
 1

12th Annual Manitoba Programming Contest
September 29, 2018

General Instructions:

1. This document is printed double-sided. Please
read both sides of each page.

2. Submit solutions using the PC^2 software.
3. All input should be read from standard input.
4. All output should be written to standard output.
5. Each problem has a twenty (20) second time limit

for CPU time when executed on the judging data.

 2

Problem 1 – Charging Station

You are responsible for charging electric cars at a pay-per-use electric car
charging station. The station can charge one car at a time. Before the start of
each month, electric car owners use an app on their smartphone to tell you when
they plan to arrive and how large their battery is. From this, the app tells you how
long the car will take to charge. You would like to arrange appointments at the
charging station for the next month.

Customers can plan their arrivals on the hour or half hour, and all batteries in all
cars take multiples of half an hour to charge. The app converts all half-hour
increments to numbers in the range 0-10080. These numbers represent times for
the month (10080= 2*24*7*30). Thus, each planned arrival is represented as two
numbers: an arrival time (0-10079) and the end time (1-10080). You are ensured
that no charging time will go over the end of the month.

You receive all your customers’ planned arrival times and have to decide who to
accommodate and who must be turned away. Given the list of customers’
planned arrival information (arrival time and departure time), calculate the total
amount of charging that you can do in the month. You may assume that there is
no turnover time in appointments, so that if one appointment ends a certain time,
the next appointment can start at that same time.

For instance, suppose the following planned arrivals have been received:

• Arrival time: 0, end time: 3
• Arrival time: 4, end time: 17
• Arrival time: 0, end time: 5
• Arrival time: 0, end time: 10
• Arrival time: 13, end time: 17

From these, we can accommodate the first two customers, and this will result in
3+13=16 units (i.e., 8 hours) of charging. This is the most that can be
accommodated from these planned arrivals from customers: any other
combination will yield less time charging or have an overlap between a starting
time for one charging and the end time of another charging.

Input

The first line of input is a single integer n with 0 ≤ n ≤ 10000 that gives the
number of planned arrivals. The next n lines each give one customer’s
information as two integers x and y, in that order. These represent the arrival
time and the end time, with 0 ≤ x < 10080, 0 < y ≤ 10080 and x < y.

 3

Output

Output a single non-negative integer less than or equal to 10080 representing the
maximum number of units of time that

Sample Input Sample Output
5
0 3
4 17
0 5
0 10
13 17

16

 4

Problem 2 – Curling

Curling is a sport popular across Canada. The mechanics of scoring points in
curling are not relevant to this question: all you need to know is that in curling two
teams play each other in a series of ends (nine in this question) and only one
team can score points (maximum eight) in each end.

There are two common ways to display a score. The first is similar to scoring
used in baseball, where each end shows who scored points that end and how
many. For instance, consider the following scoreboard:

End 1 2 3 4 5 6 7 8 9 Total
Team 1 0 2 0 0 1 0 0 3 3 9
Team 2 3 0 1 0 0 0 0 0 0 4

This scoreboard shows that Team 1 scored two points in the second end, one in
the fifth and three in each of the eighth and ninth ends, for a total of nine points.
On the other hand, team 2 scored four points: three in the first end and one in the
third end.

The second way to display a curling score shows the progression of scores of
each team, rather than explicit information on each end. This type of scoreboard
has the advantage that only one number of each value is needed for the
scoreboard (for non-electronic displays). For the same game as above, the
second type of scoreboard would read:

Team 1 2 5 8 9
Score 1 2 3 4 5 6 7 8 9
Team 2 1 3

A team has a number x in a column labeled i if the team’s score after the i-th
end is x. For example, Team 2 has a 1 in column 3 in the table, which shows that
the team scored three points in end 1. Similarly, Team 1 has an 8 in column 6,
representing that after the sixth end, Team 1’s score was 8.

Write a program that converts from the first scoreboard format to the second type
of scoreboard. You may assume that in each game each team scores a
maximum of nine points.

Input

The input consists of two rows of numbers. Each number is separated from the
next by a single space. The first nine numbers (all between 0 and 8) give the

 5

scores for each of the two teams in each of the nine ends. The last number on
each line is the final score for the team in that line (which is at most nine).

Output

Write three lines of output, representing the score for each team, separated by a
row of numbers, as depicted above. The first row should give the score for the
first team (in the same order as the input). The second row should denote the
score counter, which is the numbers 1 through 9, each preceded by exactly one
space (including the number 1). The third row should give the score for the
second team. If a score is not used, indicate this with a single underscore (i.e.,
the single character “_”). All scores up to end nine should either be a digit or an
underscore for both teams, and all characters in the first and third rows should be
lined up with a score in the second row (including the space before the number 1
in the middle row).

Sample Input 1 Sample Output 1
0 2 0 0 1 0 0 3 3 9
3 0 1 0 0 0 0 0 0 4

 _ 2 5 _ _ 8 _ _ 9
 1 2 3 4 5 6 7 8 9
 _ _ 1 3 _ _ _ _ _

Sample Input 2 Sample Output 2
4 0 2 0 0 1 2 0 0 9
0 0 0 1 1 0 0 2 1 5

 _ _ _ 1 _ 3 6 _ 7
 1 2 3 4 5 6 7 8 9
 4 5 _ 8 9 _ _ _ _

 6

Problem 3 – Kindergarten Names

You teach kindergarten and every year, young students enroll with creatively-
spelled names. Among these, there are several names that are essentially the
same, but vary in spelling, like “Catherine” and “Kathryn”. You would like to group
these names together.

To help you with grouping names together, you’ve decided to use the “match
rating approach”, originally developed by an airline in the 1970’s to help index
names that sound similar. The algorithm has two stages: encode the names,
and then compare them to get a score. Higher scores indicate more similar
sounding names.

To encode a word, first remove all the vowels in the word (unless the first letter is
a vowel, in which case it is kept). Vowels are always A, E, I, O and U only. Then
replace all double letters with a single letter. Finally, if the word is still more than
six characters long, truncate it by keeping only the first three letters and the last
three letters. For instance, “Catherine” is encoded as “Cthrn” and “Allyson” is
encoded as “Alysn”. Upper and lower case are ignored in the encoded words.

To compare two encoded words, first we scan the words from left to right and
remove all matching letters in the same positions of both words. We then repeat
the same process on the words from right to left: starting at the last character in
both words, delete them if they are same, and then move left one step in both
words and repeat this process. After all the letters are deleted in this way, we
take the number of letters remaining in the longer word, and call it n. The
similarity score for the two original words is 6-n.

Write a program that accepts two words and computes the match rating
approach score for the two words.

Input

The input is two words on two lines of input. The words contain only upper and
lower case letters (a-z and A-Z). There are no spaces or other symbols in the
words.

Output

Output a single integer giving the match rating for the two pairs.

 7

Sample Input 1 Sample Output 1
Catherine
Kathryn

4

Sample Input 2 Sample Output 2
Geoffrey
Jefferey

5

 8

Problem 4 – Sig Figs

Significant figures (or significant digits) are the number of digits in a number that
are relevant to a calculation. Tracking the number of significant figures in a
computation is commonly done in engineering disciplines to ensure that the
uncertainty in a calculation is tracked. In this problem, all numbers have a
decimal point, so the number of significant figures of a number is the number of
digits in the number that are not leading zeroes. For instance:

• 0.35 has two significant figures (3 and 5).
• 0.00004200 has four significant figures (every digit starting with 4).
• 10000. has five significant figures (all of the digits are significant).
• 1004.500 has seven significant figures.

When multiplying two numbers, the number of significant figures in the result
should be the minimum of the number of significant figures in both the operands.
If there are more digits in the result than significant figures, the number is
rounded so that the result has the correct number of significant figures. When
doing multiple operations involving significant figures, the number of significant
figures F in the final answer is calculated, then for intermediate calculations, F+1
significant figures are retained. However, in the final answer, only F significant
figures are used.

Write a program that takes an expression involving numbers (all of which have a
decimal place) and multiplication signs, and calculate the result to the
appropriate number of decimal places. For instance, given the expression
3.50*7.050, the result would be 24.7. On the other hand, given the expression
0.001*0.0005*0.0003*0.0034, the result would be 0.0000000000005.

Input

The input is a single line of text (up to 300 characters long). The only characters
that appear on the line are spaces, the multiplication character (‘*’), the decimal
character (‘.’) and the digits (‘0’-‘9’). In particular, there are no negative numbers
or numbers in scientific notation. All numbers are valid (i.e., they have exactly
one decimal point, and if they are between 0 and 1, they have a single 0 before
the decimal point).

Output

Output the final expression after all multiplications have been performed, with the
appropriate number of significant figures. Ensure that the output has a decimal
point, even if it appears at the end of the number. If the number is between 0 and
1, place a single zero before the decimal place.

 9

Sample Input 1 Sample Output 1
3.50*7.050 24.7

Sample Input 2 Sample Output 2
0.001*0.0005*0.0003*0.0034 0.0000000000005

 10

Problem 5 – Plus Minus

In some team sports, like ice hockey and basketball, a statistic called the plus-
minus of a player is calculated to give a sense of the importance of players,
including players who may benefit the team but who may not score the most
points. The plus-minus of a player for a particular game is calculated by adding
all the points that are scored by the player’s team while that player is playing and
then subtracting all the points that are scored by the other team at the same time.
In sports like ice hockey and basketball, where substitutions of players are
common, a player is likely to not be playing when all points are scored, so
different players will have different plus-minus for the same game.

For instance, if an ice hockey player is playing while three of their own team's
goals are scored, but also when one of the opposing team's goals is scored, that
player's plus-minus would be +2 (in ice hockey, goals are worth one point). On
the other hand, if another player was not on the goal during any of the goals
scored by their own team's goals, but during two goals by the opposing team,
then that player's plus-minus would be -2 for that game.

You have been given the information for a game that consists of all the scoring
and all the substitutions for both teams. From that information, calculate the plus
minus scores for all players on both teams.

In the input, all players are identified by numbers. The two teams are called the
Home (H) and Away (A) teams. All inputs will be valid: if a player is listed as
entering (or leaving, respectively) the game, they will not already be in (or out,
respectively) of the game.

Input

The input consists of lines of input giving information about a game. The last line
of input is "END" on its own line, signifying the end of the game. There are two
types of input lines other than the "END" command:

• Player change lines (C line): these lines give information on substitutions
of players (i.e., entering or leaving the court, field or ice). They have the
form "C Z I x1 x2 .. xn O y1 y2 .. ym" where x1, x2, … xn and
y1, y2, … ym (with n,m ≥ 0) are player numbers and Z is either H or A to
denote the team . The xi players are coming Into play while the yi
players are going Out of the play. The same player will not be in both the
xi and yi lists.

• Scoring lines (S line): these have the form "S Z a" where Z is either H or
A to denote the team, and a is an integer greater than zero to denote the
number of points scored.

 11

The input lines are in order in the game, so that if a player enters (via a C line)
and a team scores (via an S line), then that player was playing during that
score. All tokens on a line are separated from adjacent tokens by a single space.

Output

For all players mentioned in the input, list their plus-minus. List all the members
of the home team first, in numerical order, followed by all the members of the
away team, in numerical order. The home team should be preceded by the word
“HOME” and the away team by “AWAY” as denoted in the sample output. For
each player, list their number, followed by a colon and a space, and then their
plus minus rating. Positive numbers and zero should have no sign. Negative
numbers should have a negative sign immediately before the number.

Sample Input Sample Output
C H I 10 11 12 13 14 O
C A I 1 2 3 4 5 O
S H 1
C H I 16 17 18 19 20 O 10 11 12 13 14
S H 1
S A 1
C H I 10 12 13 14 O 16 17 18 19
S A 1
S A 1
END

HOME
10: -1
11: 1
12: -1
13: -1
14: -1
16: 0
17: 0
18: 0
19: 0
20: -2
AWAY
1: 1
2: 1
3: 1
4: 1
5: 1

 12

Problem 6 – Stuck in the web

You are responsible for managing a website and are trying to track users’ time on
the site. You’ve found, through observation of users’ browsing history, that
people tend to stay on the site and click links as long as they don’t end up at a
page on the site that they have already seen (there aren’t any links to any
outside websites on the site).

To try and increase the amount of time users spend on the website, you would
like to know how soon users could end up at a page they have already seen
during the course of their clicks. For instance, suppose you have the following
website:

Then the user could click five times and end up back on the same website. For
instance, if the user starts at page 5, then they can click to travel to pages 6,7,1,4
and then back to 5. This is the fewest clicks that a user can make to travel back
to the same page in the site, as well: any other series of clicks that takes you
back to a page that you have already visited will take more than five clicks.

Given the description of a website, calculate the smallest number of clicks that
can take you from a page on the website back to the same page.

Input

The input to the problem is a description of the links on the site. The first line of
input gives two integers, the number of pages on the site N and the number of
links on all pages L. The two integers satisfy 2 ≤ N ≤ 10,000 and 2 ≤ L ≤ 50,000.
The pages are numbered from 1 to N. The next L lines of input all give one link
per line. It is given as two integers k, j with 1 ≤ k, j ≤ N and k ≠ j, indicating that
there is a link from page k to page j.

Output

Output a single positive integer giving the minimum number of clicks that can
take you from a page on the site back to the same page. The integer is

 13

guaranteed to exist: there is always a series of clicks from a page back to itself in
the site.

Sample Input Sample Output
7 9
1 2
2 3
3 4
2 4
1 4
4 5
5 6
6 7
7 1

5

	Input
	Output
	Input
	Output
	Input
	Output
	Input
	Output
	Input
	Output
	Input
	Output

