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On Stretch Minimization Problem on Unit Strip Paper

Ryuhei Uehara∗

Abstract

For a given mountain-valley pattern of equidistant
creases on a long strip paper, there are many folded
states consistent with the pattern. Among these folded
states, we like to fold a paper so that the number of
the paper layers between each pair of hinged paper seg-
ments is minimized. We first formalize this problem
as optimization problem. The complexity of the prob-
lem is not known. In this paper, we give partial results
related to the problem. First, we show that the prob-
lem is well-defined even in a simple folding model. The
simple folding model is the most primitive model of ba-
sic origami models, and hence the folding availability is
very restricted. We show a universality theorem of the
simple folding model for this problem. That is, every
flat folded state consistent with any given pattern can
be folded by a sequence of simple foldings. Next, we
investigate the number of folded states consistent with
a given pattern. For a given random mountain-valley
pattern, the expected number of folded states consis-
tent with the pattern is exponential. More precisely,
the expected number f(n) of folded states for a random
mountain-valley pattern of length n is (1) Θ(1.65n) from
the experiments, and (2) between Ω(1.53n) and O(2n)
from theoretical bounds. The results say that a naive
algorithm that checks all possible folded states for a
given pattern to find an optimal folded state runs in an
exponential time.
Keywords: linkage, pleat folding, rigid origami, univer-
sality theorem.

1 Introduction

What is the best way to fold an origami model?
Origamists around the world struggle with this prob-
lem daily. Even if you have a good origami model with
its crease pattern, this is not the end. To make the
model, we have to search for clever, more accurate, or
faster folding sequences and techniques. In this paper,
we focus on the problem for accurate folding on a sim-
ple kind of one-dimensional creasing, where the piece
of paper is a long rectangular strip, which can be ab-
stracted into a line segment, and the creases uniformly
subdivide the strip. A mountain-valley pattern is then
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Figure 1: Simple pleats and an origami angel with many
pleats folded by Takashi Hojyo (reproduced with his
kind permission).

simply a binary string over the alphabet {M,V } (M for
mountain, V for valley), which we call a mountain-
valley string. Of particular interest in origami is the
pleat, which alternates MV MV MV · · · ; see Figure 1.
The pleat folding is quite unique in the sense that the
folded state is unique [Asano et al. 10]. That is, there is
only one unique folded state consistent with the string,
and only the pleat folding has this property. In gen-
eral, this is not the case. For example, for a string
MMV MMV MV V V V , surprisingly, there are 100 dis-
tinct folded states consistent with this string. Among
them, what is the best folded state? From the practical
point of view, it seems better to decrease the number of
paper layers between each pair of paper segments hinged
at a crease as possible as we can. If we have many paper
layers between the hinged papers, it becomes to be diffi-
cult to fold with accuracy, and if we have too many, we
cannot fold any more. This is a typical problem we meet
when we fold recent complex origami models (Figure 1).

For a folded state, we define a stretch at a crease i
is the number of the paper layers between the papers
hinged at the crease i. Then, we can consider two opti-
mization problems as follows:

Input: A strip of paper of length n+1 with a mountain-
valley string s in {M, V }n.

Goal: Among the folded states consistent with s, we
aim to find a folded state of unit length that (1)
minimizes the maximum stretch of all stretches at
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each crease in the folded state, or (2) minimizes the
total stretch of all stretches at each crease in the
folded state.

We note that the minimization problem for the average
stretch is equivalent to the second optimization prob-
lem (by dividing n). These two problems have differ-
ent solutions in general. For example, among the 100
valid folded states of the string MMV MMV MV V V V ,
the minimum maximum stretch is 3, which is achieved
by the folded state [4|3|2|5|6|0|1|7|9|11|10|8] (the details
of this notation is described later), the minimum total
stretch is 11 by the other state [4|3|2|0|1|5|6|7|9|11|10|8],
and moreover, these solutions are unique for this string
(they are checked by an exhaust search).

Here we state an open problem:

Open Problem: Determine the computational com-
plexity of the minimization problems of the maxi-
mum/total stretch for a given string s in {M, V }n.

We first show that the problem is well-defined even
in a simple folding model. The simple folding model
is one of basic origami models introduced by Arkin
et al. [Arkin et al. 04]. We show that, even in the
simple folding model, every folded state consistent
with any given mountain-valley string can be folded.
This universality theorem of the simple folding model
is related to the one-dimensional flat folding prob-
lem [Demaine and O’Rourke 07, Section 12.1], and the
locked chain problem, that has a long and rich history
[Demaine and O’Rourke 07, Chapter 6].

The open problem seems to be NP-hard in general.
We next prove this intuition by counting. For a given
string, if the number of valid folded states for the string
is not huge, a straightforward exhaust search can find
the solutions efficiently. However, this is not the case.
In this paper, we state the following negative results.

Theorem 1 Let s be a mountain-valley string of length
n taken uniformly at random, and f(n) the expected
number of folded states consistent with s. Then exper-
imental results imply that f(n) = Θ(1.65n). We also
show the upper and lower bounds; f(n) = Ω(1.53n) and
f(n) = O(2n).

The results guarantee that f(n) is an exponential func-
tion, and hence the exhaust search approach has no
hope in general.

Theorem 1 comes from more general counting prob-
lem:

Theorem 2 Let F (n) be the number of folded states of
a paper of length n+1. Then experimental results imply
that F (n) = Θ(3.3n). We also have the upper and lower
bounds: F (n) = Ω(3.06n) and F (n) = O(4n).

Theorem 1 says that a simple exhaust search runs
in an exponential time in general. Unfortunately, we
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Figure 2: Three foldings for the mountain-valley string
V V V .
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Figure 3: Simple folding model.

have no idea about the computational complexity of the
optimization problems up to now.

A part of Theorems 1 and 2 was presented as an
oral talk at 5th international conference on Origami
in science, mathematics, and education (5OSME)
[Uehara 10]. All the results in this paper will be pub-
lished in the future book that collects the works in
5OSME.

2 Preliminaries

The paper strip is a one-dimensional line with creases
at every integer position. At first, the paper of length
n+1 with the string of length n is placed at the interval
[0..n + 1]. The paper is rigid except the creases on the
integer positions; that is, we can only fold the paper at
these integer positions. At the end of the folding op-
erations, all creases are folded, the paper becomes unit
length, and the direction of each folded crease follows
the letter (in {M, V }). That is, the ith letter of the
mountain-valley string of length n indicates the final
folded state of the crease at integer point i in [1..n]. We
call each paper segment between i and i+1 the ith seg-
ment. Each final folded state can be represented by the
ordering of the segments; for example, a pleat folding
MV MV is described by [0|1|2|3|4] or [4|3|2|1|0], and a
crease string V V V produces [1|3|2|0], [1|0|3|2], [3|1|0|2],
or their reverses (Figure 2). We distinguish between the
left and right endpoints of the paper, but we sometimes
ignore the reverse of one folded state since they are es-
sentially the same. In fact, the sides of a folded state
sometimes turn upside down when we fold all paper lay-
ers at a crease from right to left or from left to right.

We employ the simple folding model
by Arkin et al. [Arkin et al. 04] (see also
[Demaine and O’Rourke 07, Sec. 14.1] and
[Cardinal et al. 09]). Precisely, each simple fold-
ing is the folding from a flat folded state to another flat
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Figure 4: Two legal folded states for a string which
cannot be exchanged by local simple (un)foldings.

folded state by the following operations: (1) put the flat
(folded) paper (on the reverse side, if necessary) in a
plane, (2) choose an integer point to fold, and (3) valley
fold consecutive most inner paper layers at the crease.
We note that a simple folding of some paper layers
has a restriction that the most inner paper segments
have to be folded. The other paper segments are fixed,
and we cannot slip the paper segments into the other
paper layers. In Figure 3, (a), (b), and (c) are simple
foldings, but (d) is not allowed. A simple unfolding is
defined by rewinding a simple folding; that is, we can
unfold a folded state a to a folded state b if and only
if a can be obtained from b by a simple folding. We
note that a can be unfolded to one of several folded
states; that is, a simple unfolding is not just a rewind
of the last simple folding. (In a sense, conceptually, a
simple unfolding can be seen as a simple folding. That
is, they are the same operation that flips consecutive
most inner paper layers at a crease.)

For a mountain-valley string s, we call a folded state
legal for s if it is consistent with the string.

3 Universality of the simple folding model

In this section, we show that the simple folding model is
strong enough to discuss the strip paper of equidistant
creases. More precisely, we show that every legal folded
state for any string can be made by a sequence of simple
foldings.

We first observe that any string has a legal folded
state:

Proposition 3 For any given mountain-valley string s
in {M, V }n, there exists a legal folded state.

Proof. We can fold a paper for any given
string by using the idea of an “end fold” in
[Demaine and O’Rourke 07, p. 192]; we make an
end fold at the leftmost crease according to the string,
glue it, and repeat it. After n foldings, we fold it into
a unit length, and obtain a legal folded state for the
string. �

Next we show that any legal folded state can be folded
from the initial state by a sequence of simple foldings.

Theorem 4 Let P be any legal folded state for a
mountain-valley string s in {M,V }n. Then P can be
folded from the initial state by a sequence of simple fold-
ings.

q

q

q

r

r

r

q

q

q

(a)

(b)

(c)

(d)

(e)

(f)

(g)

endpoint p

Figure 5: Simple (un)foldings.

Before proving Theorem 4, we comment on the claim
of the theorem. One may think that Theorem 4 is “triv-
ial”. But it is not so trivial.

A typical counterexample for this intuition is shown
in Figure 4; these two folded states are legal for the same
mountain-valley string, but they cannot be exchanged
by just local simple (un)foldings. (In fact, the left folded
state is not so trivial to fold by a sequence of simple
foldings.) This fact implies that folding of these states
from the initial state requires some global strategy.

By definition of unfolding, a folded state P can be
folded from the initial state by simple foldings if and
only if P can be unfolded to the initial state. Hence,
we prove Theorem 4 by showing how to unfold any
folded state P to the initial state. This is strongly
related to two well investigated problems in computa-
tional origami.

First, this is a kind of the “(un)locked chain
problem in 2D” that has a long and rich his-
tory [Demaine and O’Rourke 07, Chapter 6]. It
is known that there is no locked chain in 2D
[Demaine and O’Rourke 07, Section 6.6]. However, this
fact does not imply Theorem 4 since the operations are
restricted to simple unfoldings in our theorem.

Second, our problem is also related to “one-
dimensional flat foldings” [Demaine and O’Rourke 07,
Section 12.1]. In this problem, we aim to determine if
there exists a flat folded state for a given pattern on a
strip paper. The known result says that we can find one
flat folded state by repeating crimp folding and end fold-
ing if it exists. (In fact, Proposition 3 is a special case
of this problem.) Hence, the known algorithm cannot
construct a given specified folded state from the initial
state. (In contrast with Theorem 4, this is not always
possible for non-unit case; see Concluding Remarks.)

Thus, in a sense, our problem is more difficult than
the above problems; the folded state is specified, and we
can only use simple foldings to make it. On the other
hand, all links in our “linkage” have unit length. Using
this advantage, we can show the universality theorem
for the unit strip paper in the simple folding model.

In the following proof, we do not need the fact that P
is folded into unit length. (We only use that we can fold
at every integer point.) Hence we prove the following
stronger claim than Theorem 4:
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Corollary 5 Let P be any flat folded state of a paper of
length n + 1 such that every folded point is placed at an
integer point in [1..n] in the initial state. Then P can
be folded from the initial state by a sequence of simple
foldings which are made at each integer point. More-
over, the total number of simple (un)foldings is bounded
above by 2n.

Proof. As mentioned above, we prove the claim by un-
folding any folded state P to the initial state. Intu-
itively, we unbind the last segment and arrange the last
consecutive segments in line. But before unbinding, we
have to peel off the papers covering the last segment.
To describe in detail, let p be the last endpoint of the
paper, that will be placed at integer point n + 1 in the
initial state. We abuse the symbol P to denote the cur-
rent flat folded state. We here define visibility of a point
on P ; a point is visible on P if and only if it appears
on a surface of P . All visible points are drawn in thick
lines in Figure 5. We note that a crease can be visible
even if it is between two invisible segments (e.g., the
crease point q in Figure 5(a) is a visible point of length
0). According to the visibility of the last endpoint p, we
have two cases. (In the context of algorithm, we have
two “phases”.)
Case 1: The point p is not visible in the folded state
P . (In Figure 5, (a), (b), and (c) are in this case.) Let
q be the largest visible crease. That is, all points r > q
(including p) are invisible. We note that q can be flat.
Let q′ be the smallest folded crease with q′ > q. If there
is no folded crease greater than q, set q′ = p.

We first suppose that the crease q is flat. Then, by
the visibility of q, the papers on the visible side of q can
be flipped by a simple folding (or a simple unfolding) at
the crease point q′. Then, the largest visible crease is
updated from q to q′ > q.

Next we suppose that q is a folded crease. Without
loss of generality, the crease q+1 is placed at left of q as
in Figure 5(a). Then, the papers on the opposite side of
q − 1 with respect to the segment q(= [q, q + 1]) covers
the point q + 1 but do not cover q − 1 since q is visible.
This fact implies that these papers can be flipped by a
simple (un)folding at the crease point q′ ≥ q + 1. (In
Figure 5(a), the bottom paper is flipped by folding the
crease r.)

In any case, the largest visible crease is updated from
q to q′ > q by one (un)folding. We repeat this pro-
cess until the point p becomes visible. The number of
repeating is at most n, and hence the total number of
(un)foldings in case 1 is at most n.
Case 2: The point p is visible in the folded state P .
(In Figure 5, (d), (e), and (f) are in this case.) Let q be
the largest folded crease. If q is not visible, since there
is no folded crease between p and q, and p is visible,
we can make q visible by just one simple (un)folding
at the point q by using the same technique in case 1.
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Figure 6: Experimental result of the number of folded
states.

Now we can assume that all points in [q, p] are visible.
Moreover, these points can be seen from one side. (For
example, suppose that [q, r] are visible from top and
[r, p] are visible from bottom. In this case, since p is the
endpoint of the paper, the paper becomes disconnected.)
Hence we can unfold at the folded crease q and make it
flat. This does not change the visibility of p. Thus we
can repeat this process until the whole creases become
flat. We can observe that these two (un)foldings (to
make q visible if necessary, and to make q flat) can be
done at once. Hence the total number of (un)foldings
in this case is at most n.

From above arguments, we have Theorem 4 and
Corollary 5. �

By Proposition 3, the optimization problems are well-
defined for any mountain-valley string. Moreover, by
Theorem 4, the problem is worth considering on the
simple folding model. Furthermore, if we have an opti-
mal solution, it can be folded in linear time by Corollary
5.

4 The number of folded states

In this section, we will prove Theorems 1 and 2. Using
Theorem 2, Theorem 1 follows easily. Hence we first
focus on Theorem 2.

Recall that F (n) is the number of folded states of a
paper of length n + 1. A simple algorithm can compute
F (n) in a straightforward way for small n, but we can
find the correct values for larger n at “The On-Line
Encyclopedia of Integer Sequences” with id:A0001361.
(According to the site, this sequence is “the number
of ways of folding a strip of n labeled stamps”, which
fits our problem.) Plotting the sequence, we have an
experimental result F (n) = Θ(3.3n) (Figure 6). Now
we turn to the upper and lower bounds of F (n).

Lemma 6 F (n) = O(4n).
1http://www.research.att.com/~njas/sequences/A000136
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Proof. We first assume that n is even, say n = 2k,
and each folded state of unit length is placed on the
interval [0..1]. We see the relationship among the papers
at the point 0. The papers should not be penetrated
through each other. That is, at the point 0, k creases
with one end (of the left end of the segment 0) make
a nest structure. The number of nest structure with k
pairs is given by the Catalan number Ck = 1

k+1

(
2k
k

)
=

(2k)!
(k+1)!k! (see, e.g., [Stanley 97]). Once the left end is
connected to the right nest structure at the point 1, the
paper order is automatically determined. The number
of the possible connections of the left end to the right
nest structure is k. Hence the number of folding ways
can be bounded above by kCkCk.

Next we assume that n is odd, say n = 2k +1. Then,
using the same argument, we have the upper bound
(k + 1)Ck+1Ck. Since Ck ∼ 4k

k3/2π
= O(4k), the lemma

follows. �

In the proof, the connectivity of the paper is not
counted in. To improve the upper bound, we have to
consider the connectivity.

Lemma 7 F (n) = Ω(3.065n).

Proof. We imagine folding the last k creases for some
k � n. After folding the last k creases into unit length,
we glue it, and obtain a paper of length n − k + 1
with n − k creases. Let G(k) be the number of the
folding ways of this last k creases under the constraint
that the (n − k)th crease is not covered, which means
the segments (n − k − 1) and (n − k) are not sepa-
rated by the other papers between [n − k..n + 1]. Re-
peating this process, we have a lower bound: F (n) >

(G(k))
n
k = (G(k)

1
k )n. This function G(k) is also listed

at “The On-Line Encyclopedia of Integer Sequences”
with id:A0006822. (According to the site, this sequence
is “the number of ways a semi-infinite directed curve
can cross a straight line n times”. This may not seem
to fit our problem, but the semi-infinite directed curve
corresponds to the paper strip itself, and the straight
line corresponds to the point (n − k + 1

2 ) on the paper
strip.) Since the function G(k) is a monotone increas-
ing function for k, we use the largest value G(43) =
830776205506531894760 on the list, and obtain the
lower bound F (n) > (830776205506531894760

1
43 )n =

3.06549n for sufficiently large n. �

By the experimental results listed on “The On-Line
Encyclopedia of Integer Sequences” with Lemmas 6 and
7, we have Theorem 2 immediately.

Next we turn to Theorem 1. The number of
mountain-valley strings of length n is 2n. Hence, divid-
ing the values in Theorem 2 by 2n, we have Theorem
1.

2http://www.research.att.com/~njas/sequences/A000682
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Figure 7: Two legal folded states; (a) is foldable by sim-
ple foldings, and (b) is not foldable by simple foldings.

5 Concluding Remarks

In this paper, we state an open problem that asks the
computational complexity of the minimization problems
of the maximum/total stretch of a strip paper with a
given mountain-valley string. We first show that the
problem is well-defined even in a simple folding model.
That is, we show that any given folded state of a strip
paper can be folded by a sequence of simple (un)foldings
in Section 3. The proof of the universality theorem
gives us a linear time algorithm that requires at most
2n (un)foldings. The improvement of this bound 2n to
n remains to be open.

The universality theorem is related to the (un)locked
chain problem in 2D [Demaine and O’Rourke 07, Chap-
ter 6] and the one-dimensional flat folding problem
[Demaine and O’Rourke 07, Section 12.1]. Extending
the proof of Theorem 4, for the one-dimensional flat
foldings, one might wonder if any specified legal folded
state can be folded from the initial state even if we allow
nonuniform intervals. However, this is not the case. In
Figure 7, both of (a) and (b) are legal folded states for
the above mountain-valley string V MMM . Although
(a) is foldable by a sequence of simple foldings, (b) is
not. In fact, (b) cannot be unfolded at all from this
position by a simple unfolding. From the viewpoint of
industry, the characterization of folded states that can
be folded by a sequence of simple foldings seems to be
a nice future work.

Although the computational complexity of the mini-
mization problems are open, we show that the number of
folding ways for a given mountain-valley string is expo-
nential in general. Hence naive algorithms cannot solve
the minimization problem. The author conjectures that
finding an optimal folding is NP-complete, that is a fu-
ture work.

Only the pleats have a unique (and optimal, of course)
folded state. Hence, if a string is “close” to pleats,
the number of folding ways may be small. However,
this “closeness” is not necessarily clear. The string
“(MV)i−1MM(VM)i−1”3 seems to be close to pleats ex-
cept the center “MM”. But the left pleats and right
pleats are combined in any order to fold into unit length.
As a result, this string has

(
2i
i

)
∼ 2i distinct legal folded

states, which are also exponentially large. (This string

3Here we use the standard notation of string repetition; e.g.,
“(MV)3MM(VM)3”=“MVMVMVMMVMVMVM”.
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is called shuffle pattern and plays an important role to
prove NP-completeness of a strongly restricted version
of a puzzle Kaboozle [Asano et al. 10].) Hence the char-
acterization of “close” strings to pleats is another fur-
ther work.
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