
Page	 1	 of	 12	

7th Annual Manitoba Programming Contest
September 28, 2013

General Instructions:

1. Submit solutions using the PC^2 software.
2. All input should be read from standard input.

	
	
	

	

Page	 2	 of	 12	

Problem 1 – Shipping Container Housing
	
The latest trend in housing is living in shipping containers! You are part of a
company that builds custom houses from shipping containers. Your company has
several different sizes of shipping containers, which all have rectangular floors.
All shipping containers have the same height. Customers can choose any
number of shipping containers, lay them out however they want, and then have
the resulting collection built into a house. Your company does insist, however,
that all of the containers must be placed in certain ways:

1. the shipping must be laid out on a grid, with their rectangular floors placed
within some number of grid cells, in a non-overlapping way.

2. each container in the floor plan must be connected to another container in
the floor plan.

Your job is making the doorways in the houses. Any time two containers touch
along an edge of the grid, a doorway can be placed there (this means, in
particular, that containers that touch only at a corner are not considered to be
touching and no doorway can be placed there). A doorway between two
containers takes up the entire size of the space the two containers touch, so the
cost of placing a door between two containers is the length of the side that they
share.

	
	
Consider the container configuration on the left, which consists of five containers.
Doorways can be placed between, for example, containers 1 and 2, containers 2
and 3, containers 4 and 5, but not between containers 2 and 4, which do not
touch. The cost of placing a doorway between containers 2 and 3 would be 4 (the
length of the side they share). The configuration on the right shows the result of
cutting doors to connect all containers. The cost of these doorways would be 5.

The customers always want the cheapest option for installing doorways in their
houses, but there always must be a way to travel from any container the house to
any other container. Given a description of the containers in a house, find the
minimum cost for installing doorways.

Page	 3	 of	 12	

Input
	
Each input file has multiple house configurations. The input for a house begins
with a single integer on its own line. This number, n, is the number of containers
in the current house. Each of the next n lines contains the specification for a
single container. A container is specified by integers x1 y1 x2 y2, which
specify (x1,y1), the coordinates of the northwest corner of the container, and
(x2,y2), the coordinates of the southeast corner of the container. Houses are
guaranteed to satisfy the two rules about layout specified in the question. The
position (0, 0) is in the northwest corner of the grid. The integers
x1,x2,y1,y2 all satisfy 0 ≤ x1,x2,y1,y2 ≤ 10,000, and n satisfies 1 ≤ n
≤ 10,000.
	
The last line of the input file is a single integer 0. This number signifies the end of
the input and should not be processed.	 	

Output
	
For each house, output the minimal cost of constructing the doorways in the
house. Use the format "House #X: c" where c is the cost of the house and X is
the number of the house, starting with 1 for the first house.
	
Sample Input Sample Output
5
0 0 1 1
1 0 3 7
3 0 5 4
4 4 5 5
3 5 5 7
8
0 0 8 1
0 1 1 7
3 1 8 2
3 2 8 3
3 3 8 4
3 4 8 5
3 5 8 7
1 6 3 7
0

House #1: 5
House #2: 23

	

Page	 4	 of	 12	

Problem 2 – Swimming Lane Assignment

You are responsible for scheduling a swim meet between two rival university
swim teams, the Dooms and the Monties. After arranging it so that the swimmers
from the two teams were in alternating rows, you found out that both teams were
unhappy with your lane assignments, and each wanted to be closer to their fans,
who sit on one side of the pool or the other.

The lanes of the pool are number 1 through n for some even number n. The
Dooms (previously in odd numbered lanes) all want to be in higher number lanes
and the Monties (previously in even numbered lanes) want to be in lower number
lanes.

You agree to change the lane assignents, but don't guarantee that each swimmer
will be as close as possible to their intended side of the pool. You only
guarantee that swimmers from the Dooms will get new lanes that will never
decrease (they may stay the same) and swimmers from the Monties will get new
lanes that will always decrease. You want to know, for a given configuration of
the swimmers, how many possible rearrangements of the swimmers you could
have subject to the constraints.

For instance, suppose we have four racers, originally assigned to lanes as AbCd.
Swimmers A and C are from the Dooms (lanes 1 and 3) and swimmers b and d
are from the Monties (lanes 2 and 4). Then the three possible rearrangements
are:

bAdC bdAC bdCA
Notice that in each case, the Dooms (A,C) are in a lane number that has
increased (or stayed the same). The Monties (b,d) are in a lane number that has
decreased.

Input

The input will consist of integers n, each on their own line, where n is even and
0<n≤16. The last line of the input is a zero, and should not be processed.

Output

For each input integer n, output n followed by a single space, then the number of
possible rearrangements.
	
Sample Input Sample Output
4
8
0

4 3
8 155

Page	 5	 of	 12	

Problem 3 – Wrapping Ragged Text

One way that documents lay out paragraph text is using ragged right alignment
(also known as left-aligned text), where the left edge of the text is aligned in a
vertically straight line, but the right edge ends where the words do. Just like the
page you're reading now.

When text is laid out in this fashion, it is word-wrapped so that adjacent words
are placed across one line at a time until there is no room for the next word, and
it is placed at the start of the next line. The lines are filled this way until all the
text is laid out.

For example, consider the following text, laid out with in a column size of 19.

|Exploring the zoo, |
|we saw every |
|kangaroo jump and |
|quite a few carried|
|babies. Expect |
|skilled signwriters|
|to use many jazzy, |
|quaint old |
|alphabets |
|effectively. |

Write a program that takes description of a paragraph of text, a column size, and
reports the number of lines required to word-wrap the text.

Input
	
The first line of input contains an integer n that indicates the number of
paragraphs to be wrapped. Each paragraph is described by two lines of input.
The first line is a single integer w describing the number of columns, where
1≤w≤1000. The second line is a sequence of integers separated by a single
space where each integer is the length of the next consecutive word in the
paragraph. Word lengths l will satisfy 1≤l≤1000 and l≤w. The number of words
on a line will always be between 1 and 10000. Punctuation is included in word
length. When typeset, there should be one space between words on the same
line.

Output
	
For each paragraph, output the paragraph number (counting from 1) and the
number of lines required to typeset the paragraph, in the form "Paragraph n

Page	 6	 of	 12	

requires m lines.". Always output "lines" even if there is only one line.
	
Sample Input Sample Output
2
19
9 3 4 2 3 5 8 4 3 5 1 3 7 7 6 7 11 2 3 4 6 6 3 9 12
52
7 8 9 4 6 6 4 5 6

Paragraph 1 requires 10
lines.
Paragraph 2 requires 2
lines.

	

Page	 7	 of	 12	

Problem 4 – Cab Headquarters

A taxicab company is searching for a location for their new headquarters. The
company has identified a set of potential locations for the headquarters and also
has its historical record of how many pick-ups (not drop-offs) occurred at each
intersection in the city. Your goal is to identify which location for the new
potential headquarters gives the minimum total distance travelled to make all
trips from the headquarters location to each of the historical pick-up locations.

Making things easier, the city that the company operates in has blocks that form
a perfect grid of size n-by-m. Each location (for pickups and for potential
headquarters locations) is given by a pair of integers (i,j), where 0≤i<n and
0≤j<m. The position (0,0) is in the northwest corner of the city. The distance
between two intersections is the number of blocks travelled in the shortest path
between these two intersections, called the Manhattan distance. The Manhattan
distance between position (i,j) and (k,l) is |i-k|+|j-l|, where |.| is the
absolute value function.
	

Input
	
The input consists of several input test cases. The first line of each input test
case begins with a line with four integers, n,m,p,h, where n is the width of the
city (in blocks), m is the length of the city (in blocks), p is the number of historical
pick-up locations and h is the number of potential headquarters locations. The
values satisfy 0<n,m<50 and 0<p,h≤n*m.

The next p lines contain three integers each, i,j and c. This reflects that c
pickups have taken place at the intersection labelled (i,j) with 0≤i<n and
0≤j<m. Each value of c is nonzero and at most 10,000.

The final h lines of the test case contains two integers each, f and g, where
0≤f<n and 0≤g<m. This represents that the intersection (f,g) is a potential
location for the headquarters.

The final line of the input file, after all test cases, is 0 0 0 0. This line should not
be processed as an input test case.

Output
	
For each test case, output one line
	
Case X: best location at x y with cost C

Page	 8	 of	 12	

	
where X is the case number (starting at one with the first test case), (x,y) is the
optimal location for the headquarters, and C is the cost of placing the
headquarters at that location, i.e., the total amount of distance to travel to all
historical pickup locations from that headquarters location.
	
Sample Input Sample Output
5 4 4 2
0 0 5
4 2 2
2 1 3
4 0 6
1 1
2 3
4 3 2 2
0 0 10000
3 0 1
1 1
2 1
0 0 0 0

Case 1: best location at 1 1 with cost 45
Case 2: best location at 1 1 with cost 20003

	
	

Page	 9	 of	 12	

Problem 5 – Lossy Quilting
	
Charlotte sews quilts from tiles made from her friends and family. She cuts
squares of fabric and sends one square to each person. The person decorates
the tile in some way, and then returns the square to Charlotte, who connects the
tiles into a rectangular shape and produces a quilt.

Unfortunately, Charlotte's friends and family suffer from several deficiencies,
including laziness (never finishing their tiles), forgetfulness (misplacing their tiles
and not being able to find them) and excessive trust in Canada Post (mailing tiles
which are subsequently lost). As a result, Charlotte often starts out with fewer
tiles than she started with.

Having produced several quilts in this way, Charlotte has learned who is likely to
return tiles and who is not, so she knows the maximum number of tiles that will
be lost for any quilt. Charlotte would like to know, given an initial number of tiles
(n) and a maximum number of lost tiles (k), whether all possible numbers of tiles
that she may receive (n-k, n-k+1, n-k+2,…,n) can be assembled into a
rectangle of some length and width, both of which must be at least two. If so, we
say that the number n is k-quiltable. Otherwise, we say the number n is not k-
quiltable.

For example, 28 is 4-quiltable, since 28,27,26,25 and 24 tiles can all be arranged
into rectangles: 28 tiles make a 7x4 rectangle, 27 tiles can be made into a 9x3
rectangle, 26 tiles can be made into a 13x2 rectangle, 25 tiles make a 5x5
rectangle and 24 tiles make a 6x4 rectangle.

Write a program that, given n and k, decides if n is k-quiltable or not.
	

Input
	
The first line of the input contains c, the number of test cases to be examined.
The next c lines each contain two integers, n and k. The values of n and k
satisfy 2≤n≤232 and 1≤k≤100.

Output
	
For each input case, write either	 "n is not k-quiltable." or "n is k-
quiltable." based on the criteria above.

Page	 10	 of	 12	

Sample Input Sample Output
4
28 4
10 3
10 2
89752 62

28 is 4-quiltable.
10 is not 3-quiltable.
10 is 2-quiltable.
89752 is 62-quiltable.

	

Page	 11	 of	 12	

Problem 6 – Pixel Similarity
	
You have been asked to devise a way to measure the similarity between regions
of a digital image. One way to do this is to find all the pixels in the two regions
that have similar colours (as shown in the image below).

The term similar can be quantified by considering the Euclidean distance
between pixel RGB values and choosing a threshold to determine the degree of
similarity. Recall, the Euclidean distance between pixels p1 = (R1,G1,B1) and p2 =

(R2,G2,B2) is defined as

€

(R2 − R1)
2 + (G2 −G1)

2 +(B2 − B1)
2
.

Your job, given a parameter ε and two sets A and B, is to find all the pixels in A
and B that that have a colour whose Euclidean distance to a pixel colour in the
opposite set is less than or equal to ε.

Input
	
The first line of input contains the number of test cases in the file. All test cases
then follow.	 	
	
Each test case starts with a line with five integers in it: ε, sA, cA, sB, cB. The
parameter ε is the maximum distance between any two pixels that should be
considered similar. The integers sA and sB are the number of pixels in the sets A
and B, while cA and cB are the maximum number of different pixel values in the
sets A and B. The value ε satisfies 0≤ε≤256, while 0≤sA,sB<50,000 and
0≤cA,cB<1,000.
	
The remaining sA+sB lines of the test case follow, each with three integer values
R G B on one line, representing the RGB value for one pixel. Set A is made up
of the first sA lines and the set B is the last sB lines. The values R,G and B are
each in the range 0-255.

Output
	

Page	 12	 of	 12	

For each test case, first write "Case #x" on a line, starting with case number 1.
Following this, write " Set A" on a line (note one leading space) and then the
indices	 of each of the pixels in A that are similar to some pixel in B. Give the
index of each pixel on a separate line, preceeded by two spaces. Pixels should
be indexed starting from 0 as they appear in the input. After this, give a similar
description of B: the line " Set B", followed by one line for each index of a pixel
in B that is similar to some pixel in A. Leave a blank line after each test case.	
	
Sample Input Sample Output
1
2 11 10 7 7
1 3 0
1 3 0
2 2 0
1 1 0
0 9 0
0 0 0
0 0 3
2 0 1
2 2 1
9 6 5
4 2 3
0 1 0
1 3 0
0 1 0
6 8 7
5 7 6
2 4 1
0 3 0

Case #1
 Set A
 0
 1
 2
 3
 5
 8
 Set B
 0
 1
 2
 5
 6

	
	

