
Harris Corners in the Real World: A Principled Selection Criterion for Interest
Points Based on Ecological Statistics

Neil D.B. Bruce and Pierre Kornprobst
INRIA, 2004 route des Lucioles, BP 93, 06902, Sophia Antipolis, France

http://www-sop.inria.fr/members/Neil.Bruce/

Abstract

In this paper, we consider whether statistical regularities
in natural images might be exploited to provide an improved
selection criterion for interest points. One approach that
has been particularly influential in this domain, is the Har-
ris corner detector. The impetus for the selection criterion
for Harris corners, proposed in early work and which re-
mains in use to this day, is based on an intuitive mathemat-
ical definition constrained by the need for computational
parsimony. In this paper, we revisit this selection criterion
free of the computational constraints that existed 20 years
ago, and also importantly, taking advantage of the regu-
larities observed in natural image statistics. Based on the
motivating factors of stability and richness of structure, a
selection threshold for Harris corners is proposed based on
a definition of optimality with respect to the structure ob-
served in natural images. As a whole, the paper affords
considerable insight into why existing approaches for se-
lecting interest points work, and also their shortcomings.
We also demonstrate how a proposal that is inspired by the
properties of natural image statistics might be applied to
overcome these shortcomings.

1. Introduction

Interest operators have a long history in computer vision
and remain a significant component in many machine vision
systems, constituting an early feature extraction stage which
typically guides higher level vision tasks. This involves the
selection of a candidate set of points or regions possibly of
varying scale and/or shape. This set of points/locations may
then be used in object recognition, robot navigation, scene
classification or a variety of other tasks. There are many
proposals for the selection of interest points with the central
criterion being invariance to deformations of the image and
distinctiveness of local structure at chosen points; a con-
sideration important for matching purposes. While many
different definitions for the selection of interest points have

been proposed, the most popular approach remains the Har-
ris corner detector. The Harris corner detector was intro-
duced two decades ago and now appears within hundreds
of applications and has been cited more than 2500 times in
published work at the time of writing.

The introduction of interest operators in the context of
machine vision perhaps dates back to 1979 when an in-
fluential proposal for corner detection was put forth by
Moravec [7]. Moravec’s operator considers how similar
a local region of the image is to nearby heavily overlap-
ping regions, computing the sum of squared differences
between the central region and regions in the local sur-
round. That is, given an image patch centered at loca-
tion i, j in an intensity image I this difference is given by
S(x, y) =

∑
i

∑
j(I(i, j) − I(i + x, j + y))2 and is com-

puted for the neighbors in the horizontal and vertical direc-
tions as well as for the two diagonal directions. A corner
is defined as a location that is locally maximal subject to
S(x, y). The intuition behind this procedure is that for ho-
mogeneous (flat) regions, this difference will be very small
with the difference becoming greater for regions containing
edges and even larger for regions containing corners.

Harris and Stephens refined this idea by considering di-
rectional derivatives in lieu of shifted patches to produce a
more robust corner detector, with invariance to rotation [3].
Specifically, I(i + x, j + y) becomes I(i, j) + Ix(i, j)x +
Iy(i, j)y subject to a truncated first order Taylor series ex-
pansion where Ix and Iy are partial derivatives in x and y
respectively. A substitution of this term into S(x, y) and in-
clusion of a weighting parameter w(i, j) yields the expres-
sion S(x, y) =

∑
i

∑
j w(i, j)(Ix(i, j)x + Iy(i, j)y)2 =(

x y
)
A
(
x y

)T
where

A =
[

< I2
x > < IxIy >

< IxIy > < I2
y >

]
Angle brackets denote summation over i, j subject to the
weighting function w(i, j). The function w is defined here
as a gaussian function of variance σ which defines the scale
of the analysis. The matrix A describes the local inten-
sity structure of the neighborhood centered around i, j. The
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judgement of whether a pixel location corresponds to a cor-
ner is based on the eigenvalues λ1 and λ2 of the matrix A.
Specifically, when λ1 ≈ 0 and λ2 ≈ 0 a flat region is found,
when λ1 is a large positive value and λ2 ≈ 0 an edge is
found. When λ1 and λ2 are both large positive values, a cor-
ner is present. Following this intuition, it has been proposed
that interest points be selected according to the locations for
which λ1λ2 − κ(λ1 + λ2)2 = det(A) − κtr2(A) is large
and a local maximum with κ a constant. This produces a
strong value when both λ1 and λ2 are large but penalizes
situations where one of these values is much larger than the
other indicative of an edge situation. There are two specific
concerns that one might raise considering the form of this
expression:

1. The specific form of this expression is one of intuitive
quantitative reasoning (based on the determinant and
trace of A) but significantly limits the shape of the de-
cision boundary for choosing candidate Harris corners.
This specific form is one based on computational par-
simony since the determination of the eigenvalues of A
requires the computation of a square root. While this
operation may have been sufficiently cumbersome (in
a computational sense) in 1988 to warrant a selection
criterion that avoids computing square roots, this is
much less of a concern with modern computing hard-
ware. The concern related to computation of square
roots arises from the fact that an eigendecomposition
for the 2x2 case is given by the quadratic formula with

λ1,2 =
1
2

(tr(A)±
√

tr2(A)− 4 det(A))

2. It is unclear what the specific tradeoff between pairs
of intermediate magnitude eigenvalues and one large
eigenvalue paired with one smaller eigenvalue (given
by the parameter κ should look like. This is appar-
ent from the fact that there is no universal consensus
on the value of κ which from a system performance
perspective will most likely be application dependent.
Anecdotal observations suggest a range of 0.04 to 0.15
as appropriate choices.

While the definition of local structure that constitutes
Harris corners is sensible, it is arguable that the form of the
selection boundary deserves further consideration. More-
over, the original form proposed in 1988 remains in com-
mon use and remains the most common means of selecting
interest points in the machine vision literature.

This brings us to the central motivation of this paper: To
revisit Harris corners from the perspective of the decision
criterion employed and in doing so, to provide a sensible
principled decision boundary for selecting Harris corners
on the basis of principles that may generalize to any interest
operator for which there exists a selection criterion based
on local structure.

Many other structural definitions for Harris corners have
been proposed but only very few that consider the impe-
tus for the selection criterion based on the eigenvalues of
the autocorrelation matrix. This is surprising in light of the
fact that the basic structure of Harris detector seems to im-
ply a detector that is highly robust to changes in rotation
and scale [11]. Existing efforts that focus on the decision
boundary associated with Harris corners are limited in that
are they either ad hoc, based on heuristics [8, 9] or focus on
the approximation of I(i+ x, j + y) [9].

There is heretofore no existing work that attempts to con-
struct a definition for the selection of Harris corners based
on a principled approach and motivated by the criteria of
invariance and distinctiveness. In this paper, we put forth
such a proposal which provides a definition for the deci-
sion boundary based on these motivating principles through
observation of the structure of natural images as it pertains
to Harris corners. Additionally, this definition exploits the
statistics of the natural world in order to best satisfy these
criteria.

The format of this paper is as follows: Section 2 pro-
vides a more detailed description of the precise set of crite-
ria that might motivate the decision boundary for selecting
Harris corners. This also includes a statement of the central
premise of our proposal in light of these criteria. In sec-
tion 3 the statistics of natural images are considered as they
relate to Harris corners through observation of a large set
of natural images. Commentary and modeling pertaining
to the observed statistics is presented. Section 4 provides
some qualitative results on natural images containing geo-
metric forms and discussion is included concerning the re-
lationship between corners chosen by existing algorithms,
and real corners appearing in the natural world. Section
5 presents quantitative evidence in favor of the proposal
through consideration of the stability of point selection un-
der various natural image deformations and examines sys-
tematically the effect of large changes in viewpoint reveal-
ing advantages of the proposed selection criterion as com-
pared with the traditional approach. Finally, in section 6
we discuss more general issues pertaining to the proposal at
hand and present many possible fruitful avenues for further
research.

2. Motivation and Approach
As mentioned, interest point detection typically involves

the extraction of features with a specific application domain
in mind. Typical applications include at least image match-
ing, tracking, panorama stitching, 3D-modeling and object
recognition among others. The central criteria for candidate
interest points (and the evaluation criterion associated with
such points in are typically:

1. Repeatability: For purposes such as matching across
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viewpoints, tracking, and stitching, an important prop-
erty is that the set of discrete interest points selected
by an algorithm for one view corresponds to the same
points in the world drawn from a different viewpoint,
or subject to some transformation/deformation of the
image.

2. Distinctiveness: Any process that relies on matching
candidate points across a change in viewpoint, time or
other deformation of the image requires that the points
chosen correspond to regions with distinct structure in
order for points from say, one viewpoint to be matched
with those from another.

3. Geometry: For a task such as 3D modeling, one
may strongly desire that the interest points correspond
strictly to some geometric construct. For example, the
most desirable property may be that a corner detec-
tor produces well localized corners that correspond to
real corners within the image or more generally, a set
of points that conforms to the geometric structure of a
scene.

In light of these motivating factors, it is unclear to what
extent the selection boundary for Harris corners proposed in
the original work [3] is suited to these conditions.

2.1. Towards an Optimal Selection Criterion

One sensible manner in which to approach the problem
is in considering the sort of structure that is observed within
natural images. Specifically, it may be sensible to consider
the observation likelihood of the two eigenvalues p(λ1, λ2)
as a means of determining a decision threshold. The im-
petus for this choice with respect to the three motivating
factors is as follows:

1. Repeatability: For any given interest point h, one has
corresponding values λ1 and λ2. A corresponding
point in a second image (e.g. the first image subject
to a change in zoom/rotation/viewpoint) will have the
effect of perturbing the eigenvalues in question (cor-
responding to the same point) by some values δ1, δ2.
It may be the case that while (λ1, λ2) lies within the
selection boundary and is deemed an interest point,
(λ1 + δ1, λ2 + δ2) may lie outside of the selection
boundary. In terms of an overall repeatability score
(as the number of points in image 1 that have corre-
sponding points in image 2) it is desirable to maxi-
mize the distance (on average) between interest points
chosen, and the selection boundary as this reduces the
likelihood that such a perturbation will result in a point
moving from inside to outside of the decision bound-
ary (or the converse, i.e. the tolerance for δ1 and δ2 is
higher). It suffices to choose interest points based on
some threshold T such that p(λ1, λ2) < T to satisfy
this condition.

2. Distinctiveness: It is also evident, that in choosing in-
terest points as an inverse function of the likelihood
of local structure parameters, one also has a desirable
property with respect to distinctiveness. In fact, this
is the very definition of distinctiveness: Points whose
local structure is observed least frequently are chosen
first, followed by those that appear with increasing fre-
quency. It is interesting to note that this is precisely
the criterion employed to measure the distinctiveness
of interest points that appears in [11].

3. Geometry: With respect to local geometry, the rela-
tionship between the likelihood of the local structure
coefficients and specific real world constructs is less
evident. That being said, on an intuitive level it is
expected that local structure corresponding to corners
should appear much less frequently than that corre-
sponding to edges as observing ones surroundings at
any given time may well confirm and the same made
be said with regards to edges when compared with re-
gions of low activity. For this reason, it is reasonable
to assume that one might also arrive at a selection cri-
terion that is favorable for applications involving 3D
reconstruction, or determination of geometric form.

As a whole, the choice of a decision boundary based on
the reciprocal likelihood of observed local structure param-
eters (e.g. λ1 and λ2 in the case of Harris corners) seems
a sensible strategy for the choice of a decision boundary
with optimality in some sense with respect to repeatability
and distinctiveness, and also at an intuitive level in its cor-
respondence to image geometry.

3. Harris Corners and Natural Image Statistics
In this section, we describe methods and results asso-

ciated with deriving an estimate of p(λ1, λ2) in the con-
text of all natural images. 2100 images were drawn from
the Corel stock photo database, consisting of indoor and
outdoor scenes with photographs taken at several venues
around the world. The central 1200x800 pixel portion of
the images was cropped and the eigenvalues of the Harris
matrix computed for each pixel location across the 2100
images yielding a total of approximately 2 ∗ 109 observa-
tions. A histogram density estimate was constructed with a
bin width of 0.5 by 0.5.

3.1. Results

Figure 1 depicts the log of p(λ1, λ2) for σ = 2 as de-
termined from the 2100 images in the test set. One salient
observation that may be made concerning the distribution
itself is as follows: As the dropoff in p(λ1, λ2) is much
steeper in the direction of increasing λ2 than in the direc-
tion of λ1, and λ1 is at least as large as λ2 this should make
λ2 a very good predictor of p(λ1, λ2). It is interesting to
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Figure 1. The log likelihood of the various possible combinations
of λ1, λ2 in the context of a large sample of natural images. Note
the concentration of points around the origin and the asymptotic
distribution of density along the λ1 axis. For larger values of λ1

the dropoff along the λ2 axis is much steeper than for smaller val-
ues of λ1.

note that selection of interest points based on min(λ1, λ2)
appears in the proposal of Shi and Tomasi with the moti-
vation for this choice based on choosing good features for
the purpose of tracking [12]. The motivation for this choice
is that in practice this produces points for which the au-
tocorrelation matrix is above the noise level and is well-
conditioned. On the basis of this observation, comparisons
made in the evaluation section also include the Shi criterion
in particular because comprehensive evaluations of interest
point selection [11] have not included this particular met-
ric in their evaluations. The minimum eigenvalue approach
seems a good candidate from a theoretical standpoint as it
verifies a set of important axiomatic properties [4] that other
measures including the Harris criterion fail to satisfy. Here,
we also demonstrate that the likelihood estimate provides a
strong case for the minimum eigenvalue as a measure of cor-
neredness in support of the suggestions made in the afore-
mentioned studies.

3.2. Fitting

One might select interest points on the basis of a direct
lookup on the likelihood of λ1, λ2 given by the probabil-
ity density function, choosing points in increasing order of
p(λ1, λ2). Within a histogram density estimate, the nature
of discrete computation requires quantization in the form
of bin size. This quantization has the possibility of caus-
ing various point locations within the image to be assigned
identical scores complicating the task of choosing a candi-
date point set. Furthermore, using a sufficiently fine quan-

tization (as used in figure 1) to diminish the likelihood of
this occurring, even for an estimate based on more than 2
trillion samples as we have performed, one still encounters
λ1, λ2 combinations for several locations within an image
that have only been observed very few (including 0) times.
The sparsity involved due to the exponential dropoff in ob-
servations with an increase in λ1 or λ2 can therefore make
the order of point selection ambiguous in particular paired
with non-maximal suppression. A solution to this is to fit a
function to p(λ1, λ2) affording a continuous representation
of p(λ1, λ2).

There are many possible assumptions that one might
make about the form of this function. Early experiments
with high order polynomial fits yielded satisfactory behav-
ior, but the nature of these fits resulted in significant sensi-
tivity to the range and distribution of eigenvalues present.
In particular, such fits often converge to a state that is either
overly biased to the form near the origin, or in the case that
only a higher range of λ1 values are considered the poly-
nomial becomes relatively ambivalent to λ1 and does not
represent the structure of the distribution close to the origin.
A further commentary on this appears in section 5.1. As
p(λ1, λ2) decreases exponentially in λ1 and λ2, for the pur-
poses of exposition it may suffice to consider a least squares
fit to log(p(λ1, λ2)) based on the simple form C − αλβ1λ

γ
2 ,

to afford some sense of the tradeoff between λ1 and λ2.
This will in practice provide at a minimum, the opportu-
nity to observe the tradeoff between λ1 and λ2 explicitly
in a manner consistent with the observed statistics. A least
squares fit to log(p(λ1, λ2)) of the form C − αλβ1λ

γ
2 yields

values of α = 0.4, β = 0.197 and γ = 0.322. This affords
as a classifier the threshold criterion T > λα1λ

β
2 . This fit

along with the traditional criteria are pictured in figure 2.
Note that that the resultant fit has some similarities to both
of the other classic measures shown, but importantly does
not penalize large values of λ1 and exercises some tradeoff
between λ1 and λ2 especially for low values of λ1.

3.3. Scale

While the original Harris operator is rotationally invari-
ant, many recent efforts consider the multi-scale applica-
tions of the Harris operator, suggesting the need to con-
sider the distribution of p(λ1, λ2) for different choices of
σ. Owing to the scale invariance property of natural images
[2], one might expect that the distribution of p(λ1, λ2) may
share this same property. From a qualitative perspective, the
shape of distributions produced by the eigenvalues of the
autocorrelation matrix are very similar across scale. That
said, for large changes in scale, the range and distribution of
observed eigenvalues does vary slightly. For certain appli-
cations, for which comparison of likelihoods across differ-
ent scales is important, this may be a significant factor. For
the purposes of this study the results are computed based on
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Figure 2. A surface representation of the decision boundaries for
various choices of threshold for eigenvalues in a representative
range given by λ1 ∈ [300, 800] and λ2 ∈ [1, 200] is depicted.
Points are chosen in an order inversely proportional to the height
of the distributions. Notice the penalty for large λ1 for the Harris
criterion. The fit distribution exhibits properties consistent with
observed statistics including similar curvature (albeit of a simpler
form) and asymptotic behavior along the λ1 axis.

the distribution learned from the σ = 2 condition shown in
figure 1 and this should not impact the analysis or conclu-
sions.

4. Harris corners and real corners
In instances where the aim is to perform some form of

geometric modeling of the scene, a sensible goal is to ensure
that the selected corners conform to the geometry of real
physical entities. The following provides an example of the
operation of the original Harris criterion and Shi criterion
as compared with the likelihood based criterion as applied
to some natural images with strong geometric structure as
depicted in figure 3.

It appears that the likelihood based selection criterion re-
sults in more corners corresponding to the physical corners
of objects than the Harris corner and additionally, better lo-
calization in some instances. Notice for example in the top
figure that corners of the hexahedron are correctly selected
by the likelihood based measure but are missed by the Har-
ris criterion. The corner located at the back of the hexa-
hedron marked with an asterisk (*) is symptomatic of one
issue with the standard Harris criterion: This location con-
sists of one eigenvalue that is very large combined with a
smaller eigenvalue of intermediate size with a difference of
two orders of magnitude. The κ value required to have this
point selected would need to be< 0.01 which is well below
the recommended range for the Harris threshold. This same

phenomenon also appears to be behind the mislocalization
of corners produced by the Harris measure as sufficiently
sharp 2D image features may produce a λ1 value that pro-
hibits selection of the corner itself, but is sufficiently low
for a location that is near the actual corner.

The images also reveal a significant shortcoming of the
Harris and Shi proposals, that being, that both are suscepti-
ble to selecting regions for which no particularly strong fea-
tures, or correspondence with image geometry exists. This
is due in the case of the Harris detector, to its aversion to
strong edge content, and in the case of the Shi operator, its
ambivalence to λ1 resulting in the acceptance of very flat
regions. The boundary based on the statistical fit appears
to implement a sensible tradeoff between the behavior of
the Harris and Shi proposals. It is also interesting to note
the similar behavior of the fit to the statistics and the Shi
proposal, in particular for the middle row. This is perhaps
unsurprising as the steep dropoff with increasing λ2 implies
that for a sufficiently large λ1, the Shi proposal is a very
good approximation of p(λ1, λ2) and the least squares fit
also reflects this consideration. The third pair of images
strongly emphasizes the differences in behavior for the Shi
and fit boundaries. While lower scoring points tend to re-
side on edges in the case of the fit distribution, they appear
more akin to a cloud of noise on the rightmost poster for
the Shi operator. The Harris operator (not shown) exhibits
similar behavior and with a cloud of points that is distinct
from the Shi operator. Although it is certain that much more
rich descriptions of the p(λ1, λ2) distribution might be es-
tablished, it appears that the simplistic form put forth is suf-
ficient to enforce the behavior corner > edge > flat/noise
desired for modeling geometry and also arguably for match-
ing purposes.

5. Quantitative Evaluation

On the basis of the discussion appearing in section 2
it is sensible to provide a demonstration that the proposal
of likelihood based interest point selection yields desir-
able performance in terms of repeatability in a quantita-
tive sense. There are a variety of choices that one might
make to provide some quantitative analysis consistent with
the proposal. For this purpose, we have chosen an evalua-
tion paradigm for the selection of interest points that evalu-
ates repeatability scores across a wide baseline for interest
points chosen on the basis of the Harris, Shi and statistical
corner criteria based on the Cambridge database [10].

5.1. Evaluation Protocol

There exist a few commonly used databases for perfor-
mance evaluation [6, 10]. The former of these deals with
the selection of affine regions and as such, the inclusion of
a procedure for affine shape adaptation which results in a
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Figure 3. An example of corners selected by the original Harris criterion (κ = 0.04), the Shi-Tomasi criterion, and for the likelihood based
criterion for a classic test image (top), for a similar example (middle). An image from the data set upon which quantitative evaluation was
performed is presented on the bottom with the Shi output appearing on the left, and the fit output on the right. Points are color coded such
that the strongest points are red, with a gradual shift to blue based on distance from the decision boundary.

confounded picture of the underlying selection boundaries.
This is a consideration that is apparent in [1], for which
very high dimensional polynomial fits yielded near perfect
correspondence for the statistics within a specific range,
but unpredictable behavior outside of this range. The non-
convergence of points according to the affine shape adapta-
tion procedure obscures the detriment to performance that
arises out of such instability. For this reason, we have em-
ployed the evaluation protocol of Schmid et al. [11] on the
data set of Rosten et al. [10] which allows direct compari-
son of interest points across a multitude of views. The deter-
mination of repeatability in this case is based on observing
whether there exists a point xi in image i that is within an
ε neighborhood of a point xj in image j subject to the ho-
mography Hij . This was performed for 3 different sets of
images and every pairwise comparison of selected points is
considered.

A sample of the image set is depicted in figure 4 and con-
sists of images from three distinct environments with views
taken across a wide baseline. The image sets in figure 4 are

referred to as the box (top row), maze (middle row) and junk
(bottom row) data from hereon. In total, there are 14 images
in the box data set, 15 in the maze data set and 8 in the junk
data set. Performance evaluation is performed for pairwise
correspondences across all possible pairs of images.

5.2. Results

Figure 5 demonstrates the repeatability scores for cor-
respondences for the three sets of images for all possible
pairwise correspondences. Performance results overall tend
to favor the likelihood based criterion and Shi based crite-
rion over the Harris proposal. Additionally, the likelihood
based criterion performs better for the first several hundred
points. This is suggestive of the fact that this criterion is the
most stable in its decision boundary as the order in which
points are selected is not reflected in the performance mea-
sure and will have the strongest influence on overall per-
formance over the interval for which the number of points
selected is relatively low. The frame in the bottom right
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Figure 4. Test images from the study of Rosten et al. [10] the
images are subjected to large changes of viewpoint. Examples of
views from the three distinct sets are given.

Figure 5. Repeatability scores for increasingly large numbers of
chosen points for the junk (top left), maze (top right), and box
(bottom left) data sets. The Bottom right frame depicts the ratio of
the area under the curve for the three methods normalized by the
area produced by the fit to the empirical data.

shows the area under the curve of the three criteria, nor-
malized to the statistical criterion. It is apparent that the
statistical criterion is equal or better to the other two pro-
posals across all three sets of images subject to this crite-
rion albeit, this is of course sensitive to the range of points
considered, but it is encouraging that within a typical range,
the statistical fit performs well. It is also worth noting that
many matching applications typically employ on the order
of 1000 points [5] and the statistical proposal is equal or
above the other proposals within this range. The difference
is also arguably greatest for the Junk class of scenes which
notably has less strong features than the other two classes.
This holds promise for performance for more naturalistic
images in which such a large number of strong features is
less likely to be present making sensitivity to noise more

important. As a whole, the results are suggestive of the
fact that a proposal fit to natural image statistics is a sen-
sible strategy affording reasonable stability across the en-
tire range of points and also apparently exhibiting greater
correspondence with the geometry of the scene.

6. Discussion
There are a variety of interesting points that emerge from

the subject matter of this paper. We have presented an anal-
ysis of the selection of interest points based on the Harris
corner detector revisiting a central aspect of the algorithm
motivated by the specific purposes for which interest points
are employed. Motivated by these design criteria, we pro-
pose a selection criterion that is optimal from the perspec-
tive of natural image statistics. It should perhaps be em-
phasized that our intention is not to present a general closed
form formula for choosing Harris corners for any and ev-
ery purpose (although the results given may satisfy this pur-
pose to some extent). It is possible that for a purpose such
as localization in mobile robot navigation, that one may do
even better in constructing an estimate of p(λ1, λ2) that ac-
counts for the specific statistics of the environment in which
the robot is navigating. Furthermore, more detailed analy-
sis may produce a better fit to the distribution in question
than the simplistic form given. It should be stressed that
this is a case in which the message is more important than
the medium: that a likelihood based selection criterion that
considers the relevant statistics is a natural way of choosing
interest points and serves as a guide for the design of deci-
sion boundaries for interest operators in general. The meth-
ods put forth in this paper provide a general guideline for
application specific Harris corner selection and the specific
choice of a fit to the probability density is based on sim-
plicity of exposition and may benefit from further analysis.
In short, the aim is to demonstrate that a likelihood based
selection criterion that exploits natural image statistics may
produce more stable and distinctive points of interest. That
said, conclusions and points of interest emergent from this
study are as follows:

• The analysis presented calls into question the con-
strained form of the original Harris criterion since its
design as a choice based on computational parsimony
has lost much relevance. The analysis presented in this
paper gives a sense of why the existing proposals work
well, and also demonstrates why they fail. In particular
for both the Harris and Shi proposal, there appears to
be sensitivity to noise due to the aversion or ambiva-
lence to λ1.

• The minimum of the two eigenvalues of the autocor-
relation matrix appears to provide a good approxima-
tion to the likelihood of the eigenvalue pair especially
for large λ1. An additional implication of this con-
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sideration is that subject to the motivating critera, the
Shi proposal is near optimal with respect to the desired
distribution for sufficiently large λ1. This is a condi-
tion that will almost always be met in the domain of
tracking given the smaller number of feature points in-
volved. This consideration affords a sense of why the
Shi proposal presents Good Features to Track moti-
vated by ecological statistics, beyond providing an au-
tocorrelation matrix that is well conditioned. It may
also be said that this affords a sense of why the Har-
ris operator succeeds as it exhibits a boundary nearly
asymptotic to the λ1 axis up to some limit upon which
noisy regions may be accepted in favor of strong edges.
This is the reason for its strength, but also its weakness
and as such argues strongly against the constrained
form currently in common use.

• The proposal of Shi and Tomasi is heavily cited in the
tracking literature, but is not considered in most of the
performance evaluation papers despite being cited (e.g.
[6]). The Shi-Tomasi definition appears to be under-
represented outside of tracking efforts and the current
evidence calls for a systematic evaluation of the effi-
cacy of this criterion with respect to matching perfor-
mance and in multi-scale affine region selection given
its apparent efficacy in producing repeatable points.

• The likelihood based criterion selects structure that is
more consistent with the geometry of real objects mak-
ing it amenable to the representation of image struc-
ture and the apparent failure of the Harris measure
seems to be a result of penalizing locations for which
two stronger eigenvalues are present, one of excep-
tional magnitude. This as mentioned, is also the ap-
parent cause of its failure in mislocalizing strong cor-
ners. The Shi operator fails when a large number of
points is required and relatively flat or noisy regions
are chosen above edges due to its ambivalence to λ1. A
form based on the observed statistics appears to more
strictly enforce the ordering corner > edge > flat
leading to quantitative stability for larger numbers of
interest points, and also greater correspondence in the
lower range suggesting that the ordering of selected
points is more consistent.

• We have used a very simple choice of form to fit the
eigenvalue PDF. It is likely that additional gains may
be had in employing a form that is better able to cap-
ture the richness of the statistics in question however
the extreme density at the origin makes fitting difficult
in the absence of presupposing a rich form for the dis-
tribution consistent with its properties. That said, the
present work is sufficient to point out some potential
avenues for future improvements in selecting interest
points, and also makes evident the tradeoff between
noise and features of interest.

• An additional avenue for future consideration with re-
spect to probabilistic determination of decision bound-
aries concerns the study of the manner in which some
systematic deformation alters the parameters (the two
eigenvalues in this case) on which the selection crite-
rion is based. In this case one might construct a deci-
sion boundary that is optimal with respect to the joint
consideration of p(λ1, λ2) and p(∆λ1,∆λ2).

As a whole, we have presented much food for thought
in the domain of design of decision boundaries for interest
points. A selection of Harris corners, even in simple form,
motivated by structure observed in natural image statistics
reveals some interesting aspects pertaining to the behav-
ior of various decision criteria and also demonstrates where
they fall short. The analysis presented raises many interest-
ing questions pertaining to the selection of Harris corners,
and the nature of interest operators in general and in addi-
tion, presents many fruitful directions for further research.
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