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On Degeneracy of Lower Envelopes of Algebraic Surfaces

Kimikazu Kato ∗

Abstract

We analyze degeneracy of lower envelopes of algebraic
surfaces. We focus on the cases omitted in the ex-
isting complexity analysis of lower envelopes [Halperin
and Sharir 1993], and re-define the degeneracy from the
viewpoint of the adjacency structure and the number of
connected components. We also define badness of de-
generacy from such viewpoint and show how bad the
degeneracy can be. This research is intended to con-
tribute to a robust geometrical computation in the tol-
erant model.

1 Introduction

The importance of non-Euclidean Voronoi diagrams
is arising. For example, a power diagram (weighted
Voronoi diagram) is used to analyze the structure of
the protein [7]. The angular Voronoi diagram [2] and
the aspect ratio Voronoi diagram [1] are proposed as
a tool for analysis of algorithms concerning computer
vision. Among non-Euclidean Voronoi diagrams, the
algebraic Voronoi diagram is one of the most important
classes. Here “algebraic” means that the boundaries
are expressed as polynomials. Actually, the examples
enumerated above are all algebraic.

Concerning lower envelopes of algebraic surfaces,
Halperin and Sharir [3] showed an upper bound of com-
putational complexity. By analyzing the combinatorial
structure, they showed the upper bound is O(n2+ε) for
any ε. However it is under the assumption that the
surfaces are in a general position. It means that the dis-
cussion about degenerate cases is intentionally avoided.

From the viewpoint of real world applications, anal-
ysis of the degeneracy leads to robustness of computa-
tion. In such systems as computer-aided design (CAD)
and geography information system (GIS), which deal
with algebraic curves and surfaces, the tolerant model
is employed inside. In the tolerant model, in order to
handle the numerical error of computation, two points
are assumed as a same point if their distance is within
a given fixed small number. For example, the crossing
point of two general spline curves cannot be expressed
rigidly with double precision coordinate values. In the
tolerant model, even if three curves are conceptually as-
sumed to meet at one point, there might be a small
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region surrounded by the curves in reality. That kind
of unexpected topological situation is prone to errors,
and thus, for a robust computation, it is important to
enumerate all the topological situations in advance.

In this paper, we define the degeneracy of a lower en-
velope of algebraic surfaces and analyze the worst case of
degeneracy. As for a Euclidean Voronoi diagram, Sugi-
hara and Iri [6] invented a robust algorithm even for a
degenerate case. Although a similar robust algorithm
can be a ultimate goal, an algorithm is not discussed in
the present paper. We will just classify possible topo-
logical situation around degenerate point. That will di-
rectly be helpful for an enumeration of test cases for
software which uses algebraic objects.

As a start-up of this line of research, Muta and the
author [5] showed classification of singularities of the
angular Voronoi diagram. It was considered that singu-
larities were key point to analyze the degeneracy of the
algebraic Voronoi diagram and classification of singular-
ities was a first step to discuss the degeneracy. However,
in a general context, the current paper shows an evil de-
generacy may occur even without a singularity.

The rest of paper is organized as follows. In Sect. 2,
we give some definition of terms and define degeneracy.
We analyze the worst cases of degeneracy in Sect. 3.
Then we conclude in Sect. 4.

2 Preliminaries

In the paper by Halperin and Sharir [3], they considered
patches of algebraic surfaces to define a lower envelope
and the algebraic surfaces used there can be general;
i.e. a surface is defined by f(x, y, z) = 0 where f in
polynomial in x, y, z. However, in this paper, we restrict
the domain. We only consider surfaces expressed as
z = f(x, y) and assume that a surface is not a patch;
i.e. the surface contains no boundary condition and is
expressed by z = f(x, y) alone.

Definition 1 (Lower envelope of surfaces) For a
given set of surfaces in the xyz-space, the projection of
a set of lowest parts of S in z-direction, into xy-plane
is called a lower envelope of S. In other words, when a
set of surfaces S is given as

S =
{

Si

∣∣∣ Si =
{
(x, y, z)

∣∣ z = fi(x, y)
}}

, (1)
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then the lower envelope D of S is defined as

D =
{

Di

∣∣∣
Di =

{
(x, y)

∣∣ fi(x, y) < fj(x, y) for ∀j
}
, Di 6= ∅

}
.

(2)

In this paper, we only focus on the case when fi’s are
all polynomials with coefficients in R. In such a case,
we simply say D is a diagram of {fi}, or an algebraic
diagram if not mentioning fi’s. To introduce a compu-
tational error model to a lower envelope, we consider a
parameterized algebraic diagram defined as follows.

Definition 2 A parameterized algebraic diagram Dε is
a lower envelope of a set of algebraic surfaces

Sε =
{

Sεi

∣∣∣ Sεi =
{
(x, y, z)

∣∣ z = fi(x, y, ε)
}}

, (3)

where fi is polynomial in x, y, ε. In other words, Dε is
defined as

Dε =
{

Dεi

∣∣∣
Dεi =

{
(x, y)

∣∣ fi(x, y, ε) < fj(x, y, ε) for ∀j
}
, Dεi 6= ∅

}
,

(4)

for a set of polynomials fi(x, y, ε)

For a small ε, Dε emulates a behavior of a diagram
with a numerical error. When we say “give a pertur-
bation to Dε”, it means “consider Dε for a sufficiently
small ε.”

In short, a diagram is called degenerate if its pertur-
bation gives a change of its topological structure. Then,
what is a “change of topological structure?” In the Eu-
clidean Voronoi diagram, it only means the adjacency
structure of regions. However, in the algebraic diagram,
there is another case to consider: the number of con-
nected components of a region might change.

Before defining the degeneracy, we define an adjacent
graph of a algebraic diagram as follows.

Definition 3 Suppose that a diagram D is defined by
polynomials f1, . . . , fn. Then, an adjacent graph G =
(V,E) of a diagram D is an undirected graph whose
vertex set is V = {1, . . . , n} and whose edge set is
E =

{
(i, j)

∣∣ Di is adjacent to Dj via a curve
}
.

Now we define two types of degeneracy as follows.

Type I The case when the adjacency graph changes
with a perturbation.

Type II The case when the number of connected com-
ponents of a region changes with a perturbation.

The Type I degeneracy is a generalization of degen-
eracy of Euclidean Voronoi diagram. Type II only ap-
pears in an algebraic diagram. Note that, since we do
not consider patches of surfaces, other degenerate cases
mentioned in [3] – the case when two boundary meet,
singular point of a surface lies on a boundary of another
patch, etc. – are omitted intentionally.

The followings are examples of degeneracy.

Example 1 When polynomials are given as

f1 = (x − 1 − ε)2 + y2, f2 = (x + 1 + ε)2 + y2,

f3 = x2 + (y − 1 + ε)2, f4 = x2 + (y + 1 − ε)2, (5)

then D0 is shown as Fig. 1a, which is a degenerate case
of a Euclidean Voronoi diagram. By giving ε a pertur-
bation, its topological structure changes as in Fig. 1b
(ε > 0) or Fig. 1c (ε < 0). This is an example of Type
I degeneracy. Actually, the adjacency graph is changed
as ε perturbs.

(a) ε = 0 (b) ε > 0 (c) ε < 0

Figure 1: Example of Type I degeneracy

Example 2 Suppose that polynomials are given as

f1 = (y − x2)(y + x2 − ε), f2 = 0. (6)

Then, when ε = 0, the region D1 =
{
(x, y)

∣∣ f1(x, y) <

f2(x, y))
}

has two connected components (Fig. 2a). By
giving ε a perturbation, the number of its connected com-
ponents becomes three for ε > 0 (Fig. 2b), and becomes
one for ε < 0 (Fig. 2c).

(a) ε = 0 (b) ε > 0 (c) ε < 0

Figure 2: Example of Type II degeneracy
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3 Analysis of degeneracy

For the Euclidean Voronoi diagram, the adjacency
graph of the regions can only be a planar graph, but
for the algebraic diagram, it can become arbitrary.

Since adjacency graph can be arbitrary for the alge-
braic diagram, the thinkable worst case is that a cyclic
graph becomes a perfect graph. The following shows it
really happens.

Theorem 1 Consider a lower-envelope defined by

fi(x, y, ε) =
(

x cos
iπ

n
− y sin

iπ

n

)2

+ ε

(
x sin

iπ

n
+ y cos

iπ

n

)4

−
(

x sin
iπ

n
+ y cos

iπ

n

)2

. (7)

Then its adjacency graph changes from a cyclic graph
to a perfect graph as ε changes from ε = 0 to ε > 0
(Fig. 3).

(a) ε = 0

(b) ε > 0

Figure 3: Example of a worst case of Type I

Proof. When ε = 0, by substituting (r cos θ, r sin θ) for
(x, y), fi can be expressed as

fi(r cos θ, r sin θ, 0) = −r cos
(

2θ − 2iπ

n

)
, (8)

Thus

fi < fj for ∀j (9)

⇔ cos
(

2θ − 2iπ

n

)
> cos

(
2θ − 2jπ

n

)
for ∀j (10)

⇔ (2i − 1)π
2n

< θ <
(2i + 1)π

2n

or π +
(2i − 1)π

2n
< θ < π +

(2i + 1)π
2n

. (11)

Define the region dominated by fi as Ri, then the in-
equality above means Ri is adjacent to Ri+1 for i =
0, . . . , n − 2, and Rn−1 is adjacent to R0. Thus the
adjacency graph for fi’s is cyclic.

As for ε > 0, we will only consider the area sufficiently
near to the line y = 0. By expanding the inequality
fi(x, 0) > fj(x, 0), we obtain

cos
2iπ

n
+ εx2 sin4 iπ

n
> cos

2jπ

n
+ εx2 sin4 jπ

n
, (12)

Regard Ri and Rn−i as the same region, and denote
it by R′

i (i.e. R′
i = Ri ∪ Rn−i). Then by the formula

above, the diagram around y = 0 is equivalent to the
lower envelope of gi(x) = cos 2iπ

n +εx2 sin4 iπ
n . Since the

graph of y = gi(x) appears as Fig.4, R′
i is proved to be

adjacent to R′
i+1 for i = 0, . . . , bn/2c.

y

x

...

y = g0(x)
y = g1(x)

y = g2(x)

y = g3(x)

Figure 4: The graph of gi’s

Then, we will analyze the component of R′
i. Because

fi(x, y) − fn−i(x, y)

= 8xy cos
iπ

n
sin

iπ

n

(
ε

(
x2 cos2

iπ

n
+ y2 sin2 iπ

n

)
− 1

)
,

(13)

in the area x > 0, the dominance in R′
i depends on the

sign of y and ε
(
x2 cos2 iπ

n + y2 sin2 iπ
n

)
−1. Consider the

equation ε
(
x2 cos2 iπ

n

)
−1 which is given by substituting

0 for y in the latter formula, and denote its solution by
α. Then, when defining βi > 0 as the solution of the
equation

cos
2iπ

n
+εx2 sin4 iπ

n
= cos

2(i + 1)π
n

+εx2 sin4 (i + 1)π
n

,

(14)
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x = α

y = 0

Ri

Ri

Rn−1

Rn−1

Figure 5: The component of R′
i

R1

Rn−1 R1

Rn−1 R2

Rn−2 R2

Rn−2

· · ·

· · ·

Ri−1

Rn−i+1 Ri

Rn−i Ri

Rn−i

· · ·

· · ·

Figure 6: Diagram around y = 0

· · ·

· · ·

Ri−1

R[n−i+j+1] Ri

R[n−i+j] Ri

R[n−i+j]

· · ·

· · ·

Figure 7: Diagram around y = 0 after a rotation

With some simple calculation, it can be proved that
βi−1 < α < βi. Since βi is the boundary between R′

i

and R′
i+1, the boundary of Ri and Rn−i appears in both

y > 0 part and y < 0 part in R′
i. Thus the component

of R′
i appears as Fig. 5.

Overall coloring around y = 0 in the area x > 0 is
shown as Fig. 6, and it shows Ri is adjacent to Rn−i+1

and Rn−i. By transferring (x, y) by(
x′

y′

)
=

(
cos jπ

n sin jπ
n

− sin jπ
n cos jπ

n

)(
x
y

)
(j = 0, · · · , n − 1),

and applying the same discussion as above, the diagram
becomes Fig. 7 (where [m] = m mod n), and thus Ri is
adjacent to R[n−1+j] and R[n−i+j+1]. This means all the
possible combination of Ri and Rj appears as adjacent
regions. ¤

Now we will consider the worst case for Type II. The
more largely the number of crossing points of bound-
aries changes, the worst we can say it is. How much
the number of crossing points can change? Here, be-
cause of the difficulty of analysis on general cases, we
show some examples only under the assumption that the
lower-envelope is expressed by two polynomials, and f1

is degree d and f2 = 0.
Under that condition, Bézout’s theorem explained

bellow tells that the thinkable worst case is when f1

can be factorized into two polynomials whose degrees
are

(a) ε = 0 (b) ε > 0

Figure 8: Example of a worst case of Type II; when d
mod 4 = 2

(a) ε = 0 (b) ε > 0

Figure 9: Example of a worst case of Type II; when d
mod 4 = 0

1. d
2 and d

2 for even d; and

2. d−1
2 and d+1

2 for odd d.

Theorem 2 (Bézout, see [4] for example) In the
two dimensional projective space P2

K for an algebraically
closed field K, suppose that two polynomials f and g
whose degree are m and l respectively are given. Then
the number of crossing point of f = 0 and g = 0 is ml
including the multiplicity.

The following example shows it really achieves the
thinkable maximum number of self crossing points.

Example 3 Consider the lower-envelope given by

f1 =
[
εl1y −

l1∏
i=0

(x − iε)
][

εl2x −
l2∏

i=0

(y − iε)
]
, f2 = 0,

(15)
where {

l1 = l2 = d
2 (d is even)

l1 = d−1
2 , l2 = d+1

2 (d is odd)
(16)

Then, the number of crossing points of boundaries
changes from 1 to d2

4 (for even d) or d2−1
4 (for odd d)

as ε changes from 0 to ε > 0.

Typical picture of this example for even d is shown
in Fig. 8 and Fig. 9. Note that for even d/2 and ε = 0,
the region dominated by f2 is empty and a boundary
appears as y = 0 (see Fig. 9a).
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4 Conclusion

We have defined degeneracy of a lower envelop of alge-
braic surfaces from the viewpoint of a perturbation of
topological structures, and have shown some examples
which are considered as the worst cases. The examples
shown might seem to be too artificial because it is un-
der a very general setting and especially the error model
employed here is too arbitrary from the practical point
of view, but we showed possibility of evilness in compu-
tation of the algebraic diagram. It is an important step
toward a robust implementation of a application which
utilizes geometric objects. Furthermore, we shed a light
on a combinatorial aspect of a perturbation of a set of
algebraic surfaces.
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