
CCCG 2010, Winnipeg MB, August 9–11, 2010

Constrained k-center and Movement to Independence

Adrian Dumitrescu∗ Minghui Jiang†

Abstract

We obtain hardness results and approximation algo-
rithms for two related geometric problems involving
movement. The first is a constrained variant of the k-
center problem, arising from a geometric client-server
problem. The second is the problem of moving points
towards an independent set.

1 Introduction

Given a set S of n points in the plane, the k-center
problem is to find k congruent disks of minimum ra-
dius r that cover S [1, p. 276]. We study the following
constrained variant of the k-center problem:

Constrained k-center

Instance: A set P = {p1, . . . , pn} of n black points and
a set Q = {q1, . . . , qk} of k red points in the plane.
P and Q are not necessarily disjoint.

Problem: Find a set D = {D1, . . . , Dk} of k disks con-
strained to the set Q = {q1, . . . , qk} of k red points
(that is, for 1 ≤ j ≤ k, the disk Dj contains the
corresponding red point qj) such that all points in
P are covered by the union of the disks in D, and
the maximum radius of the disks in D is minimized.

The problem Constrained k-center is the geomet-
ric version of a movement problem originally proposed
by Demaine et al. [3] in the graph-theoretical setting:
Given a connected graph G in which some vertices are
occupied by clients and some vertices are occupied by
servers, the problem Facility-location Movement

is that of moving both the clients and the servers in the
graph until each client occupies the same vertex as some
server, such that the maximum movement of a client
or a server is minimized; here the distance is the path
length in the graph. The authors [3] observed that a 2-
approximation can be achieved simply by keeping each
server at its original location and moving each client
to its nearest server. Friggstad and Salavatipour [7]
showed that this simple 2-approximation is in fact best

∗Department of Computer Science, University of Wisconsin–

Milwaukee, USA. Email: dumitres@uwm.edu. Supported in part

by NSF CAREER grant CCF-0444188.
†Department of Computer Science, Utah State University, Lo-

gan, USA. Email: mjiang@cc.usu.edu. Supported in part by

NSF grant DBI-0743670.

possible: Unless P = NP, Facility-location Move-

ment is NP-hard to approximate within 2 − ε for any
constant ε > 0.

Here we focus on the geometric version, where the
clients and servers are points in the Euclidean plane (or
more generally, in R

d), and the movement is measured
as the Euclidean distance, rather than the number of
edges of a path in the graph. The task is to determine a
movement of the clients and servers, so that in the end,
each client coincides with some server, and the maxi-
mum movement is minimized.

Let P be the set of clients, and Q be the set of
servers, where |P | = n and |Q| = k. Usually k is much
smaller than n. Let us first observe that our Con-

strained k-center problem is essentially the same
as the Facility-location Movement problem. In-
deed, consider an optimal solution to the Facility-

location Movement problem with maximum move-
ment λ. Then the disks of radius λ centered at the
server locations after the movement cover all clients
and servers at their original locations. Conversely, con-
sider a set of disks, say of radius λ, in an optimal so-
lution to Constrained k-center. Then moving the
clients and the server contained in each disk (with ties
broken arbitrarily) to its center, gives a solution to
the Facility-location Movement problem with the
maximum movement at most λ.

The afore-mentioned 2-approximation works in this
setting as follows. Let d denote the maximum black-
red (client-server) distance obtained by assigning each
black point to its closest red point. Let OPT denote an
optimal solution and ALG denote the solution returned
by the algorithm. Then clearly

OPT ≥ d

2
, and ALG = d, (1)

and the ratio 2 immediately follows. It is worth observ-
ing that the algorithm which keeps fixed each red point
achieves ratio 2 even on the line: place two red points at
0 and 2+ε, and two black points at 1+ε and 3+ε. Then
OPT = (1 + ε)/2, while ALG = 1 (this tight example
can be easily extended for a larger number of points).

We first show that the approximation lower bound for
the problem remains close to 2 already for the planar
variant.

Theorem 1 Constrained k-center in the plane is
NP-hard to approximate within 1.8279.

22nd Canadian Conference on Computational Geometry, 2010

On the other hand, we have the following positive
result showing that constant approximations for Con-

strained k-center can be obtained by a fixed param-
eter tractable algorithm [8] with k as the parameter.

Theorem 2 For any given ε > 0, there exists a (1+ε)-
approximation algorithm for Constrained k-center

in the plane that runs in O(ε−2k · n) time. Moreover,
there exist: a 1.87-approximation algorithm that runs
in O(3kk ·n) time, a 1.71-approximation algorithm that
runs in O(4kk ·n) time, and a 1.61-approximation algo-
rithm that runs in O(5kk · n) time.

In the second part of the paper, we study another
movement problem proposed by Demaine et al. [3]:

Movement to Independence

Instance: A set P = {p1, . . . , pn} of n points in R
d,

and a threshold distance ∆.

Problem: Find a set Q = {q1, . . . , qn} of n (target)
points in R

d, one point qi ∈ Q for each point
pi ∈ P , such that the minimum pairwise distance
mini,j |qiqj | among the points in Q is at least ∆,
and that the maximum movement maxi |piqi| from
any point pi ∈ P to the corresponding target point
qi ∈ Q is minimized.

There is a natural connection between Movement

to Independence and the dispersion problem in a
set of congruent disks. The problem of dispersion in
a given set of disks is that of selecting n points, one in
each disk, such that the minimum inter-point distance
is maximized.

Dispersion in congruent disks

Instance: A set {D1, . . . , Dn} of n congruent disks.

Problem: Find a set Q = {q1, . . . , qn} of n points,
one point qi ∈ Q in each disk Di, such that the
minimum pairwise distance mini,j |qiqj | among the
points in Q is maximized.

The dispersion problem was introduced by Fiala
et al. [6] in a more general setting as “systems of dis-
tant representatives”, generalizing the classic problem
“systems of distinct representatives”. See also [2, 4].
Fiala et al. [6] showed that dispersion in unit disks is
NP-hard. As a corollary we obtain

Theorem 3 Movement to Independence in the
plane (and in higher dimensions) is NP-hard.

Let P = {p1, . . . , pn} be a set of n points in R
2. De-

note by OPT(x) the minimum maximum movement for
the instance (P, x) of the problem Movement to In-

dependence in R
2 (that is, the value of the optimal

solution to this instance). Demaine et al. [3] presented
a polynomial-time algorithm for Movement to Inde-

pendence on an instance (P, 1) with maximum move-
ment at most OPT(1)+1+ 1√

3
. Their algorithm moves

the points to the grid points of an equilateral trian-
gular lattice of unit side. By a scaling argument, this
algorithm can be turned into an algorithm for (P, x)
for any x > 0, with maximum movement at most
OPT(x) + (1 + 1√

3
)x. We have the following comple-

mentary result:

Theorem 4 There exists a polynomial-time approxi-
mation algorithm for Movement to Independence

in the plane that moves any given set P of n points in
R

2 to another set Q of n points in R
2, with a maximum

movement no more than the minimum maximum move-
ment necessary for a threshold distance of 1, and such
that the minimum pairwise distance among the points
in Q is at least c = 1

3+2/
√

3
= 0.24

2 The Two Problems on the Line and on a Closed

Curve

As a warm-up exercise, we first study the two problems
Constrained k-center and Movement to Inde-

pendence on the line and on a closed curve. The dis-
tance between two points on a closed curve is the length
of the shorter subcurve determined by the two points.
In these two settings, both problems can be solved ex-
actly in polynomial time.

Proposition 1 There exists an exact algorithm run-
ning in O((n + k) log(n + k)) time for Constrained

k-center on the line.

Proof. Observe that there exists an optimal solution
consisting of a set of k disjoint intervals Ij = [uj , vj],
1 ≤ j ≤ k, such that uj, vj ∈ P ∪ Q and qj ∈ Ij for
j = 1, . . . , k. We next show that such a solution can be
computed in O(n log n) time by dynamic programming.

Order the n+k points in P ∪Q from left to right with
indices 1, . . . , n + k; in case of ties, put the red points
before black points. Let s1, . . . , sk be the indices of the
k red points, 1 ≤ s1 < . . . < sk ≤ n + k. Partition the
list P ∪Q of n + k points into k + 1 contiguous sublists
L0, L1, . . . , Lk such that, for 1 ≤ j ≤ k, the red point sj

is the first point in Lj (the sublist L0 contains no red
points). For each point i in P ∪Q, 1 ≤ i ≤ n+k, denote
by j[i] the index j, 0 ≤ j ≤ k, such that the point i is in
the sublist Lj. For each point i such that 1 ≤ j[i] ≤ k,
denote by D[i] the minimum interval length of j = j[i]
intervals, constrained to the red points s1, . . . , sj , that
cover the points in P ∪ Q from 1 to i.

Denote by dist(i1, i2) the distance between two points
with indices i1 and i2 in P ∪ Q. The dynamic pro-
gramming algorithm has the following base case for each

CCCG 2010, Winnipeg MB, August 9–11, 2010

i ∈ L1,
D[i] = dist(1, i),

and the following recurrence for each i ∈ Lj, j =
2, . . . , k,

D[i] = min
t∈Lj−1

max
{

D[t], dist(t + 1, i)
}

.

Note that D[t] is an increasing function of t for t ∈
Lj−1, and that dist(t + 1, i) is a decreasing function
of t for 1 ≤ t < i. Thus, by a binary search, we can
compute D[i] for each i ∈ Lj in O

(

log(|Lj−1| + 1)
)

time, for increasing values of j from 2 to k. The desired
entry is D[n + k]. The overall running time is clearly
O((n + k) log(n + k)). �

Proposition 2 There exists an exact algorithm run-
ning in O(1

k (n+k)2 log(n+k)) time for Constrained

k-center on a closed curve.

Proof. A closed curve containing n black points and k
red points has a subcurve containing at most n/k black
points between two red points. For each pair of con-
secutive points on this subsurve, we can cut the curve
between the pair and obtain an instance of the problem
Constrained k-center on a line. There are at most
(n + k)/k such instances on a line, and each of them
can be solved exactly in O((n + k) log(n + k)) time by
Proposition 1. The overall optimal solution for these in-
stances on a line is an optimal solution for the original
instance on a closed curve. �

Proposition 3 There exists a polynomial-time exact
algorithm based on linear-programming for Movement

to Independence on the line.

Proof. Sort the points in P by increasing x-coordinates
a1 ≤ a2 ≤ . . . ≤ an. Observe that in an optimal solu-
tion, no two points in P need to swap their order. Let
x1 ≤ x2 ≤ . . . ≤ xn be the new x-coordinates of the
points after the move (the ith point moves from ai to
xi). Computing an optimal solution amounts to solving
the following linear program with the n variables xi and
3n − 1 constraints:

minimize z (LP1)

subject to

xi+1 − xi ≥ ∆, 1 ≤ i ≤ n − 1
xi − ai ≤ z, 1 ≤ i ≤ n
−xi + ai ≤ z, 1 ≤ i ≤ n �

While Movement to Independence on the line is
always feasible, this is not the case for the new variant
on a closed curve. Let γ be a closed curve of length
L = |γ|. Obviously, Movement to Independence on
γ admits a solution if and only if L ≥ n∆. We show
next that an exact solution can still be found via linear-
programming.

Proposition 4 There exists a polynomial-time exact
algorithm based on linear-programming for Movement

to Independence on a closed curve.

Proof. For simplicity, we can assume that γ is drawn in
the plane as a circle centered at the origin, and that the
input points (in P) are numbered counterclockwise, as
1, . . . , n on γ, and their initial positions (γ-coordinates)
are 0 ≤ a1 ≤ a2 ≤ . . . ≤ an < L. Refer to the point
whose γ-coordinate is 0 as the origin of γ. As in the
proof of Proposition 3, it is crucial to observe that there
exists an optimal solution such that the circular order
of the points in P on γ remains the same. Moreover,
OPT ≤ L/2, since the distance on γ from any (input)
point to any other point is at most L/2.

Let xi ∈ [0, L], i = 1, . . . , n, be the new γ-coordinates
of the points after an optimal move (the ith point moves
from ai to xi). Note that these coordinates uniquely
identify the movement of the points, since OPT ≤ L/2.
Observe also that in an optimal solution, not all the
points move in the same direction on γ (clockwise or
counterclockwise): indeed, assuming such a move, the
smallest of the moves can be canceled out from each
move, with a strict decrease in the optimal solution,
which would be a contradiction.

Consider an optimal solution O such that the circular
order of the points in P on γ remains the same. Assign
a + sign to each point that moves counterclockwise in
O, and a − sign to each point that moves clockwise in
O (points that do not move can be assigned any sign
arbitrarily). By our previous observation, we can as-
sume that not all signs are the same, and consequently,
there exist two adjacent points on γ with opposite signs
moving away from each other in the optimal solution
O. We pick a new origin of γ between these two points
(or coincident with one of them), and find an optimal
movement for the points, subject to the constraint that
no point crosses the origin of γ. We do this for all n
pairs of adjacent points on γ.

It remains to show that these n cases can be im-
plemented as n linear programs with the n variables
xi, where each LP has O(n) constraints. Fix a pair
of adjacent points as described above. Assume that
0 ≤ a1 ≤ a2 ≤ . . . ≤ an < L are the new γ-coordinates
of the n points on γ. These coordinates can be com-
puted in O(n) time as they implement a simple circular
shift. An optimal movement for the points amounts to
solving the following linear program:

22nd Canadian Conference on Computational Geometry, 2010

minimize z (LP2)

subject to

x1 ≥ 0,
xn ≤ L,
xi+1 − xi ≥ ∆, 1 ≤ i ≤ n − 1
x1 + L − xn ≥ ∆,
xi − ai ≤ z, 1 ≤ i ≤ n
−xi + ai ≤ z, 1 ≤ i ≤ n

The algorithm first checks whether the feasibility con-
dition is met, and assuming it is, it solves the n linear
programs (one for each adjacent pair of points on γ)
and then selects the LP whose solution gives the overall
minimum z. �

3 NP-hardness of Constrained k-center

Proof of Theorem 1. We show that Constrained k-
center is NP-hard by a reduction from the NP-hard
problem Planar-3SAT [9]. A reduction for k-center
based on similar ideas, however from another problem
Planar-Vertex-Cover, appears in [5]. Let (V, C, G)
be a Planar-3SAT instance, which consists of a set
V of n boolean variables, a set C of m clauses that are
disjunctions of three literals, and a planar embedding G
of the bipartite graph with a vertex for each variable and
each clause, and with an edge connecting a variable to a
clause if and only if a literal of the variable occurs in the
clause. We will construct a Constrained k-center

instance consisting of a gadget for each variable, clause,
and literal.

literal

a

b c

o
clause

literal

literal

Figure 1: Connection between three literals in a clause.
The three red points a, b, c (drawn as empty circles) come
from three different literals, and are placed at the vertices of
an equilateral triangle inscribed in a circle centered at the
shared black point o; |oa| = |ob| = |oc| = 2. The black point
o in the clause gadget is covered only if at least one of the
three literals is true. In this example, the literal of c is true,
and the literals of a and b are false.

We now describe our construction. The gadget for
each clause is a single black point. The gadget for each

variable is a closed chain of alternating black and red
points. The gadget for each literal is an open chain of
alternating black and red points, with a black point at
one end and a red point at the other end. The clause and
variable gadgets model the vertices of the planar graph.
The literal gadgets model the edges: each literal gadget
is connected to the corresponding clause gadget at the
end with a red point, and to the corresponding variable
gadget at the end with a black point. We illustrate in
Figure 1 the connection between the gadgets of a clause
and its three literals, and in Figure 2 the connection
between the gadgets of a literal and its variable. The
distance between consecutive black and red points in
each variable or clause gadget is exactly 2 (which is the
diameter of unit-radius disk) except at the junctions
where a literal gadget is connected to a variable gadget
(between c and e in Figure 2).

negative literal

a

b

c

d

e f

variable

positive literal

Figure 2: Connection between a variable and its literals.
The four points d, c, e, f are part of a variable gadget; the
two points a, b are part of a literal gadget; a, b, c, d are
collinear; b, c, e are on a circle of unit radius; ef ⊥ ad;
|ab| = |cd| = |ef | = 2, |ac| = |bd| = |bf | = |cf |. Red
points are drawn as small empty circles. Large solid and
dotted circles (of unit radius) correspond to true and false
assignments, respectively.

Write x = |bc|/2 for the configuration in Figure 2.
Then |ac| = |bd| = 2 + 2x, and

|bf | = |cf | =

√

(

√

1 − x2 + 3
)2

+ x2.

Let x be the solution to the equation

2 + 2x =

√

(

√

1 − x2 + 3
)2

+ x2,

CCCG 2010, Winnipeg MB, August 9–11, 2010

and let y = 1 + x. Then |ac| = |bd| = |bf | = |cf | = 2y,
and y is the solution to the following quartic equation

4y4 − 11y2 − 18y + 25 = 0.

A calculation shows that y = 1.8279 Assume that
1 ≤ r < y in the following. It is easy to check that for
any such r, a disk of radius r that contains a red point
can contain at most one black point in our construction,
except at the junction between each literal and its vari-
able, where a disk may contain the red point e and the
two black points b and c as in Figure 2. Now set the
parameter k to the number of red points in the construc-
tion. Then the Planar-3SAT formula is satisfiable if
and only if the Constrained k-center instance has
a feasible solution with k disks of radius r. The slack-
ness in the disk radius r implies that Constrained

k-center is NP-hard to approximate within y − ε for
any constant ε > 0. 2

4 Approximation for Constrained k-center

Proof of Theorem 2. The idea of our approxima-
tion algorithm is very simple, namely to enumerate the
approximate positions of an optimal constrained disk
cover. Fix an optimal solution O = {Ω1, . . . , Ωk}. Sup-
pose that the red point qj is covered by a disk Ωj of
radius r∗ in the solution O. Then the center cj of Ωj is
contained in a disk Dj of radius r∗ centered at qj .

It is well-known that a disk of radius 1 can be covered
by three smaller disks of radii

√
3

2
, whose centers form

an equilateral triangle, as shown in Figure 3. Now place
three points around the red point qj in an equilateral
triangle formation (in some arbitrary orientation) such
that the distance from qj to each point is 1

2
r∗. Hence the

disk Dj is covered by three smaller disks, Ej1, Ej2, Ej3

of radius
√

3

2
r∗ centered at the three points. Recall that

cj is contained in Dj, so it is covered by one of the disks
Ej1, Ej2, Ej3. Let Fj1 ⊃ Ej1, Fj2 ⊃ Ej2, Fj3 ⊃ Ej3, be

three larger concentric disks of radius (
√

3

2
+1)r∗. Since

Ωj has radius r∗, it is covered by one of the larger disks

Fj1, Fj2, Fj3 of radius (
√

3

2
+ 1)r∗. So all black points

covered by Ωj are also covered by one of these three
larger disks.

By the preceding observation, given any candidate
radius r, we can either find a feasible solution of k disks

of radii (
√

3

2
+ 1)r by enumerating one of three possible

disks for each red point and testing the black points for
containment, all in O(3kk ·n) time, or decide (correctly)
that there is no feasible solution with radius r. By (1),
we can find a radius r̄ such that 1

2
r∗ ≤ r̄ ≤ r∗ in O(kn)

time. Then, by a binary search in the range [r̄, 2r̄], we

can obtain a (
√

3

2
+1+ε)-approximation in O(3kk ·log 1

ε ·
n) time, which is linear in n for any constants k and ε.

Figure 3: Covering a disk of radius 1 by three smaller disks
of radius

√
3/2. The three sides of the equilateral triangle

inscribed in the unit-radius disk are the diameters of the
three smaller disks. The distance from the center of the
unit-radius disk to the center of each smaller disk is 1/2.

In particular, since
√

3

2
+ 1 = 1.8660 . . ., we have a 1.87-

approximation algorithm that runs in O(3kk · n) time.
Similarly, a disk of unit radius can be covered by

four disks of radius
√

2/2 = 0.707 . . ., and we get a
1.71-approximation in O(4kk · n) time. By an old re-
sult of Neville [10], a disk of unit radius can be covered
by five disks of radius 0.609383 . . ., and we get a 1.61-
approximation in O(5kk · n) time. To obtain a finer
approximation, note that a disk of radius 1 can be cov-
ered by O(ε−2) disks of radius ε. Our algorithm can be
obviously generalized to obtain a (1+ ε)-approximation
in O(ε−2k · n) time. 2

5 Movement to Independence: NP-hardness and

Approximation

Proof of Theorem 3. To verify the NP-hardness, we
make a reduction from the problem Dispersion in

congruent disks in a set D of disks of radius λ via
the following claim, whose proof is immediate from the
definitions of the two problems.

Claim. Dispersion in unit disks in a set D of disks
of radius λ is feasible if and only if Movement to

Independence for the center points of the disks in D
can be attained with a maximum movement at most λ.

This concludes the proof of Theorem 3. 2

Proof of Theorem 4. Let δ be the minimum pairwise
distance mini,j |pipj | of the points in P . We claim that
if δ ≤ x ≤ 1, then

OPT(1) ≥ OPT(x) + (1 − x)/2.

To see that the claim is true, imagine all points move
from start configuration to target configuration with the
same speed as in an optimal solution for OPT(1). Pause
the points as soon as their minimum pairwise distance
is x. Then the movement is at least OPT(x) before the
pause and at least (1 − x)/2 after the pause.

Let c = 1

3+2/
√

3
= 0.24 We now give an algorithm

that moves the points to minimum pairwise distance

22nd Canadian Conference on Computational Geometry, 2010

at least c using maximum movement at most OPT(1).
Consider two cases:

(1) δ ≥ c Stay put.

(2) δ < c Use the algorithm of Demaine et al. [3] with
a smaller grid of size x = c. Then the maximum
movement is at most

OPT(c) +

(

1 +
1√
3

)

c ≤ OPT(1) − (1 − c)

2

+

(

1 +
1√
3

)

c = OPT(1). 2

References

[1] F. Aurenhammer and R. Klein, Voronoi dia-
grams, in Handbook of Computational Geometry
(J-R. Sack and J. Urrutia, eds.), Chap. 5, Else-
vier, 2000, pp. 201–290.

[2] S. Cabello: Approximation algorithms for spread-
ing points, Journal of Algorithms, 62 (2007), 49–
73.

[3] E. D. Demaine, M. Hajiaghayi, H. Mahini, A. S.
Sayedi-Roshkhar, S. Oveisgharan, and M. Zadi-
moghaddam, Minimizing movement, ACM Trans-
actions on Algorithms, 5 (2009), article 30.

[4] A. Dumitrescu and M. Jiang, Dispersion in
unit disks, Proc. 27th Int. Sympos. on The-
oretical Aspects of Computer Science Nancy,
France, March 2010, pp. 311–322. Also at
http://arxiv.org/abs/0912.2125.

[5] T. Feder and D. H. Greene, Optimal algorithms for
approximate clustering, Proc. 20th ACM Sympos.
on Theory of Computing, 1988, pp. 434–444.

[6] J. Fiala, J. Kratochv́ıl, and A. Proskurowski, Sys-
tems of distant representatives, Discrete Applied
Mathematics, 145 (2005), 306–316.

[7] Z. Friggstad and M. R. Salavatipour, Minimizing
movement in mobile facility location problems, in
Proc. 49th IEEE Sympos. on Foundations of Com-
puter Science, 2009, pp. 357–366.

[8] P. Giannopoulos, C. Knauer, and S. Whitesides,
Parameterized complexity of geometric problems,
Computer Journal, 51(3) (2008), 372–384.

[9] D. Lichtenstein, Planar formulae and their uses,
SIAM Journal on Computing, 11 (1982), 329–343.

[10] E. H. Neville, On the solution of numerical func-
tional equations, illustrated by an account of a pop-
ular puzzle and of its solution, Proc. of the London
Mathematical Society, 14 (1915), 308–326.

