
 1

11th Annual Manitoba Programming Contest
September 30, 2017

General Instructions:

1. This document is printed double-sided. Please
read both sides of each page.

2. Submit solutions using the PC^2 software.
3. All input should be read from standard input.
4. All output should be written to standard output.
5. Each problem has a five (5) second time limit for

CPU time when executed on the judging data.

 2

Problem 1 – Different, In Order

Given a binary string S of zeroes and ones, you would like to construct strings
that are different from S in exactly k positions, for some value of k. Additionally,
would like to know which strings are the first, second, third, etc., in lexicographic
(AKA “phonebook”, “alphabetical”) order, among all the strings that differ from S
in exactly k positions.

For instance, consider the input string S=000010101. If you want a string that is
different in exactly k=4 positions, several strings are possible: 111110101,
011100101, etc. However, the first three strings in lexicographical order that differ
in 4 positions are 000000010, 000001000 and 000001011.

Given a binary string S, a value of k and a position p, calculate the p-th string that
differs in exactly k positions from S. The values of S, k and p are chosen to
guarantee that such a string exists.

Input
Each line of input gives a string S, an integer k and an integer p. The length of S
is at most 64, k satisfies 0 ≤ k ≤ 64 and p satisfies 1 ≤ p ≤ 264.

Output
For each input case, output the unique string of zeroes and ones that differs from
S in exactly k positions and is the p-th string in lexicographical order among all
such strings.

Sample Input Sample Output
000010101 4 1
000010101 4 2
000010101 4 3

000000010
000001000
000001011

 3

Problem 2 – WiFi

You have been awarded a contract to help install a WiFi network in a newly
constructed building commissioned by a Three Letter AgencyTM (TLA).
This TLA is pretty cautious, and has several rules that must be met in their
buildings:

1. The walls and floors must be at least 10 inches thick to prevent WiFi
signals from entering or leaving the building,

2. Construction workers must wear tin foil under their hard hats (at all times).
3. The 10 inch thick wall rule extends even to interior walls (you never know

who's listening).

Your job is to help map out how much coverage a wireless access point can
provide, given that the signal is going to be blocked by interior walls. Each
wireless access point has a broadcast radius. The contractor building the building
has provided you with floor plans:

........#...

........#...

........#...

........#...

.......w#...
#########...
............
............

The symbols on the floor plan indicate:
1. . is an open floor space
2. # is a 10 inch thick concrete wall
3. w is the proposed location of the wireless access point

Each location on the floor plan represents a 10-inch square. Wherever a wall is
marked, it fills an entire floor plan location. The signal can be picked up in any
location on the floor plan where a straight line between the centre of the location
and the centre of the wireless access point’s location is not blocked by any part
of a wall, and the distance is equal to the radius of the access point or less.

Given the radius of how far the wireless access point is capable of transmitting,
your job is to mark on the floor plan where the wireless signal can be picked up.
For example, given the above floor plan and a transmitting radius of 3 (i.e., 30
inches), the floor plan should look like:

--------#---
-------+#---
-----+++#---
-----+++#---
----+++w#---
#########---

 4

Input

The first line of input is a single integer indicating how many floor plans you're
going to be processing. Each floor plan starts with a line with three integers: the
radius of the access point r, and the width w and height h of the floor plan. The
next h lines are the floor plan (with the same symbol set described above). You
may assume that the w,r, and h are non-zero and positive.

Output
For each floor plan, output “FLOORPLAN	#X:” on the first line, where X is the case
number, starting at 0. After this line, print out a floor plan with the same
dimensions and locations of walls and access points. The floor plan should show
where the WiFi signal can be picked up (+) and where it cannot be picked up (-).

Sample Input Sample Output
2
3 12 8
........#...
........#...
........#...
........#...
.......w#...
#########...
............
............
5 14 9
........#.....
........#.....
........#.....
........w.....
..............
..............
#########.....
..............
..............

FLOORPLAN #0:
--------#---
-------+#---
-----+++#---
-----+++#---
----+++w#---
#########---

FLOORPLAN #1:
----+---#---+-
----++--#--++-
----+++-#-+++-
---+++++w+++++
----+++++++++-
----+++++++++-
#########++++-
---------+++--

 5

Problem 3 – Dartistic Vision

Darts is a game played by throwing pointed
objects (the "darts") at a round board hanging
some distance away. The board is divided into
several radial sections (i.e., shaped like a slice
of pizza), with scores of 1-20 and the bullseye
(worth 50). Additionally, each radial section
also has portions that are worth double or
triple the base score, and there is a ring worth
25 around the bullseye, called the outer
bullseye.

Dart players take turns throwing three darts,
and players keep track of their score with the
aim of reaching an exact score (501 or 301
points are common). As a result, players need to know which combination of dart
throws will get an exact score. This is complicated by the fact that the final throw
of the game must be either a double-scoring throw or a bullseye.

Given a score, determine if it is possible to throw exactly three darts to obtain that
score, with the final being a double-scoring dart or bullseye. For example, if the
target score is 39, one possible answer would be 1-2-D18, where D18 indicates a
double score on the 18-point region (i.e., 36 points). If the target score is 156
then one possible score would be T20-T20-D18.

In your answer, any valid combination is acceptable, as long as it ends with a
double score or a bullseye. Use T and D to indicate triple and double scores, and
use OUTER and BULL to denote the outer and inner bullseyes, respectively. If a
score is not possible with three darts, you should note this.

Input

The input consists of one integer on each line. The first line gives the number of
cases in the input, n. The next n lines each give a score to complete in one turn,
if possible. Each integer will be greater than zero.

Output

For each input, output, on a single line, exactly three dart scores that give the
desired total, with the last score being a double score. Indicate single scores by a
number (from 1 to 20), double scores by a capital D and a number (1-20), triple
scores by a capital T and a number (1-20), bullseye by BULL and outer bullseye

 6

by OUTER. Separate dart scores with a space. If a score is not possible, write
“NOT POSSIBLE”.

Sample Input Sample Output
3
39
156
500

1 2 D18
T20 T20 D18
NOT POSSIBLE

 7

Problem 4 – Trophical Vacation

Living organisms in an environment can be organized into food chains, which are
ordered graphs that reflect which organisms eat which other organisms in a
particular environment. At the lowest level of the food chains are organisms like
plants and algae. Higher levels of a food chain contain predators and the top
level contains apex predators like sharks.

The trophic level of an organism is its position in a food chain. Historically, the
levels were identified by integer values: level 1 are the plants and algae, plant
eaters were at level 2, and if an organism ate level X organisms then it was at
level X+1.

However, there is also a fractional trophic level based on the level of organisms
that an organism eats, but also the proportion of organisms that it eats. In
particular, either an organism does not eat any other organisms, and is given a
trophic level of 1, or it eats other organisms, and is given a fractional trophic level
that is greater than 1. To calculate this fractional trophic level, suppose an
organism Q eats organisms P1, P2, …, Pn and that

1. Organism Pi is pi percent of Q’s diet
2. Organism Pi has trophic level Ti

Then the trophic level of Q is 1+ Ti
i=1

n

∑ pi
100

.

Given a collection of organisms and their diets, calculate the trophic levels of all
of them.

Input

The input file consists of several test cases. Each test case begins with a single
integer n on a line, which represents the number of organisms in the food chain.
The next n lines give the information about each organism. Each line starts with
the organsim’s name, a string of at most 8 non-whitespace characters. After the
name is information about which organisms that organism eats:

• If the organism does not eat any other organisms, after the name is -1.
• Otherwise, there is a sequence of pairs p	Q, which represents that

organism with name Q represents p % of the current organism’s diet. The
total of all percentages is 100.

The names in the diet of an organism are all valid names in the current food web,
but are not guaranteed to be in order (from left to right in the row) or have
appeared already (from top to bottom in the input).

The final line of the file is a zero, which indicates the end of the input. You should
not process this number.

 8

Output

For each food chain, output the trophic level of each organism. Start the output
with --CASE X—- where X is the current case number (starting from 1). Then for
each organism, output a single space, then the name of the organism followed by
a colon, another space, and then the trophic level. You should round your final
trophic levels to two decimal places.

Sample Input Sample Output
7
a1 -1
a2 -1
a3 100 a2
a4 50 a1 50 a3
a5 75 a3 25 a4
a6 40 a3 10 a5 50 a4
a7 100 a6
0

--CASE 1--
 a1: 1.00
 a2: 1.00
 a3: 2.00
 a4: 2.50
 a5: 3.13
 a6: 3.36
 a7: 4.36

 9

Problem 5 – Sock Factory

You work at a sock factory that produces several different kinds of high quality
socks. The socks are foot-specific, so that there are different left and right socks
of each type, and each pair that is packaged for sale must have a left and right
sock.

On a good day, the sock machines produce one kind of sock at a time,
alternating right and left socks, and these socks are fed onto a conveyer belt.
Your job at the factory is pair assembler: you pick up left and right socks off the
conveyer belt and package them together for sale.

Unfortunately, a bug in the sock machine software has caused the usual sock
pattern to be broken and now socks have been placed on the conveyer belt
randomly. The conveyer belts have are now full of all different kinds of socks,
including both right and left socks.

To fix this, all the pair assemblers have been called in for overtime work to
assemble pairs. The only rule that you’ve been given (to avoid chaos on the
conveyer belt) is that you should not wander around the belt looking for pairs.
You should only pick up any pairs that are next to each other in line, assemble
them, and then continue looking.

It doesn’t matter which order (left-right or right-left) the socks appear in on the
conveyer belt – each can be made into a pair. All of the pair assemblers are
doing this, and as pairs are assembled, new socks are then next to each other on
the line. You have enough pair assemblers to assemble all pairs that may appear
during the process of pair assembly – no socks that are next to each other at any
point during the pair assembly process will be left unpaired.

Given the contents of a conveyer belt, what are the socks that are left on the belt
after as many pairs as possible have been assembled?

Input

The first line of input is an integer n, giving the number of conveyer belts in the
factory. Each of the remaining n lines gives the contents of one conveyer belt.
The belts are given as a list of a positive number of socks, in order, that appear
on the conveyer belt. Socks are represented by a letter from a to z (so the
factory produces at most 26 different types of socks). Left socks are represented
by a lower case letter and right socks are represented by an upper-case letter.
There are no spaces between the characters.

 10

Output

For each conveyer belt, give the contents after all possible pairs of socks are
formed. If several different contents are possible (given different orders of
assembling socks), all contents will be accepted as a valid answer. If no socks
are left on the conveyer belt, write “EMPTY”.

Sample Input Sample Output
3
aAbBcC
aAa
AbBaCcDD

EMPTY
a
DD

 11

Problem 6 – 74.101

At the University of Manitoba, courses didn't have letter codes (like COMP) until
around 2006. Before this, a course like COMP 1010 was called 74.101, where 74
was a unique numerical code for computer science. The number 101 was the
course number, similar to the 4-digit course code used today.

The course numbering system was changed because aurora, the student
registration system that the University of Manitoba began using around 2006, did
not handle numerical course codes by default and a custom student registration
system was not within the University of Manitoba's budget. Consequently, all
course units (like Computer Science) were given a letter code (like COMP) and
three digit numbers for individual courses were converted to four digit codes.

The original numerical codes for units were given in a very clear, rational order,
as demonstrated in the picture on the right, showing some of the numerical codes
from the 2003-2004 University of Manitoba Undergraduate Calendar. Given this
selection, it should be very obvious that code 75 was skipped and that code 76
was for the Department of Anthropology.

These numerical codes for
courses are still used internally
at the University of Manitoba to
denote a student's major. Some
internal views of student records
show the numerical code when
indicating a student's major
department.

The University of Manitoba is
interested in tracking majors for
different groups of students:
students from different countries, students who did well in Calculus, students who
live in residence, etc. Given the major information for a collection of students, you
have been asked to decide what the two most popular majors are for that set of
students. You have been given filtered data that lists the numerical code for each
student only. Based on each set of data, there is guaranteed to be two unique
majors that are more popular than all others.

Input

The first line of input gives the number of groups of students, which is an integer
n. The next n lines each give a collection of students. The first integer s in each
line is the number of students in the collection. This is followed by s integers,

 12

each of which is an integer between 1 and 200, giving the major of a student.
Each numerical code is separated from the next by a single space.

Output

For each collection, output on a single line the two most popular majors in the list
of students. List the most popular major first, then the second most popular
major.

Sample Input Sample Output
2
10 74 74 74 73 76 74 1 76 76 73
6 1 1 1 2 2 3

74 76
1 2

