
CCCG 2010, Winnipeg MB, August 9–11, 2010

I/O-efficient triangular range search and its application

Gautam K. Das∗ Bradford G. Nickerson†

Abstract

In this paper, we consider a special type of triangular
range search for a planar point set S in the I/O-model.
Here, two sides of the query triangle are parallel to the
coordinate axes (x- and y-axis). We call such a triangle
an axis parallel triangle. For the axis parallel triangu-
lar range search problem, we propose a data structure

of size O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2) disk blocks and a query al-

gorithm of complexity O(logB N(log
B

N
log

B
log

B
N)2 + K/B)

I/Os, where 0 < ǫ < 1, N is the number of points in S,
B is the number of points transferred in one I/O, and K
is the number of points in the answer to the query. We
also consider the application of this data structure and
query algorithm to oriented rectangular range search.

1 Introduction

Transfer of data between internal and external memory
is a major performance bottleneck for storage and re-
trieval of the extremely large datasets that are now com-
monplace. In some applications, geometric data such
as points, lines and polygons are the primary elements
stored in these massive datasets. Such applications of-
ten perform queries like searching for objects satisfying
certain spatial constraints, including reporting the ob-
jects intersecting a search region. In this paper, given
a set S of N points in the plane, we design the data
structures and query algorithms for (i) open triangu-
lar range search (Section 2), (ii) axis parallel triangular
range search (Section 3), and (iii) arbitrarily oriented
rectangular range search (Section 4). To the best of our
knowledge, the best previous result for arbitrarily ori-
ented triangular and rectangular range search requires
near quadratic space in the pointer machine model and
there are no I/O-model results for these problems.

To achieve a query time O(N δ + K) requires
Ω(N2(1−δ)−ǫ) space on a pointer machine for the tri-
angular range reporting problem where δ, ǫ > 0 and K
is the number of points in the query region [8]. In [7],
Chazelle et al. proved that in the arithmetic model
Ω(N1/2) time is required to answer a triangular range
counting query using linear space. The first work ad-
dressing the triangular range counting query appeared

∗University of New Brunswick, Fredericton, Canada
†University of New Brunswick, Fredericton, Canada

in [10], where two near quadratic data structures are
presented for points in the plane with complexity (i)
query time O(log N) using space O(N2+ǫ) and (ii) query

time O(log N log log N) using space O(N2

log N). In the

same paper (for 3D points), the authors presented a
simplex range counting algorithm using O(log N) time
and O(N7+ǫ) space. For points in the plane, a near-
optimal upper bound for the triangular range count-
ing problem is available in [9]. The space complexity is
O(N2+ǫ) whereas the query complexity for counting and
reporting are O(log N) and O(log N + K), respectively.
In [13], Matousek presented a data structure of size
O(N2) which answers counting and reporting queries
in O(log3 N) and O(log3 N + K) time, respectively for
points in the plane. In [11], Goswami et al. presented a
O(N2) space data structure that can support triangular
reporting queries in O(log2 N + K) time and triangular
counting queries in O(log N) time. If the query triangle
contains the origin, then near linear space data struc-
tures are available for emptiness and reporting queries in
O(log N) and O(log2 N) time, respectively [12]. The au-
thors in [12] also proved that O(21/ǫ log N) query time is
possible for the same problems and for the axis parallel
triangular range search O(log3 N +K) time query using
O(N log2 N) space. Ishaque et al. [12] proposed a near
linear space data structure for (i) triangular emptiness
and reporting queries in O(polylogN) time with high
probability (where the vertices of the query triangle are
randomly chosen from the given point set) and (ii) non-
orthogonal square emptiness and reporting queries in
O(polylogN) time. For detailed surveys on geometric
range search see [6, 14, 15].

2 Open triangular range search

Given a set S of N points in the plane, the open trian-
gular range search problem is to design a data structure
supporting range queries between two infinite rays (ρ1

and ρ2) emanating from a source point p such that one
of the rays (say, ρ2) is horizontal, pointing to the right
and the ray ρ1 is above ray ρ2. Figure 1(a) demonstrates
the problem where the points in the shaded region fall
within the query region. Without loss of generality, we
assume that all the points in S are in the first quadrant
of the coordinate framework.

The basic idea behind our data structure for open tri-
angular range search is as follows: given two rays, one of

22nd Canadian Conference on Computational Geometry, 2010

which is parallel to the x-axis, we first find the appropri-
ate points in the query region based on y-coordinates,
and then we apply an algorithm for 2-dimensional half-
space range search on these 2-dimensional points.

x

y

p ρ2

ρ1

(i) (ii)

(iii) (iv)
x

y

(a) (b)

Figure 1: Demonstration of (a) the open triangular
range search problem and (b) different types of axis par-
allel triangles.

Data Structure: The basic building block of the
data structure is the weight-balanced B-tree [3]. Let the
B-tree be T with branching parameter a = O(logǫ

B N)
and leaf parameter k = B based on the y-coordinate of
the points in S, for an appropriately chosen ǫ ∈ (0, 1).
Here, all the leaf nodes of T are on the same level,
and thus the height of the tree T is O(log

B
N

log
B

log
B

N)

and it uses O(N/B) space. T can be constructed in
O(N

B log M

B

N
B) I/Os by first sorting the points based on

their y-coordinates and then constructing the tree level-
by-level in a bottom-up fashion, where M is the maxi-
mum number of points that can be stored in main mem-
ory. In each internal node v of T we attach a secondary
structure.

The secondary structure is the data structure for
answering two-dimensional halfspace range queries
[4]. Consider a node vi and its siblings, or-
dered from left to right they form the sequence
v1, v2, . . . , vi−1, vi, vi+1, . . . , va. The elements in the sec-
ondary structure at node v = vi are the points in
the subtrees with roots vi, vi+1, . . . , va. The secondary
structure at the root node contains all the points in S.

Query Algorithm: Let ρ1 and ρ2 be the two rays
emanating from (α, β) of the query Q (open triangle)
where ρ2 is the horizontal ray.

In the root node v of T , if β ≤ p.y for all the points in
S where p.y is the y-component of the point p, then re-
port all the points in the secondary structure associated
with v that satisfy the halfspace query. Otherwise, visit
the path from the root in a downward direction to find
the topmost node ui (6= v) in the base tree T such that
(i) the β lies in the y-range of ui and (ii) i < a. Note
that a is the branching parameter of T . The search Q
can be decomposed in two parts: (1) in the node ui

and (2) all the nodes ui+1, ui+2, . . . , ua; i.e. node ui

and the secondary structure stored at node ui+1. At
the node ui+1, we perform a 2D halfspace range search
in the secondary structure stored at node ui+1 using

O(logB N + K/B) I/Os. To search for points satisfying
the query in node ui, we follow the path in base tree T
from ui to leaf node. At each level of the path we apply
a 2D halfspace range search appropriately.

The complexity of the data structure follows from the
following theorem.

Theorem 1 A set S of N points in the plane can be

stored in a data structure of size O(N
B

log1+ǫ

B
N

log
B

log
B

N) disk

blocks that supports open triangular range search in

O(
log2

B
N

log
B

log
B

N + K/B) I/Os.

Proof. The height of T is O(log
B

N
log

B
log

B
N). Since in T

no data is repeated except in secondary structures, so
the space required to store T is O(N/B) disk blocks
without secondary structures. At each level of T in the
secondary structure, a point can be stored O(logǫ

B N)
times in the worst case, so in each level of T the
secondary structures take O(N

B logǫ
B N) disk blocks.

Therefore, the space complexity of secondary structures

is O(N
B

log1+ǫ

B
N

log
B

log
B

N) disk blocks. Thus, the total space

complexity of the data structure is O(N
B

log1+ǫ

B
N

log
B

log
B

N) disk

blocks.
To search for points in Q (open triangle) requires

seaching at every level of T in the worst case. The
query complexity of the theorem follows from the fact
that (i) height of the tree T is O(

log
B

N
log

B
log

B
N) and (ii)

query complexity at each level of T is O(logB N +K/B)
I/Os. �

3 Axis parallel triangular search

In axis parallel triangle search, one side of the triangle
is parallel to the x-axis, one side is parallel to the y-axis
and the other side is in arbitrary orientation. Four types
of axis parallel triangles are possible based on their ori-
entation as follows:

Type-1: The corner with internal angle π/2 is the left-
bottom corner (see Figure 1(b)(i)).

Type-2: The corner with internal angle π/2 is the
right-bottom corner (see Figure 1(b)(ii)).

Type-3: The corner with internal angle π/2 is the left-
top corner (see Figure 1(b)(iii)).

Type-4: The corner with internal angle π/2 is the
right-top corner (see Figure 1(b)(iv)).

Here, we describe the data structure and query algo-
rithm for the query triangle of Type-1. Similarly, we
can design the data structure and query algorithm for
the three other triangle types.

Data Structure: Like the data structure for open
triangular range search proposed in Section 2, here also

CCCG 2010, Winnipeg MB, August 9–11, 2010

the data structure is based on the weight-balanced B-
tree. Let the B-tree be T with branching parameter
a = O(logǫ

B N) and leaf parameter k = B based on the
x-coordinates of the points in S, for an appropriately
chosen ǫ ∈ (0, 1). Here, all the leaf nodes of T are
on the same level and thus the height of the tree T is
O(log

B
N

log
B

log
B

N) and it uses O(N/B) disk blocks. In each

internal node v of T we attach two structures namely
structure-1 and structure-2.

Structure-1 is the optimal data structure for answer-
ing two-dimensional 3-sided range queries [2]. We main-
tain a set U of points in the plane such that given a
3-sided query Q = (α, β, γ), we report all the points
(x, y) ∈ U with α ≤ x and β ≤ y ≤ γ. The elements
of the node v are the set of points that are in the sub-
tree rooted at v. Structure-2 is the data structure for
answering open triangular range queries (see Section 2).
The elements included in structure-2 corresponding to
node v are as follows:

Consider a node vi and its siblings, or-
dered from left to right they form the sequence
v1, v2, . . . , vi−1, vi, vi+1, . . . , va. The elements of
structure-2 at node v = vi are the points in the
subtrees with roots vi, vi+1, . . . , va. Structure-2 at the
root node contains all the points in S.

Query Algorithm: Let ∆ABC be the axis parallel
query triangle where A = (α, β), B = (γ, β) and C =
(α, δ).

In the root node v of T , if α ≤ p.x for all the points
in S where p.x is the x-component of the point p, then
report all the points in the structure-2 associated with v
that satisfy the open triangular range search. Otherwise
visit the path from the root in a downward direction to
find the topmost node ui (6= v) in the base tree T such
that (i) the α lies in the x-range of ui and (ii) i < a,
where a is the branching parameter of T . Let the right
boundary of the node ui be at x = µ. Also assume that
the line x = µ intersects the non-axis parallel side of
∆ABC at y = ν.

The search ∆ABC can be decomposed into three
parts; namely (i) a 3-sided query Q = (α, β, ν) in the
node ui (dotted region in Figure 2(a)), (ii) an axis par-
allel triangular range search ∆DEC (D = (α, ν) and
E = (µ, ν)) at node ui (dark shaded region in Fig-
ure 2(a)), and (iii) all the nodes from ui+1 to ua i.e.,
the structure-2 stored at node ui+1 (light shaded region
in Figure 2(a)). At node ui+1, we can perform a 2D
range query between two infinite rays in the structure-
2 stored at node ui+1. The search at this node takes
O(log2

B N + K/B) I/O operations (see Section 2). For
the 3-sided query Q = (α, β, ν) in node ui, we can use
structure-1. For the axis parallel triangular range search
∆DEC in node ui, we follow the path in the base tree
T from node ui to the appropriate leaf node. At each
level of the path, we apply a 3-sided range query and

an open triangular range query.
The complexity of the data structure follows from the

following theorem.

y

x

θ

(b)

A

D

B

C

E

F
G

I

J

H

θ

a
b

x

y

ui ui+1 ua

A B

C

D E

(a)

Figure 2: (a) Demonstration of axis parallel triangular
range search and (b) partition of an arbitrarily orien-
tated rectangle.

Theorem 2 A set S of N points in the plane can be

stored in a data structure of size O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2) disk

blocks supporting axis parallel triangular range query us-
ing O(logB N(

log
B

N
log

B
log

B
N)2 + K/B) I/Os.

Proof. The height of T is O(
log

B
N

log
B

log
B

N). Since in T no

data is repeated except in structure-1s and structure-2s,
so the space required to store T is O(N/B) disk blocks
without structure-1s and structure-2s. The size of all
structure-1s in T is O(N/B) disk blocks [2]. To ana-
lyze the size of structure-2s, consider a node v of T at
depth ℓ. Let v1, v2, . . . , vi(= v), . . . , va be the siblings of
the node v(= vi). The size of a structure-2 at node vi

is O(M
B

log1+ǫ

B
M

log
B

log
B

M) disk blocks where M is the number

of points in T in the subtrees rooted at vi, vi+1, . . . , va

(see Theorem 1). Since a = O(logǫ
B N), then the size

of a structure-2s at depth ℓ is O(N
B

log1+2ǫ

B
N

log
B

log
B

N) disk

blocks. Therefore, the size of all structure-2s in T is

O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2) disk blocks. Thus, the size of the

data structure is O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2) disk blocks in the
worst case.

To search for points in query ∆ABC requires search-
ing at each level of T in the worst case and each level

takes O(
log2

B
N

log
B

log
B

N + K/B) I/O operations. Since the

height of the T is O(log
B

N
log

B
log

B
N), so the total num-

ber of I/Os required to find the points in ∆ABC is

O(logB N(
log

B
N

log
B

log
B

N)2 + K/B). �

The lower bound for axis parallel triangular range
search comes from the optimal data structure for axis
aligned rectangular range search. In [1], Arge showed
that the size of the optimal data structure for axis
aligned rectangular range search is O(N

B
log

B
N

log
B

log
B

N) and

requires O(logB N + K/B) query I/Os. Thus, the

22nd Canadian Conference on Computational Geometry, 2010

lower bound for axis parallel triangular range search is
O(N

B
log

B
N

log
B

log
B

N) disk blocks for space and O(logB N +

K/B) I/Os for query.

4 Application of axis parallel triangular range search

The data structure and query algorithm for axis par-
allel triangular range search can be used for arbitrarily
oriented rectangular range search. The space for the
data structure remains the same as the data structure
for axis parallel triangular range search, but the query
complexity slows down by a factor that depends on the
“skinniness” of the rectangle. The basic idea behind the
arbitrarily oriented rectangular range search is to par-
tition the rectangle into O(m) (say) axis parallel trian-
gles and for each triangle to use the data structure and
query algorithm for axis parallel triangular range search.
In [12], the authors show that an arbitrarily oriented
square can be partitioned into eight axis parallel trian-
gles. For an arbitrarily oriented square range search, the
size of the data structure and the query I/Os remains
the same as for axis parallel triangular range search.
To partition an arbitrarily oriented rectangle into axis
parallel triangles, we consider a rectangle ABCD where
lengths of the sides are a and b with a ≥ b, and the side
AB of the rectangle forms an angle θ with the positive
direction of the x-axis. We call this rectangle Rθ(a, b).
Now, we provide a sketch of the partitioning procedure
for Rθ(a, b):

Step 1: Draw a horizontal line from the right-most ver-
tex (B in Figure 2(b)) of the rectangle Rθ(a, b) to
the non-adjacent side (edge BI in Figure 2(b)).

Step 2: Draw a horizontal line from the left-most ver-
tex (D in Figure 2(b)) of the rectangle Rθ(a, b) of
the non-adjacent side (edge DE in Figure 2(b)).

Step 3: Draw a vertical line from E to the side opposite
to the side containing E (EF in Figure 2(b)).

Step 4: Repeat Steps 2 and 3 by considering the point
F as the top-left vertex of the rectangle Rθ(a, b)
until the vertical line in Step 3 intersects the edge
BI. Let the intersection point be H .

Step 5: Draw vertical lines from vertex A and C to the
edges DE and BI, respectively.

Step 6: Draw a vertical line from I to a horizontal line
generated in Step 2. Let the intersection point be
J (edge IJ in Figure 2(b)).

Step 7: Join the points H and J .

Lemma 3 If n(Rθ(a, b)) is the number of axis parallel
triangles in the above partition algorithm of Rθ(a, b),
then n(Rπ

4
(a, b)) ≥ n(Rθ(a, b)) for 0 ≤ θ ≤ π/4.

Proof. The value of n(Rθ(a, b)) depends on the edge
length L(DF) of DF (see Figure 2(b)). If L(DF) in-
creases then n(Rθ(a, b)) decreases and vice versa. Here,
L(DF) = 2b

sin(2θ) . Therefore, the minimum value of

L(DF) is attained at θ = π/4. Thus, n(Rπ

4
(a, b)) ≥

n(Rθ(a, b)) for 0 ≤ θ ≤ π/4. �

Similarly, we can say that if the value of θ varies from
π/4 to π/2 then also n(Rπ

4
(a, b)) ≥ n(Rθ(a, b)) by a

slight modification of the partitioning algorithm. Thus,
we have the following lemma:

Lemma 4 For fixed values of a and b, n(Rπ

4
(a, b)) ≥

n(Rθ(a, b)) for 0 ≤ θ ≤ π/2.

From now on, we consider the value of θ equal to π/4
for worst case complexity analysis of arbitrarily oriented
rectangular range search. We also use the notation
n(R(a, b)) for n(Rπ

4
(a, b)). The estimate of n(R(a, b))

in terms of a and b follows from the following lemma:

Lemma 5 n(R(a, b)) = ⌊a
b ⌋ + 7.

Proof. Here, L(DF) = 2b and for each L(DF) length
of the edge DI the partitioning algorithm creates two
axis parallel triangles, namely ∆DEF and ∆EFG (see
Figure 2(b)). So, the total number of such triangles is
⌊a−b

b ⌋. The number of other types of triangles in the
partition is 8 (see Figure 2(b)). Thus, n(R(a, b)) =
⌊a

b ⌋ + 7. �

Theorem 6 A set S of N points in the plane can be

stored in a data structure of size O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2) disk

blocks such that arbitrarily oriented rectangular range
search can be performed in O(a

b logB N(log
B

N
log

B
log

B
N)2 +

K/B) I/Os in the worst case, where a and b (≤ a) are
the side lengths of the query rectangle.

Proof. The space complexity follows from the fact that
it uses only the data structure for axis parallel triangu-

lar range search of size O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2) disk blocks

(see Theorem 2). The number of axis parallel trian-
gles of the query rectangle is ⌊a

b ⌋ + 7 in worst case (see
Lemma 5) and for each such triangle the query I/Os is

O(logB N(log
B

N
log

B
log

B
N)2 +K/B) (see Theorem 2). Thus,

the theorem follows. �

Corollary 7 A set S of N points in the plane can be

stored in a data structure of size O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2) disk

blocks such that sufficiently fat rectangular range search
can be performed in O(logB N(log

B
N

log
B

log
B

N)2 + K/B)

I/Os.

Proof. For sufficiently fat rectangles, a
b can be con-

sidered a constant. Thus, the Corollary follows from
Theorem 6. �

CCCG 2010, Winnipeg MB, August 9–11, 2010

5 Conclusion

In this paper, we have proposed a data structure and
query algorithm for the open triangular range search
and the axis parallel triangular range search problems
on 2-dimensional point sets. The size of the data

structures are O(N
B

log1+ǫ

B
N

log
B

log
B

N) and O(N
B (

log1+ǫ

B
N

log
B

log
B

N)2)

disk blocks, respectively and the query complexities

are O(
log2

B
N

log
B

log
B

N + K/B) and O(logB N(log
B

N
log

B
log

B
N)2 +

K/B) I/Os, respectively. We have also proposed a data
structure and query algorithm for arbitrarily oriented
rectangular range search using the result of axis parallel
triangular range search, and showed that for sufficiently
fat query rectangles, the size of the data structure and
query I/Os remains the same as that of axis parallel tri-
angular range search. The axis parallel triangular range
search can also be adapted to other geometric queries
(e.g. points inside regular polygons, points between par-
allel lines). It can be extended to 3-dimensional points
using the result of 3-dimensional halfspace range query
proposed in [5].

The lower bound of the axis parallel triangular range
search is Ω(N

B
log

B
N

log
B

log
B

N) disk blocks for space and

Ω(logB N + K/B) I/Os for query. An open problem
is to reduce the gap between the lower bound and our
proposed complexity for the same problem.

Acknowledgements: The anonymous referees are
thanked for their comments which improved the qual-
ity of the paper. Thanks are due to Peyman Afshani
for pointing out an improvement in the lower bound.
The Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada is gratefully acknowledged for
financially supporting this research.

References

[1] L. Arge External memory data structures. Handbook

of Massive Data Sets, J. Abello, P. M. Pardalos, M.
G. C. Resende (eds.), pp. 313-358, Kluwer Academic
Publishers, Dordrecht, 2002.

[2] L. Arge, V. Samoladas and J. S. Vitter On two-
dimensional indexability and optimal range search in-
dexing. Symp. on Principles of Database Systems, pp.
346-357, 1999.

[3] L. Arge and J.S. Vitter Optimal external memory in-
terval management. SIAM J. on Computing, 32:1488-
1508,2003.

[4] P. K. Agarwal, L. Arge, J. Erickson, P. Franciosa and
J. S. Vitter, Effient searching with linear constraints,
J. of Computer and System Sc., 61:194-216, 2000.

[5] P. Afshani and T. M. Chan Optimal halfspace range
reporting in three dimensions. Symp. on Discrete Algo-

rithms, 180-186, 2009.

[6] P. K. Agarwal and J. Erickson Geometric range search-
ing and its relatives. In: B. Chazelle, J. E. Good-
man and R. Pollack, Editors, Advances in Discrete and
Computational Geometry, Contemporary Mathematics,
223:158, 1999.

[7] B. Chazelle Lower bounds on the complexity of poly-
tope range searching. J. of the American Mathematical

Society, 2:637-666, 1989.

[8] B. Chazelle and B. Rosenberg Simplex range report-
ing on a pointer machine. Computational Geometry:

Theory and Applications, 5:237-247, 1996.

[9] B. Chazelle, M. Sharir and E. Welzl Quasi-optimal up-
per bounds for simplex range searching and new zone
theorems. Algorithmica, 8:407-429, 1992.

[10] R. Cole and C. K. Yap Geometric retrieval problems.
Information and Control, 63:39-57, 1984.

[11] P. P. Goswami, S. Das and S. C. Nandy Triangular
range counting query in 2D and its application in find-
ing k nearest neighbors of a line segment. Computa-

tional Geometry: Theory and Applications, 29:163-175,
2004.

[12] M. Ishaque, D. L. Souvaine and N. Benbernou Data
structures for restricted triangular range searching.
Canadian Conference on Computational Geometry,
2008.

[13] J. Matousek Range searching with efficient hierarchical
cutting. Discrete Computational Geometry, 10:157-182,
1993.

[14] J. Matousek Geometric range searching. ACM Com-

puting Serveys, 26:421-461, 1994.

[15] Y. Nunez Non-orthogonal range searching. Technical

Report, 2007.

