
	
 - 1 -

University of Manitoba
Open Programming Contest
September 22, 2012

General Instructions:

1. Submit solutions using the PC^2 software.
2. The questions are not listed in order of difficulty.

Some questions will be easier than others, and
these are not necessarily the problems listed first.

3. All input should be read from standard input

	
 - 2 -

	
 - 3 -

Problem 1 – Crossword Numbering

Crossword puzzles are grids of white and black spaces where the contents are
filled with letters so that horizontal and vertical sections correspond to words
indicated by clues. The clues are numbered and written separately from the
puzzle. All of the puzzles will be square grids. Here is an example of a puzzle:

Notice the small numbers in the corner of the cells only appear when a word in
either the horizontal (left-to-right) or vertical (top-to-bottom) should start in that
cell. For instance the number 1 indicates that a word of length four should start
in the upper-left-hand corner of the puzzle and move to the right. The number 4
(in the cell six spots from upper-left-hand corner in the top row) indicates that a
word should start in both the horizontal and vertical directions.

The numbers start in the upper-left hand corner and proceed in row-major order
(i.e., along the first row, then subsequent rows), always from left to right. If no
clue starts at a position, then there is no number.

Given a blank crossword puzzle consisting of only blanks (indicated by an
underscore _) and black squares (indicated by a hash mark #), your program
should write in the numbers of the clues. If no clue starts at a position, an
underscore should continue to represent the cell. All black squares should
remain as hash marks.

Start your numbering with numbers 0-9 (clue numbers should always start with
zero, clearly). After 9, write the letters A-Z to indicate clue numbers 10-35, and

	
 - 4 -

a-z to indicate the clue numbers 36-61. Clue number 62 should be indicated by
@, the at sign. No puzzles will have more than 63 clues (numbered 0-62).

Input

The first line of the input gives the number of puzzles to consider. Each puzzle is
first described by a number n on a line, which describes the size of the puzzle,
then n lines, each with n characters per line. All characters are either _ or #.

Output

For each puzzle, write "Case m" where m is the case number, starting with zero.
Then print out the numbered puzzle.

Sample Input Sample Output
2
5
__#__
__#__
#___#

__#__
15
_____#____#____
_____#____#____
__________#____
##_____##______
___#___________
______#_____###
_____#_____#___
____#_____#____
___#_____#_____
###_____#______
___________#___
______##_____##
____#__________
____#_____#____
____#_____#____

Case 0:
01#23
4_#5_
#67_#
8___9
A_#B_
Case 1:
01234#5678#9ABC
D____#E___#F___
G____H____#I___
##J____##KL____
MN_#O__PQ______
R__S__#T____###
U____#V____#WXY
Z___#a____#b___
c__#d____#e____
###f____#g_____
hij_____k__#l__
m_____##n__o_##
p___#qrs_____tu
v___#w____#x___
y___#z____#@___

	
 - 5 -

Problem 2 – A-S-P-E-C-T. Find out what it means to
me.

Alice is buying a new TV. The main measurement she is concerned with is the
total area of the TV. But when buying a TV, only the aspect ratio and the
diagonal are given. The diagonal is the measurement from one corner of the TV
to the opposite corner. The aspect ratio is of the form x:y, where if the width of
the TV is x units, then the height is y units (for some appropriate unit, which is
unknown).

Given the aspect ratio and the diagonal length (in cm), output the area of the TV
screen.

Input

The first line of input is a single number N, which gives the number of TVs. The
next N lines each give first the aspect ratio as X:Y, where X and Y are at most 32-
bit integers, followed by a single space, then the length of the diagonal Z (in cm).
Z is also a 32-bit integer.

Output
Output the area of the TV in cm2 for each TV, on its own line. Round the result to
the nearest cm2.

Sample Input Sample Output
2
16:9 100
15:8 34

4272
480

	
 - 6 -

	
 - 7 -

Problem 3 – Balancing Act

A balanced parenthesis expression is a sequence of opening and closing
parentheses, given by the characters “(“ and “)”, where each opening
parenthesis is matched with a closing parenthesis. For instance, the sequences
()() and (())() are balanced, but)(, (() and ())) are not.

A partially specified parenthesis expression is a sequence of the characters "(",
")" and "." (the period character). There may be several ways to replace a
period with (or) in a partially specified parenthesis expression to form a
balanced parenthesis expression: for instance, the expression ..)... can be
completed as

(()()) or (())().

The expression ...(.... can be completed in seven ways:

(((()))) ()(())() ()((())) ()(()()) (()()()) (()(()))
 (()())()

Given a partially specified parenthesis expression, give the number of ways to
complete it.

Input

The input consists of partially specified parenthesis expressions, one per line.
Each line has at most seventy characters.

Output

For each partially specified parenthesis expression, output the number of ways it
can be completed into a balanced parenthesis expression

Sample Input Sample Output
..)...
...(....
...
...(

2
7
0
0

	
 - 8 -

	
 - 9 -

Problem 4 – FaceTime
	

A plane graph is a set of points and edges between pairs of points that has no
lines crossed. When you draw a plane graph, it defines a set of faces: a face is
an area that is bounded by a set of edges. We count the exterior face as a face
too: it is the face that consists of the infinite region outside the graph. For
instance, the following graph has nine points (indicated by solid dots), twelve
edges (indicated by the lines between points) and six faces, indicated by the
numbers in the picture:
	

	

	

	

Given a graph defined by a set of points in two-dimensional space, as well as a
set of edges between the points, how many faces are there?

Input
	

Each graph starts with a line "GRAPH X" where X is a number. Following this is
a list of points, each given as a label, followed by an x and a y coordinate, all on
a single line. The labels for the points will be pN where N is a number starting
from 1. All points will be unique. There will always be at least two points in each
graph.

Following the points is a list of the edges, with each edge on its own line. The
edges are given by a label, followed by the pair of points that the edge connects.
Edges are not oriented, and at most one edge connects any pair of points.
Labels of the edges will be of the form eN where N is a number starting from 1.

	
 - 10 -

All of the graphs are connected, meaning there is a path from any vertex to any
other vertex.

Output
For each graph, output "GRAPH X: y faces." where y is the number of faces. You
can always output "faces", even if the answer is 1 face.
	

Sample Input Sample Output
GRAPH 1
p1 1 1
p2 2 1
p3 3 2
e1 p1 p2
e2 p2 p3
e3 p1 p3
GRAPH 2
p1 1 1
p2 3 1
p3 2 2
p4 1 3
p5 2 3
p6 4 3
p7 6 3
p8 2 4
p9 5 4
e1 p4 p8
e2 p5 p8
e3 p4 p5
e4 p8 p9
e5 p5 p6
e6 p6 p9
e7 p3 p6
e8 p6 p7
e9 p2 p7
e10 p1 p3
e11 p3 p2
e12 p1 p2
e13 p3 p5

GRAPH 1: 2 faces.
GRAPH 2: 6 faces.

	

	

	
 - 11 -

Problem 5 – Menu Depth
	

In this problem, you are interested in the position of a menu in a menu-submenu
system typically in many computer systems. Here is a screen shot from a menu-
submenu system for Microsoft Word on a Mac:	

	

	

	

Notice that the Autotext menu item has a submenu (indicated by the right-facing
triangle on the left-side of the menu box. In Autotext's submenu, "Attention Line"
has a submenu, which itself has two menu items.

We specify a menu as a plain-text file. Each item is preceded by some number
(possibly zero) of dashes. After each item X is its submenu, if it exists, including
subsubmenus, etc., before the next item in the same menu as X. If an item is
preceded k dashes, all the items in its submenu are preceded by k+1 dashes.
The top-level menu items are preceded by zero dashes.

	
 - 12 -

For instance, the plain-text for the menu depicted above would begin with
	

Break
-Page Break
-Column Break
PageNumbers...
Date and Time...
AutoText
-AutoText...
-New...
-Attention Line
--Attention:
--Attn:
	

(Note that the submenu for	
 "Break"	
 is not displayed in the picture. Assume it has
only items called	
 "Page Break"	
 and	
 "Column Break"	
 without any
subsubmenus.)
	

In this question, you want to calculate the distance between the beginning of a
menu (in this case, the top of the word	
 "Break") and the menu item that is the
furthest away from that point. We use the following conventions:

• each character is 1 unit high and 1 unit wide, regardless of what character
it is.

• the width of a menu is exactly the width of its longest menu item. (for
instance, in the specification above, the width of the submenu of "Break"
is 12 units, as this is the length of the string "Column Break"

• a submenu is placed with its first element at the same vertical distance
from the top of the menu as its parent element (for example, "Page
Break" is on the same horizontal line as "Break", its parent, in the
image).

• the position of a menu item is given by its upper-left hand corner. So in the
example above, "Break" is at position (0,0), while "Page Break" is at
position (W,0), where W is the width of the menu containing "Break", and
"Page Numbers…" would be at position (0,1).

• the distance between a point (p,q) and (0,0) is measured in the usual way,
i.e., .

	

	

€

p2 + q2

	
 - 13 -

	

Input
	

Each menu begins with an identifier line of the form "#Menu n" where n is an
integer beginning with 1. Each subsequent line gives on menu item, until the
next identifier line is encountered. Menu-submenu structures are as specified
above. All menu items will consist of the characters A-Z,a-z, digits 1-9, spaces
and punctuation (.,:;) only. Menu items will not contain dashes (-) or hash marks
(#). All menu items will have one or more characters. The first line of a menu
will be at the root level (i.e., it will have no dashes before it). Labels of menu
items are not necessarily unique.

Output
	

For each menu, write the output: "#Menu n: X units" where n is the case number
and X is the number of units, rounded to the nearest tenth of an integer.
	

	

Sample Input Sample Output
#Menu 1
A
B
C
#Menu 2
A
-BB
--C
#Menu 3
A
BB
-C

#Menu 1: 2.0 units.
#Menu 2: 3.0 units.
#Menu 3: 2.2 units

	

	

	

	
 - 14 -

	
 - 15 -

Problem 6 – Negalomania

The binary system is a way of denoting numbers in base-2, by using the digits 0
and 1. So if the binary representation of a (positive) number n is b1 b2 b3 … bk,
which represents that

n = b1 2k-1 + b2 2k-2 + … + bk-1 21 + bk 20.

For example, 15 in binary is 1111 since

15 = 1 * 23 + 1 * 22 + 1 * 21 + 1 * 20 = 8 + 4 + 2 + 1.

We can use other bases as well, like base-3 (ternary), base-10 (decimal, the
usual representation of numbers) or base-16 (hexadecimal). In each case, we
replace powers like 2i in the sum above with bi, where b is the base. We also
use digits 0,1,...,b-1.

But there’s nothing that says we need to use a positive number as the base. In
this question, we ask you to consider “negabinary” (base-(-2)) representation of
numbers. In this representation, the base is -2 but the digits that can be used are
still {0,1}. So the representation of the positive number n will be b1 b2 … bk
where

n = b1 (-2)k-1 + b2 (-2)k-2 + … + bk-1(-2)^1 + bk (-2)^0.

The only thing that makes this not completely insane is the fact that if p is an
even integer, (-2)^p is a positive number. For example, 15 in negabinary is
10011, since

 1 (-2)4+ 0 (-2)3 + 0 (-2)2 + 1 (-2)1 + 1 (-2)0
 = 16 + 0 + 0 + (-2) + 1 = 15.

The process for converting a number from decimal to negabinary is the same as
converting from decimal to binary, except that we are computing with respect to
the base -2 rather than +2. Note that (when programming) x mod -2 will be
negative if x is a negative odd number, but if x = -2 c - 1, then x = (-2) (c+1) + 1
as well.

	
 - 16 -

Input

The input file consists of several lines of input, with one number per line. Each
number is greater than zero and strictly less than 263. The last line of the file is
zero; this number should not be processed.

Output

For each input value, output its negabinary equivalent on a line.

Sample Input Sample Output
1
2
15
0

1
110
10011

	
 	

