
Page 1 of 10

9th Annual Manitoba Programming Contest
September 26, 2015

General Instructions:

1. This document is printed double-sided. Please
read both sides of each page.

2. Submit solutions using the PC^2 software.
3. All input should be read from standard input.
4. All output should be written to standard output.
5. Each problem has a two (2) second time limit for

CPU time when executed on the judging data.
	
	

	
	

Sponsors
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	

NOTE: TEXT IN RED WAS CORRECTED FROM
THE DISTRIBUTED CONTEST PACKAGE.

	 	

Page 2 of 10

Problem 1 – Best Kilometre Effort

Every time you go running, you use the GPS function of your phone to track your
position over short intervals of time. You can track the distance you’ve run and
your average speed, but since you run different routes on different days, you’d
like to know your single best time to run 1 km (=1000 m).

Write a program that takes a list of distances and times, and returns the shortest
time required to run 1 km (in seconds). The distances represent straight lines run
(in order) along the route, and the times are the time required to run the segment.

The kilometre giving the shortest time can start and end at any point in the run.
The distances are given in metres from the previous measurement point. The
times are measured in seconds from the previous point. You can assume that the
speed between points is constant and that the total distance of each run is at
least 1 km.

Input

The input consists of several cases. Each case consists of a single run, and
begins with n, the number of distance/time measurements. The integer n is
greater than zero and less than 1000. The next n lines have two integers: the
distance (in metres) and the time (in seconds), in that order. Both the distance
and time are integers that are greater than zero, and the distance is less than
1000 m.

After the final case, the number zero appears on a line by itself.

Output

For each run, output the shortest time to run 1 km to the nearest tenth of a
second.

Sample Input Sample Output
4
300 300
500 1001
400 1005
200 207
0

1803.5

	 	

Page 3 of 10

Problem 2 – Defective Quilts

Anne has a successful business manufacturing checkered quilts. To maximize
profits she uses an automated process to produce them in large volumes.
However, she has noticed that some of the quilts contain defects in the form of a
series of adjacent black squares (as shown below, either horitzontally, vertically,
or diagonally). To solve this problem, she has installed an imaging system that
converts an image of each quilt into a 2D matrix, where each value is a number
in the interval [0, 2553]. These values represent the colours for each patch of
cloth in the image (one for each square), and the colour black is represented as
zero.

Anne wants you to develop a program that counts the number (if any) of defects
contained in her quilt. To help you with this task, Anne has some additional
observations. The defect adjacency length is always odd. If d is the defect
adjacency length, there never are any defects in the d/2 (integer division) border
elements. Also, patterns of zeros other than those illustrated in the images below
are not considered defects, i.e., they are part of her design.

Input

Input will consist of the number of quilts to analyze, followed by a blank line.
Then, each sample will contain three pieces of information, beginning with a
defect adjacency length (in the interval [3, 11]), the number of rows in the square
matrix, and finally the matrix of colour values in 2 dimensions. Each sample will
be separated by a blank line. There will never be any defects longer than the
input provided, but there may be defects of shorter length.

Output

There should one line of output for each sample, containing the total number of
defects in the quilt for the given input length, i.e., the sum of the number of all
diagonal, vertical, and horizontal defects in the quilt.

Page 4 of 10

Sample Input Sample Output
1

5
9
1 2 3 4 5 6 7 8 1
9 1 2 3 4 5 6 7 2
8 9 0 0 0 0 1 2 3
3 4 0 5 6 7 8 9 4
1 2 0 3 4 5 6 7 5
8 9 0 1 2 0 0 0 6
6 7 0 8 9 0 0 3 7
4 5 6 7 8 9 1 2 8
3 4 5 6 7 8 9 1 9

1

Page 5 of 10

Problem 3 – Go with the flowchart

A flowchart is a collection of boxes that
are connected by arrows. A flowchart
represents the function of an algorithm.
Diamond boxes represent decisions (like
an if statement) and square boxes
represent an action (in this question, an
assignment statement). The start and
ends of the flowchart are also denoted by
boxes labeled "Start" and "End". The
boxes are connected by arrows that
shows how execution of the algorithm
continues after visiting a box. Diamond
boxes have two arrows labeled "True"
and "False" to represent the action when
the condition in the box is true or false.
Squares only have one arrow leaving
them.

A flow chart can be traced to simulate the
execution of an algorithm, by starting at
the Start box, then following the arrows.
When a square box (action) is
encountered, the information in the box is
used to update the values of variables.

When a diamond (decision) is encountered, the current values of the variables
are used to decide which box to go to next.

In our flowcharts, there are only simple assignment statements and comparisons.
When a variable is first encountered, that is its definition in the program, that is,
there are no variable declaration statements.

Write a program that traces a flowchart and computes the values of all of its
variables. You can assume that all programs terminate (there are no infinite
loops) and that there are no errors in any box contents (all variables used for
assignments and comparisons are defined).

Input

The input is given as a series of lines specifying the boxes in the flowchart. Each
flowchart begins with an integer n>1 specifying the number of boxes in the
flowchart. The next n lines are the boxes of the flowchart (numbered from 0 to n-
1 in order). Each box starts with a number representing it, followed by the type

Page 6 of 10

(START,ACTION, DECISION or END). After the type of box, there is additional
information that depends on the type of the box:

• for START, the line contains only the number of the next box to go to.
• for ACTION, the line next has a statement "var = exp" where var is a

variable and exp is either (1) a variable, (2) an integer or (3) an expression
of the form A+B, A*B or A-B where A and B are either integers or
variables. The final integer on the line is the number of the next box.

• for DECISION, the line next has a statement "exp1 OP exp2" where exp1,
exp2 are either integers are variables, and OP is either <,> or ==. The final
two integers in the line are x y where x is the box that should be visited if
the expression on the line is true, while y should be visited if the
expression is false.

• for END, there is no more information.
Every symbol, integer or variable name is separated from the adjacent symbols
on the same line by exactly one space. Variables will be non-empty sequences of
lower case (a-z) letters.

Output

For each flowchart, output the final values of all variables that are defined by
executing the flowchart. First output a line that identifies the chart, “CHART X”
where X is a number starting at 1 for the first chart, and increasing for each chart.
Then output a line “a = N” for each variable a defined in the chart. The variables
should be output in alphabetic order. There should be a space before and after
the “=” symbol for each variable.

Sample Input Sample Output
7
0 START 1
1 ACTION i = 0 2
2 ACTION j = 1 3
3 DECISION i < 10 4 6
4 ACTION i = i + 1 5
5 ACTION j = j * 2 3
6 END
0

CHART 1
i = 10
j = 1024

Page 7 of 10

Problem 4 – “eleven points off the word quagmire”

Boggle is a game where players search a grid of letters for words. Words are
formed by starting at any letter in the grid and moving in any direction (vertical,
horizontal or diagonal) to another letter. For example in the following grid, the
word “COMPUTER” appears starting in the first row and third column, and
proceeding through the letters highlighted in bold. In Boggle, a letter can only be
used once to spell a word.

B D C F
M I O M
N K E P
G R T U

Write a program that accepts a grid of letters and bounds n and m and k and
prints the first and last k sequences (in lexicographical order) of letters whose
length is between n and m, inclusive. The printed sequences do not need to be
English words – they only need to be sequences of letters that appear in the grid.

Lexicographical order puts words in alphabetical order. If one word is a prefix of
the other, then the shorter word comes first. For instance, the word DOG comes
before DOGS in lexicographical order, which in turn comes before the word DOT.

Input

Each test case starts with four numbers: r, n, m and k, on a single line. The
number r is the size of the grid, n and m are the bounds on the word lengths, and
k is the number of words to print from the beginning and end of the list. On the
next r lines, there are r upper-case letters (A-Z) on each line. There are no
spaces in the grid.

The bounds on the integers are 1 ≤ r ≤ 8, 1 ≤ n,m, k ≤10.

Output

For each test case, first output “Game #x” on a line by itself, where x is a number
starting from 1 for the first case. The next two lines out output should each
contain k words. The first line should list the first k words (in lexicographical
order) of the grid, while the second line should list the last k words (in
lexicographical order).

Page 8 of 10

Sample Input Sample Output
4 3 4 10
BDCF
MIOM
NKEP
GRTU
5 2 2 2
KLMNO
ABCDE
PQRST
UVWXY
FGHIJ
0

Game #1
BDC BDCF BDCI BDCM BDCO BDI BDIC BDIE BDIK BDIM
UTKR UTP UTPE UTPM UTPO UTR UTRE UTRG UTRK UTRN
Game #2
AB AK
YT YX

Page 9 of 10

Problem 5 – Butcher

Dale is a butcher, and to streamline his business he produces kubasa (a type of
sausage) in extremely long lengths. Dale's resale customers want their meat in
different lengths depending on their specific product. Produce a program that
takes customer order lengths and produces the point at which Dale's machines
should cut the meat. However, there is one catch. Sometimes Dale's machine
needs the starting location of each cut, and other times its needs the ending
point. To minimize confusion for the customers, the kubasa should be provided in
the same order as the customer provided it in the order.

Input

Input will consist of the number of orders for Dale, followed by a blank line. Then,
each set of orders will contain three pieces of information, beginning with a
binary value (1 representing that the program should output ending point cuts,
and 0 represents starting point cut), the number of orders in the list, and finally a
single row containing all the orders. Each set of orders is separated by a blank
line.

Output

The cut points for each order should be given on a single line separated by
spaces (one space between each integer on a line). Each new set of cut points
should be on a new line.

Sample Input Sample Output
2

1
8
3 1 7 0 4 1 6 3

0
6
4 9 1 3 4 9

3 4 11 11 15 16 22 25
0 4 13 14 17 21

	 	

Page 10 of 10

Problem 6 – Last Ten and Streaks

In sports league play, two common pieces of information given to evaluate a
team’s recent performance are the L10 (the “last ten” -- how many wins and
losses the team has in its last ten games played) and the “streak” (the maximum
number of either wins or losses the team has in a row in its most recent games).
For instance, if a team has an L10 of 5-5 and a streak of 3W, then it has won its
last three (but not last four) games, as well as five of its last ten games (including
the last three).

Given these two pieces of information, how many possible outcomes of the last
ten games can there be? If a team has L10 of 1-9 and a streak of 9L, then the
sequence of games must have been WLLLLLLLLL (where L is loss and W is
win). However, if the team has a L10 of 8-2 and a streak of 7W, then there are
two possibilities for the last ten games: LWLWWWWWWW and
WLLWWWWWWW.

Input

Each line represents the L10 and streak information for one team. The first two
numbers represent the wins and losses (in that order) for the L10 of the team.
The two numbers are both non-negative and they sum to ten. The next number is
the number for the streak, which is a positive number. Finally, there is a space
between the streak number and the type of streak, represented by either W or L.

Output

Each line of output should start with “Team #x:” where x is a number
representing the number of the team, starting at 1. For each L10 and streak
information, output the number of possible combinations of the last ten games
that could produce those L10 and streak statistics.

Sample Input Sample Output
1 9 9 L
8 2 7 W
5 5 1 W

Team #1: 1
Team #2: 2
Team #3: 70

	

