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Evading Equilateral Triangles without a Map

Braxton Carrigan∗

Abstract

Consider an arrangement of equilateral non-overlapping
translated triangles in the plane and two points S and
T so that the segment ST is parallel to a side of each of
the triangles. Assume one needs to navigate from point
S to point T by evading the triangular obstacles without
any previous knowledge of the location of the obstacles.
The navigator becomes aware of a triangle once it is
contacted along the path. The given algorithm enables
the navigator to reach the target point T by a path with
length less than

√
3d(1 + 2

d2 ), where d is the length of
ST .

1 Introduction

In robotics, many results of the so called bug algorithms
exist. For example J. Ng and T. Bräunl [5] compared
the effectiveness of eleven such algorithms in different
environments. These algorithms often contain memory
of strategic points which determine a path from a start-
ing point S and reaches a given target point T . Here
algorithms address environments which contain uncon-
strained obstacles, thus they are stimulated mainly by
the ability to reach the target point, then evaluated by
how statistically effective the algorithm is for all en-
vironments. Another variation of the bug problem is
to restrict the obstacles in the environment and create
algorithms which effectively reach T by a short path.
We say that an algorithm achieves a ratio c, if for each
pair of points S and T, it produces a path of length
≤ c|ST |. A cleverly designed obstacle scene can show a
lower bounds for all possible ratios. Once such bounds
are known people can appreciate simple algorithms even
if their ratio is not the best, but is close to such lower
bounds. Consider for example the history of the short-
est path problem concerning square obstacles. A lower
bound is found by a packing of squares, in a brick laying
design, where the shortest path of evading squares has a
ratio 3

2 . J. Pach [2] and L. Fejes-Tóth [4] discussed dif-
ferent techniques of finding paths which evade squares,
and both supply non heuristical methods of finding the
existence of a path which achieve a ratio, equal to the
lower bound, 3

2 . Knowing that such paths exist leaves
the question of weather a simple algorithm can achieve
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such a path. People first created simple heuristics which
produced bounds less than the trivial, evade and return
technique (see [3]), then more sophisticated heuristics
came closer to reaching the ratio displayed by the ex-
isting paths. The problem solved in this section was
motivated by the results of A. Bezdek [1] which evades
squares and moves toward a target point T . A. Bezdek
uses the properties of a square to evade a square in such
a way that the distance gained toward T is greater than
the distance moved away from the previous direction,
and the distance traveled is no more than 3

2 the dis-
tance gained toward T . As in many bug algorithms,
[1] lets the navigator travel directly toward T once the
traveler has passed an obstacle. The heuristic achieves
the bound which approaches that of the existing path
of 3

2 |ST |. The goal of this paper is to investigate similar
questions in the case of triangle obstacles, yet does not
use the technique discussed in [1].
We start with two remarks to explain why the bound in
Theorem 1 is significant.

Observation 1 A lower bound can be seen by challeng-
ing a heuristic in a similar manner mentioned by Pa-
padimitriou and Yannakakis [3].

First let S = S1, then extend a line Li, forming 60o with
ST through point Si. Now place an equilateral triangle,
Ti, which shares a side with Li such that Si is the mid-
point of this side. The triangle that has been placed will
determine a layer between Li and Li+1. The vertex, of
Ti, which is not on line Li will define Li+1 in the same
manner as S1. Now the path created by any heuristic
must intersect Li+1, thus consider the intersection point
of the path and Li+1 to be Si+1 and repeat this process
of placing triangles Ti. Since the size of the triangles
can be determined as necessary, we can form a series of
layers which connect S to T (Fig. 1).This challenge will
produce a lower bound of 1+

√
3

2 for the ratio of the path
to |ST |.

Observation 2 A heuristic is measured by the longest
path it yields around obstacles, which is known as its
upper bound. The trivial heuristic of evading each tri-
angle and returning to ST by following the boundary of
the triangle obviously produces an upper bound of 2|ST |.

In this paper we consider the following:
Problem: Assume a navigator wishes to traverse a
plane toward a target point T from a starting point S
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Figure 1: Layers between S and T

while avoiding equilateral triangles. The obstacles will
be assumed to be non-overlapping translates with one
side parallel to the segment ST and will be unknown
until the navigator contacts the triangle.
Our goal is to create a heuristic which enables us to
reach our target point along a path, P , that is shorter
than the trivial path that is twice the length of the seg-
ment ST . We will first explain, using the language of
a pseudo algorithm, how we want to navigate among
triangles, (Triangle Heuristic) then we will study the
performance of this heuristic (Theorem 1).

2 Triangle Heuristic

When navigating through the plane toward the target
point T , follow the steps below. (For a better visual
understanding we included Figure 2 of a concrete path
created by this heuristic.)
0. Start at S.
1. Travel along segment ST toward T . If T is reached,
then go to 5. Else, next.
2. Travel along an edge of the contacted triangle to-
ward the vertex not on the side parallel to the segment
ST . If you cross the line L forming a 30o angle with ST
passing through T , then go to 4. Else, next.
3. Take a 90o turn toward ST and travel on a line E
toward the segment ST .
4. Travel along line E.

a. If you reach ST , repeat 1. Else,
b. If you contact a triangle which intersects the seg-

ment ST , repeat 2. Else,
c. If you contact a triangle which does not intersect

the segment ST , then travel on the shortest path along
the edges of the triangle back to line E and repeat 4.
5. Travel on L toward T , if a triangle is contacted, avoid
the triangular obstacle in the shortest path returning to
line L and repeat 5, when T is reached go to 6.
6. Stop.

Theorem 1 If the Triangle Heuristic is followed, the
ratio of the length of the path P to the length of the
segment ST is less than

√
3(1 + 2

d2 ) ≈ 1.732(1 + 2
d2 ),

where d is the length of the segment ST .

S T

Step 2
Step 3

Step 3c

Step 3b

Step 4
line L

Step 5Step 3aStep 1

Figure 2: Path from S to T

3 Proof of Theorem 1

For orientation purposes, assume that the segment ST is
horizontal and all triangles point upward, meaning the
side parallel to ST in each triangle is below the third
vertex.
P ∩ ST is a collection of disjoint segments

aibi, i = 1, ..., k. Let S = a1 and assume the segments
are labeled according to their order on ST . We consider
the subarcs φi ∈ P , where φi is the portion of P from
bi to ai+1. Through the proof of Theorem 1, we refer
to φ as one of these subarcs. Let Lφ be the length of
φ and let Dφ be the length of the segment biai+1. We
will show that Lφ

Dφ
<
√

3 for each φ of P .
A detailed analysis of the Triangle Heuristic reveals that
there are only four different types of subarcs, φ, to con-
sider:
Case 1: Subarc produced by steps: 2, 3, 4a.
Case 2: Subarc produced by steps: 2, 3, 4b.
Case 3: Subarc produced by steps: 2, 3, 4c.
Case 4: Subarc produced by steps: 2, 5.
Notice that each subarc begins with step 2 by traveling
to the vertex not on the side parallel to ST . We will
assign the variable t to the length between bi and the
before mentioned vertex. We will analyze subarcs by
their progression through the triangle heuristic starting
at step 2.
Case 1: Subarc produced by three consecutive steps:
2, 3, 4a.
The navigator returns to the segment ST without con-
tacting another triangle(Figure 3),

S T

φ

Right angle

bi ai+1

Figure 3: Case 1

Thus it is obvious that the ratio of Lφ
Dφ

is 1+
√

3
2 ≈

1.366.
Case 2: Subarc produced by three consecutive steps:
2, 3, 4b.
The navigator contacts a second triangle which inter-
sects the segment ST .

In this case we let φ have an end point where the
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path reaches this second triangle; and analyze another
φ which begins here. Note that starting φ on the edge
of the triangle, which intersects ST , only reduces Lφ

Dφ

since the edge of the triangle is in a ratio of 2 : 1 with
respect to Lφ

Dφ
. Thus the next φ can be considered as

one of our 4 types of subarcs. We will distinguish two
subcases depending on the position of the second trian-
gle.

SUBCASE A: The first triangle contacted by φ is
above the second triangle contacted.

The greatest ratio is found when the two triangles

are touching (Figure 4). Here we find that Lφ
Dφ

= t+
√

3
2

( t2+ 3
4 )

which is maximized as t approaches 1, producing a ratio
approximately equal to 1.4928, being smaller than the
needed bound.

S T

end of consideration of φ

t

t
2 + 3

4

√
3

2

bi

Edge of triangle obstacle

Figure 4: Maximizing Case 2-A

SUBCASE B: The first triangle contacted by φ is be-
low the second triangle contacted.

Again it is obvious that the maximum ratio occurs
when the two triangles are touching. It is also easy to
see that the ratio increases as the second triangle slides
along the first one so that its base gets closer to ST .
Indeed, when the second triangle moves toward the seg-
ment ST along the edge of the first triangle the part
of φ which is not following the side of the first trian-
gle decreases. This is significant since the portion of φ
which is following the side of the first triangles travels
with a ratio of 2 : 1 with respect to Lφ

Dφ
, whereas the

second part of φ travels at a ratio of
√

3 : 1 with respect
to Lφ

Dφ
. Therefore as the second part of φ decreases, Lφ

Dφ

increases. Thus the position of the triangles which max-
imizes φ

Dφ
is as in Figure 5.

S T
t

t
√

3
2

t

t
4

bi ai+1

End of considera-

tion of φ

Figure 5: Maximizing Case 2-B

Here Lφ
Dφ

= t+
√

3t
2

t+ t
4
≤ 4+2

√
3

5 ≈ 1.493 <
√

3.

Case 3: Subarc produced by three consecutive steps:
2, 3, 4c.
The navigator contacts a triangle which does not inter-
sect the segment ST and then repeats step 4.

SUBCASE A: φ repeats step 4 as 4a or 4c. As
in the heuristic, we will avoid the triangle by follow-
ing its perimeter in the shortest direction back to ST .
By the assumptions of the triangles, the configuration
that maximizes Lφ

Dφ
is when the perimeter of the second

triangle and φ have the longest part. This occurs when
the second triangle is contacting the first triangle on the
segment ST . Therefore the configuration which maxi-
mizes Lφ

Dφ approaches the same configuration as in Case
2 - SUBCASE B. Since the triangle is strictly above ST ,
φ ends once it has completely evaded the second triangle
and arrives at the intersection of line E and ST (Figure
6).

Observe that among triangles that do not intersect
segment ST , at most two triangles can be in contact
with any particular φ. In this case the ”detours” caused
by two triangles are shorter than the one which can be
generated by one triangle.
The ratio associated with the maximizing configuration
depicted in Figure 6 is Lφ

Dφ
= 3+2

√
3

2+
√

3
=
√

3.

S T

φ

bi
ai + 1

Figure 6: Maximizing Case 3 - A

SUBCASE B: φ repeats step 4 as 4b.
The navigator then contacts a triangle which does in-
tersect the segment ST (Figure 7).

Notice that the triangle which intersects the segment

S T
φ
bi ai+1

Figure 7: Case 3 - B

ST must be below the first triangle contacted as in Case
2 - SUBCASE A. Otherwise the middle triangle cannot
be involved in φ. Therefore this case is similar to the
one shown on Figure 7.

To find the configuration which maximizes Lφ
Dφ

, just
as in Case 3, assume that the triangle which does not
intersect segment ST is touching the first triangle of φ.
Also without loss of generality, assume the triangle in-
tersecting segment ST is touching the before mentioned
triangle or as in Case 3, it could be moved downward to
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be in contact. For now calculate Lφ
Dφ

as if φ ends when

it contacts the triangle which overlaps ST , as in Case 3.
Finally, notice that as we lower both of these triangles,
while keeping them in contact, Dφ stays the same and
obviously, as in Case 3, the length of φ increases, thus
the maximum configuration is as in Figure 8.

S T
φ
bi ai+1

End of consideration of φ

Figure 8: Maximizing Case 3 - B

For such a φ, Lφ
Dφ

depends on t. As seen above
Lφ
Dφ

= 4t+3+
√

3
2t+3 = 2 + −3+

√
3

2t+3 which is obviously maxi-

mized when t = 1, thus φ
Dφ
≤ 7+

√
3

5 ≈ 1.7564.
Currently this case can produces a ratio larger than

the expected
√

3, but if such a φ exists, there are limi-
tation on the remaining portion of φ. So, we will show
that these two consecutive portions produce a Lφ

Dφ
that

is smaller than
√

3. In this situation we will have the
first φ maximum value as 4t+ 3 +

√
3, then we will look

at the second φ. As the first φ increases it approaches
the restriction that the second φ has a length t which
approaches 0. Thus the configuration the second por-
tion of φ we must navigate, no longer includes a large
portion that follows the edge of a triangle having a ra-
tio of 2 : 1 with respect to Lφ

Dφ
. Without calculation,

one can see that all other portions of φ are significantly
smaller than

√
3, because all cases include the edge hav-

ing a ratio of 2 : 1, but when all parts of φ are calculated
the total Lφ

Dφ
is smaller than

√
3.

Case 4: Subarc produced by two consecutive steps: 2,
5.
We reach the line L which forms a 30o angle with ST
passing through T . Since the heuristic never allows the
traveler to be more than

√
3

2 away from ST , the traveler
must be within 1 unit, or the length of a side of the
triangles in the direction of ST , from T. Notice that
line L is parallel to any line E emanating from the top
vertex of an obstacle, thus the traveler will produce the
same results as in cases 1, 2, or 3 except when above
line L. If the traveler contacts a triangle which overlaps
ST the shortest distance around the obstacle and back
to L is going to the top vertex as usual but then, rather
than a 90o turn, the traveler will follow the edge of the
triangle back to L. Also since we are within one unit of
T, there can only be one such triangle. When evading
such a triangle the traveler is always moving in a ratio
of 2:1, thus the last φ can produce at most Lφ

Dφ
= 2 if it

must travel on the edge of a triangle for its entirety and
contributes the additional 2

d2 term to the bound given
in Theorem 1. This maximum configuration is easily
seen when a triangle is placed closely in front of the
target point requiring the path P to evade this triangle
by a φ which follows two edges of the triangle, thus Lφ

Dφ

approaches 2.

4 Conclusion

The lower bound given in observation 2 along with
the presented upper bound leaves a gap which can be
narrowed. Examination of the techniques used by A.
Bezdek [1] and many bug algorithms have been applied
to the given heuristic in an attempt to improve the up-
per bound. The most intuitive technique to use is to
change the 90o turn in step 3 to a turn moving in the
direction of T . When this change is made to the algo-
rithm, then case 3 produces a φ which has Lφ

Dφ
≥
√

3.
Therefore, one might want to continue changing the al-
gorithm by placing some bias in step 4c, similar to the
one presented in [1], allowing the traveler to move up-
wards when contacting a triangle above ST . This allows
the traveler to move further than

√
3

2 away from ST , and
creating case 4 to have a situation that adds a term large
enough to cancel the benefit of the alteration. Other al-
teration are being explored, of which non have yet to
produce an upper bound less than the one proposed.
Although no algorithm is known to be better than the
one proposed, there is no evidence to assume that one
does not exist nor does the construction of the lower
bound give evidence that another construction does not
produce a higher bound.
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