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Approximate Euclidean Ramsey theorems

Adrian Dumitrescu∗

Abstract

According to a classical result of Szemerédi, every dense
subset of 1, 2, . . . , N contains an arbitrary long arith-
metic progression, if N is large enough. Its analogue
in higher dimensions due to Fürstenberg and Katznel-
son says that every dense subset of {1, 2, . . . , N}d con-
tains an arbitrary large grid, if N is large enough. Here
we present geometric variants of these results for sep-
arated point sets on the line and respectively in the
Euclidean space: (i) every dense separated set of points
in some interval [0, L] on the line contains an arbitrary
long approximate arithmetic progression, if L is large
enough. (ii) every dense separated set of points in the
d-dimensional cube [0, L]d in R

d contains an arbitrary
large approximate grid, if L is large enough. A fur-
ther generalization for any finite pattern in R

d is also
established. The separation condition is shown to be
necessary for such results to hold. In the end we show
that every sufficiently large point set in R

d contains an
arbitrarily large subset of almost collinear points. No
separation condition is needed in this case.

Keywords: Euclidean Ramsey theory, approximate
arithmetic progression, approximate homothetic copy,
almost collinear points.

1 Introduction

Let us start by recalling the classical result of Ramsey
from 1930:

Theorem 1 (Ramsey [23]). Let p ≤ q, and r be
positive integers. Then there exists a positive integer
N = N(p, q, r) with the following property: If X is a set
with N elements, for any r-coloring of the p-element
subsets of X, there exists a subset Y of X with at least
q elements such that all p-element subsets of Y have the
same color.

As noted in [4], perhaps the first Ramsey type result
of a geometric nature is Van der Waerden’s theorem on
arithmetic progressions:

Theorem 2 (Van der Waerden [26]). For every pos-
itive integers k and r, there exists a positive integer
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W = W (k, r) with the following property: For every r-
coloring of the integers 1, 2, . . . , W there is a monochro-
matic arithmetic progression of k terms.

As early as 1936, Erdős and Turán have suggested
that a stronger density statement must hold. Only in
1975, Szemerédi succeeded to confirm this belief with
his celebrated result:

Theorem 3 (Szemerédi [25]). For every positive inte-
ger k and every c > 0, there exists N = N(k, c) such
that every subset X of {1, 2, . . . , N} of size at least cN
contains an arithmetic progression with k terms.

This is a fundamental result with relations to many
areas in mathematics. Szemerédi’s proof is very compli-
cated and is regarded as a mathematical tour de force
in combinatorial reasoning [18, 22]. Another proof of
this result was obtained by means of ergodic theory by
Fürstenberg [8] in 1977.

A homothetic copy of {1, 2, . . . , k}d is also called a
k-grid in R

d. The following generalization of Van der
Waerden’s theorem to higher dimensions is given by the
Gallai–Witt theorem [18, 22]:

Theorem 4 (Gallai–Witt [22]). For every positive
integers d, k and r, there exists a positive inte-
ger N = N(d, k, r) with the following property:
For every r-coloring of the integer lattice points in
{1, 2, . . . , N}d, there exists a monochromatic homoth-
etic copy of {1, 2, . . . , k}d. More precisely, there exist
(a1, a2, . . . , ad) ∈ {1, 2, . . . , N}d, and a positive inte-
ger x such that all points of the form (a1 + i1x, a2 +
i2x, . . . , ad + idx), i1, i2, . . . , id ∈ {0, 1, . . . , k − 1} are
of the same color.

A higher dimensional generalization of Szemerédi’s
density theorem was obtained by Fürstenberg and
Katznelson [9]; see also [22].

Theorem 5 (Fürstenberg–Katznelson [9]). For every
positive integers d, k and every c > 0, there exists a
positive integer N = N(d, k, c) with the following prop-
erty: every subset X of {1, 2, . . . , N}d of size at least
cNd contains a homothetic copy of {1, 2, . . . , k}d.

The proof of Fürstenberg and Katznelson uses infini-
tary methods in ergodic theory. As noted in [22], no
combinatorial proof is known.
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In the first part of our paper (Section 2), we present
analogues of Theorems 2, 3, 4, and 5, for point sets in
the Euclidean space. Specifically, we obtain (restricted)
Ramsey theorems for separated point sets, for finding
approximate homothetic copies of an arithmetic pro-
gression on the line and respectively of a grid in R

d. The
latter result carries over for any finite pattern point set
and every dense and sufficiently large separated point
set in R

d. It is worth noting that the separation condi-
tion is necessary for such results to hold (Proposition 1
in Section 2). While for Theorems 2, 3, 4, and 5, the
separation condition comes for free for any set of inte-
gers, it has to be explicitly enforced for point sets.

The exact statements of our results (Theorems 6, 7
and 8) are to be found in Section 2 following the def-
initions. Fortunately, the proofs of these theorems are
much simpler than of their exact counterparts previ-
ously mentioned. Moreover, the resulting upper bounds
are much better than those one would get from the in-
teger theorems. The proofs are constructive and yield
very simple algorithms for computing the respective ap-
proximate homothetic copies given input point sets sat-
isfying the requirements.

In the second part (Section 3), we present an unre-
stricted theorem (Theorem 9) which shows the existence
of an arbitrary large subset of almost collinear points in
every sufficiently large point set in R

d. No separation
condition is needed in this result.

Applications. Many other Ramsey type problems in
the Euclidean space have been investigated in a series
of papers by Erdős et al. [4, 5, 6] in the early 1970s,
and later by Graham [10, 11, 12, 13, 14]. Van der
Waerden’s theorem on arithmetic progressions has in-
spired new connections and numerous results in num-
ber theory, combinatorics, and combinatorial geome-
try [1, 2, 7, 10, 15, 16, 17, 18, 19, 20, 22, 24], where
we only named a few here.

Our analogues of Theorems 2, 3, 4, and 5, for point
sets in the Euclidean space may also find fruitful appli-
cations in combinatorial and computational geometry.
It is obvious that general point sets are much more
common in these areas than the rather special inte-
ger or lattice point sets that occur in number theory
and integer combinatorics. A first application needs
to be mentioned: A result similar to our Theorem 6
has been proved instrumental in settling a conjecture
of Mitchell [21] on illumination for maximal unit disk
packings: It is shown [2] that any dense (circular) for-
est with congruent unit trees that is deep enough has a
hidden point. The result that is needed there is an ap-
proximate equidistribution lemma for separated points
on the line, which is a relaxed version of our Theorem 6.

2 Approximate homothetic copies of any pattern

Definitions. Let δ > 0. A point set S in R
d is said to

be δ-separated if the minimum pairwise distance among
points in S is at least δ. For two points p, q ∈ R

d,
let d(p, q) denote the Euclidean distance between them.
The closed ball of radius r in R

d centered at point z =
(z1, . . . , zd) is Bd(z, r) = {x ∈ R

d | d(z, x) ≤ r} =

{(x1, . . . , xd) | ∑d
i=1(xi − zi)

2 ≤ r2}.
Given a point set (or “pattern”) P = {p1, . . . , pk} of

k points in R
d and another point set Q with k points:

(i) Q is similar to P , if it is a magnified/shrunk and
possibly rotated copy of P . (ii) Q is homothetic to P , if
it is a magnified/shrunk copy of P in the same position
(with no rotations).

Approximate similar copies and approximate homo-
thetic copies are defined as follows. See also Fig. 1 for
an illustration. Given point sets P and Q as above and
0 < ε ≤ 1/3:

• Q is an ε-approximate similar copy of of P , if there
exists Q′ so that Q′ is similar to P , and each point
q′i ∈ Q′ contains a (distinct) point qi ∈ Q in the ball
of radius εd centered at q′i, where d is the minimum
pairwise distance among points in Q′.

• Q is an ε-approximate homothetic copy of of P , if
there exists Q′ so that Q′ is homothetic to P , and
each point q′i ∈ Q′ contains a (distinct) point qi ∈ Q
in the ball of radius εd centered at q′i, where d is the
minimum pairwise distance among points in Q′.

Figure 1: Left: a 4-term arithmetic progression (thick ver-
tical bars) and a 1/3-approximate 4-term arithmetic pro-
gression (filled circles) on the line. Right: a 3-grid (empty
circles) and a 1/4-approximate 3-grid (filled circles) in R

2.

The condition ε ≤ 1/3 is imposed to ensure that
any two balls of radius εd around points in Q′ are
disjoint, and moreover, that any two distinct points
of Q are separated by a constant times d, in this
case by at least d/3.1 In our theorems, ε-approximate
means ε-approximate homothetic copy. We start with
ε-approximate arithmetic progressions on the line by

1The choice of the constant 1/3 in this definition is rather

arbitrary. One could relax this inequality and require ε < 1/2

instead, however this would allow two points in Q be close to

each other, which may defeat the intent.
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proving the following analogue of Theorem 3 for points
on the line:

Theorem 6 For every positive integer k, c, δ > 0,
and 0 < ε ≤ 1/3, there exists a positive number
Z0 = Z0(k, c, δ, ε) with the following property: Let S
be a δ-separated point set in an interval I of length
|I| = L with at least cL points, where L ≥ Z0. Then S
contains a k-point subset that forms an ε-approximate
arithmetic progression of k terms. Moreover, one can
set Z0(k, c, δ, ε) = 2δ · (ks)j , where s =

⌈

1
ε

⌉

, r =
k

k−1 , j =
⌈

log 2

cδ

log r

⌉

.

Proof. Without loss of generality, I = [0, L]. Put
s = ⌈ 1

ε⌉. Conduct an iterative process as follows.
In step 0: Let I0 = I, and subdivide the interval
I0 into ks half-closed intervals2 of equal length. Let
x = L/(ks) be the common length of the sub-intervals.
For t = 0, . . . , s − 1 consider the system It of k dis-
joint sub-intervals with left endpoints of coordinates
tx, (t + s)x, (t + 2s)x, . . . , (t + (k − 1)s)x. Observe that
the s systems of intervals It partition the interval I0. If
for some t , 0 ≤ t ≤ s − 1, each of the k intervals con-
tains at least one point in S, stop. Otherwise in each
of the s systems of k intervals, at least one of the k
intervals is empty, so all the points are contained in at
most ks−s intervals from the total of ks. Now pick one
of the remaining (k − 1)s intervals, which contains the
most points of S, say I1. In step i, i ≥ 1: Subdivide Ii

into ks half-closed intervals of equal length and proceed
as before.

In the current step i, the process either (i) terminates
successfully by finding an interval Ii subdivided into ks
sub-intervals making s systems of intervals, and in at
least one of the systems, each sub-interval contains at
least one point in S, or (ii) it continues with another
subdivision in step i + 1. We show that if L is large
enough, and the number of subdivision steps is large
enough, the iterative process terminates successfully.

Let L0 = |I| = L be the initial interval length, and
m0 ≥ c|I| be the (initial) number of points in I0. At
step i, i ≥ 0, let mi be the number of points in Ii, and
let Li = |Ii| be the length of interval Ii. Clearly

Li =
L

(ks)i
, and mi ≥

m0

(k − 1)isi
≥ cL

(k − 1)isi
. (1)

Let j be a positive integer so that

c · δ ·
(

k

k − 1

)j

≥ 2,

2When subdividing a closed interval, the first k − 1 resulting

sub-intervals are half-closed, and the kth sub-interval is closed.

When subdividing a half-closed interval, all resulting sub-intervals

are half-closed.

e.g., set

j =

⌈

log 2
cδ

log r

⌉

, where r =
k

k − 1
. (2)

Now set Z0(k, c, δ, ε) = 2δ ·(ks)j . If L ≥ Z0, as assumed,
then by our choice of parameters we have

Lj =
L

(ks)j
≥ Z0

(ks)j
=

2δ · (ks)j

(ks)j
= 2δ, (3)

and

mj · δ ≥ cL · δ
(k − 1)jsj

= c · δ ·
(

k

k − 1

)j
L

(ks)j

≥ 2L

(ks)j
= 2Lj. (4)

Since the point set is δ-separated, an interval packing
argument on the line using (3) gives

mjδ ≤ Lj +
δ

2
+

δ

2
= Lj + δ ≤ 3

2
Lj . (5)

Observe that (5) is in contradiction to (4), which means
that the iterative process cannot reach step j. We con-
clude that for some 0 ≤ i ≤ j − 1, step i is successful:
we found a system of k intervals of length x with left
endpoints at coordinates a0 = tx, a1 = (t + s)x, a2 =
(t + 2s)x, . . . , ak−1 = (t + (k − 1)s)x, each containing
a distinct point, say bp ∈ S, p = 0, 1, . . . , k − 1. Ob-
serve that the k points {ap : p = 0, 1, . . . , k−1} form an
(exact) arithmetic progression of k terms with common
difference equal to sx. It is now easy to verify that the k
points bp form an ε-approximate arithmetic progression
of k terms, since for p = 0, 1, . . . , k − 1

ap ≤ bp ≤ ap + x and εs ≥ 1,

thus

x ≤ εsx and bp ∈ [ap, ap + εsx].

This completes the proof. �

The next proposition shows that the separation con-
dition in the theorem is necessary, for otherwise, even
a 3-term approximate arithmetic progression cannot be
guaranteed, irrespective of the size of the point set.

Proposition 1 For every positive integer n, and 0 ≤
ε < 1/3, there exists a set of n points in [0, 1], without
an ε-approximate arithmetic progression of 3 terms.

Proof. Let ξ = 1
3 − ε. Let S = {ξi | i = 0, . . . , n −

1}. Assume for contradiction that {q1, q2, q3} is an ε-
approximate arithmetic progression of 3 terms, where
q1 < q2 < q3, and q1, q2, q3 ∈ S. Then there exist a and
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r > 0, so that a−r, a and a+r form a 3-term arithmetic
progression, and we have:

a − r − εr ≤ q1 ≤ a − r + εr,

a − εr ≤ q2 ≤ a + εr,

a + r − εr ≤ q3 ≤ a + r + εr.

From the first and the third inequalities we obtain

a − εr ≤ q1 + q3

2
≤ a + εr,

therefore
∣

∣

∣

∣

q1 + q3

2
− q2

∣

∣

∣

∣

≤ 2εr. (6)

Further note that

q3 − q1 ≥ a + r − εr − (a − r + εr) = 2(1 − ε)r,

hence

r ≤ q3 − q1

2(1 − ε)
.

By substituting this bound into (6), we have
∣

∣

∣

∣

q1 + q3

2
− q2

∣

∣

∣

∣

≤ ε

1 − ε
· (q3 − q1) ≤

ε

1 − ε
· q3. (7)

On the other hand
∣

∣

∣

∣

q1 + q3

2
− q2

∣

∣

∣

∣

≥ q1 + q3

2
− q2 ≥ q3

2
− q2. (8)

Putting inequalities (7) and (8) together and dividing
by q3 yields

1

2
− q2

q3
≤ ε

1 − ε
.

Obviously, q2

q3

≤ ξ, hence

1

6
+ ε =

1

2
− 1

3
+ ε =

1

2
− ξ ≤ 1

2
− q2

q3
≤ ε

1 − ε
.

Equivalently,
1

6
≤ ε2

1 − ε
,

which is impossible for ε < 1/3. Indeed, the quadratic
function f(x) = 6x2 + x − 1 is strictly negative for 0 <
x < 1/3. We have thereby reached a contradiction.
We conclude that S has no ε-approximate arithmetic
progression of 3 terms. �

Remark. The following slightly different form of
Proposition 1 may be convenient: For any n there ex-
ists a set of n points in [0, 1], without an ε-approximate
arithmetic progression of 3 terms, for any 0 ≤ ε ≤ 1/4.
For the proof, take S = {1/8i | i = 0, . . . , n − 1}, and
proceed in the same way.

For a d-dimensional cube Πd
i=1[ai, bi], let us refer to

(a1, . . . , ad) as the first vertex of the d-dimensional cube.
We now continue with ε-approximate grids in R

d by
proving the following analogue of Theorem 5 for points
in R

d:

Theorem 7 For every positive integers d, k, and c, δ >
0, and 0 < ε ≤ 1/3, there exists a positive number
Z0 = Z0(d, k, c, δ, ε) with the following property: Let
S be a δ-separated point set in the d-dimensional cube
Q = [0, L]d, with at least cLd points, where L ≥ Z0.
Then S contains a subset that forms an ε-approximate
k-grid in R

d. Moreover, one can set Z0(d, k, c, δ, ε) =

2δ ·(ks)j , where s =
⌈√

d
ε

⌉

, r = kd

kd−1 , j =
⌈

log
κd

cδ

log r

⌉

.

Here κd (in the expression of j) is a constant depending
on d:

κd =

⌈

3d · (d/2)!

πd/2

⌉

, if d is even, and

κd =

⌈

3d · (1 · 3 · · ·d)

2 · (2π)(d−1)/2

⌉

, if d is odd. (9)

Proof. For simplicity of calculations, we first present
the proof for d = 2 by outlining the differences from
the one-dimensional case; the argument for d ≥ 3 is
analogous, with the specific calculations in the second
part of the proof.

Recall that we have set κ2 = ⌈ 9
π ⌉ = 3. Put s = ⌈

√
2

ε ⌉.
Conduct an iterative process as follows. In step 0: Let
Q0 = Q, and subdivide the square Q0 into (ks)2 smaller
congruent squares. Let x = L/(ks) be the common
side length of these squares. For t1, t2 ∈ {0, . . . , s − 1}
consider the system Qt1,t2 of k2 disjoint squares with
first vertices of coordinates (t1 + i1s, t2 + i2s)x, where
i1, i2 ∈ {0, 1, . . . , k − 1}. Observe that the s2 systems
of squares Qt1,t2 partition the square Q0. If for some
(t1, t2) , 0 ≤ t1, t2 ≤ s − 1, each of the k2 squares in
the respective system contains at least one point in S,
stop. Otherwise in each of the s2 systems of k2 squares,
at least one of the k2 squares is empty, so all the points
are contained in at most k2s2 − s2 squares from the
total of k2s2. Now pick one of the remaining s2(k2 − 1)
squares, which contains the most points of S, say Q1. In
step i, i ≥ 1: Subdivide Qi into (ks)2 smaller congruent
squares and proceed as before.

In the current step i, the process either (i) terminates
successfully by finding a square Qi subdivided into (ks)2

smaller squares making s2 systems of squares, and in at
least one of the systems, each smaller square contains
at least one point in S, or (ii) it continues with another
subdivision in step i + 1. We show that similar to the
one-dimensional case, if L is large enough, and the num-
ber of subdivision steps is large enough, the iterative
process terminates successfully.

Let L0 = L be the initial square side of Q0, and
m0 ≥ cL2 be the (initial) number of points in Q0. At
step i, i ≥ 0, let mi be the number of points in Qi, and
let Li be the side length of Qi. Clearly

Li =
L

(ks)i
, and mi ≥

m0

(k2 − 1)is2i
≥ cL2

(k2 − 1)is2i
.
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Let j be a positive integer so that

c · δ2 ·
(

k2

k2 − 1

)j

≥ κ2 = 3,

e.g., set

j =

⌈

log 3
cδ2

log r

⌉

, where r =
k2

k2 − 1
. (10)

Now set Z0(2, k, c, δ, ε) = 2δ · (ks)j . If L ≥ Z0, as as-
sumed, then by our choice of parameters we have

Lj =
L

(ks)j
≥ Z0

(ks)j
=

2δ · (ks)j

(ks)j
= 2δ, (11)

and

mj · δ2 ≥ cL2 · δ2

(k2 − 1)js2j
= c · δ2 ·

(

k2

k2 − 1

)j
L2

(ks)2j

≥ 3L2

(ks)2j
= 3L2

j . (12)

Note that (11) is identical with (3) from the one-
dimensional case. Since S is δ-separated, the disks of ra-
dius δ/2 centered at the points of S are interior-disjoint.
A straightforward packing argument yields

mj
πδ2

4
≤ (Lj + δ)2 ≤

(

3

2
Lj

)2

=
9

4
L2

j , (13)

where the last inequality is implied by (11). Inequal-
ity (13) is equivalent to

mj · δ2 ≤ 9

π
L2

j . (14)

However this is contradiction with inequality (12) (by
the setting κ2 = ⌈ 9

π ⌉ = 3). This means that the iterative
process cannot reach step j.

We conclude that for some 0 ≤ i ≤ j − 1, step i is
successful: we found a system of k2 disjoint squares of
side x with first vertices ai1,i2 = (t1 + i1s, t2 + i2s)x,
where i1, i2 ∈ {0, 1, . . . , k − 1}, each containing a dis-
tinct point, say bi1,i2 ∈ S, for i1, i2 ∈ {0, 1, . . . , k − 1}.
Observe that the k2 points ai1,i2 form an (exact) grid
Q′ of k2 points with side length equal to sx. As in the
one-dimensional case, it is now easy to verify that the
k2 points bi1,i2 form an ε-approximate grid of k2 points,
since for i1, i2 ∈ {0, 1, . . . , k − 1}

εs ≥
√

2, thus d(ai1,i2 , bi1,i2) ≤ x
√

2 ≤ εxs. (15)

Note that the minimum distance among the points in
Q′ is sx, and this completes the proof for the planar
case (d = 2).

The argument for the general case d ≥ 3 is analogous
and the calculations in deriving the upper bound are

as follows. The inequality (11) remains valid. By the
choice of parameters r and j, we have

c · δd ·
(

kd

kd − 1

)j

≥ κd. (16)

The analogue of (12) is

mj · δd ≥ cLd · δd

(kd − 1)jsdj
= c · δd ·

(

kd

kd − 1

)j
Ld

(ks)dj

≥ κd · Ld

(ks)dj
= κd ·

(

L

(ks)j

)d

= κd · Ld
j . (17)

The packing argument in R
d yields

mj · Vold

(

δ

2

)

≤
(

3

2

)d

Ld
j , (18)

where Vold(r) is the volume of the sphere of radius r in
R

d. It is well-known that

Vold(r) =



















πd/2

(d/2)!
· rd if d is even,

2 · (2π)(d−1)/2

1 · 3 · · ·d · rd if d is odd.

(19)

To obtain a contradiction in the argument, as in the
previous cases, one sets κd as in (9) taking into account
(19). The setting of s is such that the analogue of (15)
is ensured. This completes the proof of Theorem 7. �

By selecting a sufficiently fine grid in Theorem 7, one
obtains by similar means the following general state-
ment for any pattern in R

d:

Theorem 8 For every positive integer d, finite pattern
P ⊂ R

d, |P | = k, and c, δ > 0, and 0 < ε ≤ 1/3, there
exists a positive number Z0 = Z0(d, P, c, δ, ε) with the
following property: Let S be a δ-separated point set in
the d-dimensional cube Q = [0, L]d, with at least cLd

points, where L ≥ Z0. Then S contains a subset that is
an ε-approximate homothetic copy of P .

Observe that the iterative procedures used in the
proofs of Theorems 6, 7 and 8, yield very simple algo-
rithms for computing the respective approximate homo-
thetic copies, given input point sets satisfying the im-
posed requirements. For instance in Theorems 6 and 7,
the number of iterations, j, is given by (2) and respec-
tively (10), and each iteration takes linear time (in the
number of points). On the other hand, these require-
ments are currently too high, and it is likely that such
copies exist under much weaker conditions.
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Remark. The following connection between Theorem 6
and Szemerédi’s Theorem 3 is worth making. If one
makes abstraction of the bounds obtained, the qualita-
tive statement in Theorem 6 can be obtained as a corol-
lary from Theorem 3. Here is a proof. For simplicity
let n = L be integer. Take any set of cn points. Since
the set is δ-separated every interval [i, i+1] has at most
1/δ points. Therefore, there are at least cδn intervals
with at least one point. By Theorem 3, we know that if
n is large enough then we can find k/ε intervals which
form an arithmetic progression of length k/ε (just think
of each interval [i, i + 1] as the integer i). To be more
precise, if Theorem 3 works for n ≥ N0(k, c) then we
apply it with N0(k/ε, cδ). Let i0, . . . , ik/ε be the inter-
vals of this arithmetic progression. Then, by definition
each of these k/ε intervals has a point from the set.
Pick an arbitrary element of the set from the k intervals
i0, i1/ε, i2/ε, . . . , ik/ε. Then we get an ε-approximate k-
term arithmetic progression since the distance between
these intervals is at least 1/ε, so the error from picking
an arbitrary point in each interval is at most ε relative
to the distance between the points.

It is also worth noting that our proof of Theorem 6
is self contained and much simpler (from first princi-
ples) than the proof one gets from Szemerédi’s theorem
as described above. Moreover, the upper bound result-
ing from our proof is much better than that one gets
from the integer theorem. That is, with the quantitative
bounds included, the two theorems (6 and 7) cannot be
derived as corollaries of the classical integer theorems.
Indeed, as mentioned in the introduction no combinato-
rial proof is known for the higher dimensional general-
ization of Szemerédi’s theorem due to Fürstenberg and
Katznelson.

3 Almost collinear points

Let 0 < ε < 1, and let S be a finite point set in R
d. S is

said to be ε-collinear, if in every triangle determined by
S, two of its (interior) angles are at most ε. Note that
in particular, this condition implies that an ε-collinear
point set is contained in a section of a cylinder whose
axis is a diameter pair of the point set, and with radius
εD, where D is the diameter; the cylinder radius is at
most D

2 tan ε ≤ εD, for ε < 1.

Theorem 9 For any dimension d, positive integer k,
and ε > 0, there exists N = N(d, k, ε), such that any
point set S in R

d with at least N points has a subset of
k points that is ε-collinear.

Proof. For simplicity, we present the proof for d = 2;
the argument for d ≥ 3 is analogous. Finitely color
all the segments determined by S as follows. Choose a
coordinate system, so that no two points have the same
x-coordinate. Put r = ⌈π/ε⌉+1, and let I be a uniform

subdivision of the interval [−π/2, π/2] into r half-closed
subintervals of length at most ε.

Let pq be any segment, where x(p) < x(q). Color pq
by i if the angle made by pq with the x-axis belongs
to the ith subinterval. Obviously this is an r-coloring
of the segments determined by S. Let N = N(2, k, r),
where N(·) is as in Theorem 1. By Ramsey’s theorem
(Theorem 1), for every r-coloring of the segments of
an N -element point set, there exists a monochromatic
set K of k points, that is, all segments have the same
color, say i. Let ∆pqr be any triangle determined by
K, and assume that x(p) < x(q) < x(r). Then by
construction, we have ∠qpr, ∠prq ≤ ε. This means that
K is ε-collinear, as required.. �

We conclude with an informal remark. Observe that
the limit of an ε-collinear set, when ε → 0, is a collinear
set of points. It should be noted that one cannot hope to
find any other non-collinear pattern which is the limit of
some approximate patterns occurring in any sufficiently
large point set, no matter how large. Indeed, by taking
all points in our ground set on a common line, all its
subsets will be collinear.

Acknowledgments. The author thanks the anony-
mous reviewer of an earlier version for the observation
and the proof in the remark at the end of Section 2.
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[6] P. Erdős, R. Graham, P. Montgomery, B. Roth-
schild, J. Spencer, and E. Straus: Euclidean Ram-
sey theorems, III, in Infinite and Finite Sets, vol. I;
Colloq. Math. Soc. János Bolyai, vol. 10, North-
Holland, Amsterdam, 1975, pp. 559–583.
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