
10th Annual Manitoba Programming Contest 
September 24, 2016 
 
General Instructions: 
 

1. This document is printed double-sided. Please 
read both sides of each page. 

2. Submit solutions using the PC^2 software. 
3. All input should be read from standard input. 
4. All output should be written to standard output. 
5. Each problem has a ten (10) second time limit for 

CPU time when executed on the judging data. 
	
	

	
	

Sponsors 
	

	
	

UManitoba Computer Science Students Association 
  



	 2	

 
  



	 3	

Problem 1 – Slowing Down 
 
You know what sucks while driving? Going at highway speed and coming into a 
town and having to slow to a low speed limit. To solve this, you’d like to find ways 
to drive into town that slow down gradually, moving you from one speed limit to 
another by decreasing by 10 km/h at each step, so you can get used to each 
speed limit before slowing down to the next. 
 
Write a program that reads in a map of town with speed limits for all roads, each 
with their speed limits, and a starting position, and finds the lowest speed you 
can get to in that town by decreasing your speed by 10 km/h each time the speed 
limit changes.  Each road will be given by the connection between two 
intersections and the speed limit between those intersections. Roads can be 
travelled in either direction and there is only one road between any pair of 
intersections. There is no road between an intersection and itself. Each 
intersection is given by a number, with the first intersection numbered by zero, 
and using each intersection number up to a predefined limit n. Your starting point 
is an intersection at the edge of town, and your starting speed is provided. 
Intersections may not connect more than one road: they may also be dead-ends 
at the edge of town. 
 
For instance, in the following town map, intersections are given as circles with 
their number inside them, while roads are given by lines connecting the 
intersections. In this town, if you start at intersection 0 driving 100 km/h, you can 
get to intersection 3 by going through intersections 1 and 2, and when you arrive 
at intersection 3, you are driving 70 km/h. This is the lowest speed you can get 
to, so the answer in this case is 70 km/h. 
  

 
 

0

3 2

1
90

80

70

30

50



	 4	

Note that when you are moving from road to road (by passing through 
intersections) you must either decrease speed by 10 km/h or maintain the same 
speed as the previous road. 

Input 
The first line of input contains a single integer, which is the number of towns you 
should examine. Each town starts with a line of input with four integers: the 
number of intersections (n), the number of roads (r), the starting intersection (s) 
and the starting speed (v).  The next r lines contain three integers, i j k, which 
represents that the speed limit between intersection i and j is k km/h. The 
integers i,j,k all satisfy  0 ≤ i < j < n, 0 < k ≤ v. All integers are separated from 
each other on the same line by a single space. 

Output 
For each town, output “TOWN X: y” where X is a number starting from 0 and y is 
the lowest possible speed that you can drive following the rules above. There 
should be one space following the colon. 
 
Sample Input Sample Output 
2 
4 5 0 100 
0 1 90 
0 2 50 
0 3 30 
1 2 80 
2 3 70 
5 5 0 100 
0 1 100 
1 2 90 
2 3 90 
3 1 90 
3 4 80 

Town 0: 70 
Town 1: 80 

 
 
 
 

  



	 5	

Problem 2 – Morton Numbers 
 
Morton numbers (aka interleaved bit patterns) are useful for linearizing 2D 
integer coordinates. In particular, the Morton order maps an n-dimensional (in 
this question 2D) space onto a list of numbers. This mapping has some nice 
properties. For example, coordinates that are close to each in the 2D space have 
Morton numbers that are also close to each other.  
 
Converting a pair of integer coordinates to a Morton code involves converting the 
decimal values to binary and interleaving the bits of each coordinate, starting with 
the y coordinate. For example, if we want to interleave the coordinate (5,9), we 
get 
 (x,y) = (5,9) = (0101,1001) in binary. 
Interleaving gives 10010011 = 10010011. Converting this number to decimal 
gives 147. So the Morton number for (5,9) is 147. 
 
Write a program that reads a series of 2D (x,y) coordinates and converts them to 
the corresponding Morton code. 

Input 
Input will consist of the number of total coordinates immediately followed by the 
coordinate pairs (one pair per line), where each coordinate is an unsigned 16-bit 
integer. 

Output 
Output the Morton codes, one per line, where each Morton code is an unsigned 
32-bit integer. 
 
Sample Input Sample Output 
2 
5 9  
8037 45813 

147 
2338176563 

 
 

  



	 6	

Problem 3 – Dog Walk Penalty 
 
You walk your dog every day, and she always wants to visit places you don’t 
want to go. This includes places where there are fire hydrants, other dogs, 
squirrels, rabbits, imaginary rabbits, lights, sounds, absence of sounds, or other 
stimuli or lack of stimuli.  You, on the other hand, would like to walk in a straight 
line to your destination.  You would like to know how much more you walk by 
going to visit a certain location and then going to your destination over taking the 
shortest path to your destination, as you want to. 
 
You are given three points: your current location, your goal, and your dog’s goal. 
Calculate the percentage penalty to visit your dog’s goal and then go to your goal 
over simply having travelled to your goal. For instance, in the diagram below, 
your current position is point A, your goal is point B and your dog’s goal is point 
C. 

 
 

The minimum distance to travel to your goal is 8 units away and the minimum 
distance to travel to your dog’s goal and then your goal is 11 units. Then the ratio 
of the longer path is 11/8 = 1.375 and the penalty in this case is 37.5% extra 
distance walked. 

Input 
The first line of input gives the number of test cases n. Each of the next n lines 
represents one test case. Each test case is given by four integers x1 y1 x2 
y2. The test case represents a starting point at the origin (0, 0), your dog’s 
goal point is (x1,y1) and your goal point is (x2,y2). 

Output 
Calculate the percentage of extra time you would spend by visiting your dog’s 
goal point before going to your goal point. For each case, output “Case X: 
YYY%” where X is the case number (starting at 0) and x is the percent extra time 
spent visiting your dog’s goal point. The percent should be expressed to the 
nearest whole number. 

A

B

C

8

5

6



	 7	

 
Sample Input Sample Output 
2 
3 0 3 4 
50 0 53 60 

Case 0: 40% 
Case 1: 37% 

 
 

  



	 8	

Problem 4 – Reporting Round Robin Ranking Results 
 
In a sports tournament, a round robin is a preliminary set of matches that helps 
rank teams for a later playoff stage. In a round robin, each team plays every 
other team exactly once. The number of wins and losses for each team is 
recorded to rank teams. Unfortunately, a round robin can result in several teams 
having the same win-loss record. This means that tie-breaking procedures are 
usually necessary to determine which teams advance to the playoffs. Because of 
this, knowing the possible outcomes of the round robin is important.  
 
For four teams, the four possible outcomes of a round robin (given by the win-
loss record for the four teams) are  

Outcome 1 Outcome 2 Outcome 3 Outcome 4 
3-0 
2-1 
1-2 
0-2 

3-0 
1-2 
1-2 
1-2 

2-1 
2-1 
2-1 
0-3 

2-1 
2-1 
1-2 
1-2 

 
Notice that which team has which record is not crucial. We are only interested in 
the possible combinations of win-loss records of all teams.  
 
If a tournament has n teams, how many different round robin outcomes are 
there?  

Input 
The input consists of several tournament sizes (the number of teams in the 
tournament), each on their own lines. The size of the tournaments is greater than 
1 and at most 10. The final line of input is a zero. It should not be processed as 
input. 

Output 
Start each case with a line consisting of “Case”, one space, the case number, a 
colon, one space, and then the number of possible outcomes for the round robin.  
 
Sample Input Sample Output 
4 
0 

Case 1: 4 

 
 

  



	 9	

Problem 5 – Race Winner 
 
Some cycling races for children are run on a small circuit for a preset amount of 
time. The race goes like this: all racers are given a unique number, and start the 
race. The racers do as many loops as possible on the circuit. Each time they go 
around one lap, their race number is recorded. At the end of a preset amount of 
time (e.g., 30 minutes), all riders are allowed to finish the lap they are on, and 
their final time is recorded. It does not matter how late a racer finishes (e.g., it 
doesn’t matter if how much over the preset time they finish). When the rider 
finishes, that lap is counted as a finished lap for the list of laps. 
 
So the race ends with two lists of information:  

1. The list of laps: this is a list of race numbers. Each time a race number 
appears, that racer did one lap. 

2. The list of finishing times: this is a list of race numbers and associated 
times. This is the time that each racer finished the race. 

 
The winner of the race is the racer that completed the most number of laps. If two 
racers completed the same number of laps, the racer with the lower finishing time 
is the winner.  
 
Given the two lists for a race, find the winner of the race. 

Input 
The first line of input gives the number of test cases.  
 
Each test case consists of three lines of input. The first line of input is the number 
of racers n. You may assume that the race numbers are 0 to n-1.  
 
The second line of input for a race is a list of race numbers, corresponding to 
laps of the circuit. These are given in order that they occur (so the first racer 
listed is the first racer to complete a lap).  
 
The third line of input for a race is the finishing times. Each racer will have a 
finishing time (no one abandons the race). The finishing times are given in 
increasing order, so the lowest finishing times are given first and the last racer to 
get off the circuit is given last in the input. The times are given as MM:SS, 
representing a time in minutes and seconds. The number of minutes is less than 
100 and the number of seconds is less than 60. 

Output 
For each race, output the number of the racer who won the race, using the 
format “Race X: y” where X is the race number (starting from 1) and y is the 
unique number of the winner of the race.  
 



	 10	

Sample Input Sample Output 
2 
3 
0 1 2 0 2 1 0 
2 10:00 1 11:00 0 12:00 
4 
3 3 3 0 3 1 2 3 3 0 0 0 3 0 0 0 
3 45:13 0 45:14 2 75:32 1 99:59 

Race 1: 0 
Race 2: 3 

 

  



	 11	

Problem 6 – pidgeycalc 
 
In Pokemon Go, you are required to catch all of them. In particular, the game 
encourages you to catch pokemon, and then evolve those pokemon in your 
possession into other pokemon.  Each time you catch a pokemon, you collect it, 
as well as a certain amount of candy, a resource (specific to that pokemon) 
required to evolve the pokemon. Each pokemon has a cost (in candy) to evolve 
it. However, each pokemon can also be sold to get one additional piece of candy. 
Finally, whenever you evolve one pokemon, you receive one piece of candy. 
Pokemon that have been evolved cannot be evolved again. 
 
In this question, you are asked to calculate the maximum number of pokemon of 
a given type you can evolve, given the number of pokemon you have and the 
number of candy you have.  
 
As an example, consider the Pidgey pokemon. For Pidgeys, it costs 12 Pidgey 
candy to evolve one Pidgey. So if you have 3 Pidgeys and 30 candies, you can 
evolve two Pidgeys (cost is 24 candy). For evolving, you receive two more 
Pidgey candies, and you end up with 1 Pidgey remaining, 2 evolutions and 8 
Pidgey candies. On the other hand, if you had 10 Pidgeys and 30 candies, you 
could evolve 2 Pidgeys, giving you 8 Pidgeys and 8 Pidgy candies. You could 
then sell 4 Pidgeys (result: 4 Pidgeys remaining and 12 candies) and finally 
evolve one more Pidgey. Your final count in this case would be 3 Pidgeys, no 
candies and 3 evolutions. 
 
Given a certain number of pokemon, candy and an evolution cost, what is the 
maximum number of evolutions you can perform? 

Input 
The input consists of lines of input. Each line of input consists of three integers: 
the number of pokemon that you have, the number of candies and the evolution 
cost for the pokemon. All of the integers are greater than zero. 
 
The last line of input has three zeroes. You should not process this line as input; 
it signals the end of the input. 

Output 
For each case, output “Pokemon X: Y evolutions, Z pokemon and W candies.” 
where X is the case number (starting at 0) and Y,Z, and W are integers, as 
described in the question. Do not worry about pluralization of words. 
 
Sample Input Sample Output 
3 30 12 
10 30 12 
0 0 0 

Pokemon 0: 2 evolutions, 1 pokemon and 8 candies. 
Pokemon 1: 3 evolutions, 3 pokemon and 1 candies. 



	 12	

 
 

 


