000000 10 0.0000010 0.01 10
hyperevolutionary-virus 1000 1 0.00000001 0.1 10

measles: 0 912025 88975
chickenpox: 990220 9691 98
hyperevolutionary-virus: 1000 0 1

Problem 6 - Grid

Consider a N-by-N grid where some cells are blocked by obstacles. For example,
the following 6-by-6 grid has 4 blocked cell (shaded).

There is a dangerous predator in the top-left cell. The predator can move up,
down, left, and right. Your task is place additional obstacles in the grid in order to
prevent the predator from reaching the bottom-right cell. No obstacles may be
placed in the top and bottom rows. One solution to the above example is given
by

Input

The first line of input is a single number, which is the number of test cases to
process. Each test case begins with a line with grid size N (N < 60) followed by N
strings defining the locations of the initial obstacles. Cell with obstacles are
marked with “*” and empty cells are “.”.

Output

For each test case, output the minimum number of obstacles required to solve
the problem. Each output should be on one line.

Sample Input Sample Output
2
4
....
....
*...
....
6
......
...*..
..*...
....*.
......
.*....
......

3
4

