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Coloring geometric hypergraphs defined by an arrangement of half-planes

Radoslav Fulek∗†

Abstract

We prove that any finite set of half-planes can be colored
by two colors so that every point of the plane, which
belongs to at least three half-planes in the set, is covered
by half-planes of both colors. This settles a problem of
Keszegh.

1 Introduction

By a hypergraph H = (V,E) we understand a system
of sets E whose elements, which are called hyperedges,
are drawn from the set V . By a k-coloring of H we
understand a mapping χ : V → C, where |C| = k. We
say that an edge e is monochromatic under the coloring
χ, if χ(v) is the same for all the vertices v in e. Then we
define the chromatic number of H to be the minimum k
such that there exists a k-coloring χ of H, which does
not make any edge in E monochromatic.

Let H = H(H) = (V,E) denote a hypergraph having
the finite set of closed half-planes H in R2 as the set of
vertices, and whose hyperedges correspond to the set of
points covered by at least three half-planes in H. More
formally, for each point p ∈ R2 covered by at least three
half-planes in H the hyperedge ep ∈ E is the set of
half-planes H containing p. Notice that all the points
belonging to the same region in the arrangement of the
lines which define half-planes in H, correspond to the
same hyperedge. Keszegh in [7] asked (in the settings of
dual weak conflict-free coloring) what is the tight upper
bound on the chromatic number of H. We will prove
the following.

Theorem 1 For any finite set of closed half-planes H
the chromatic number of H(H) is at most two. More-
over, a witnessing 2-coloring can be constructed in de-
terministic time O(|V | log |V |).

The general problem of coloring hypergraphs is well
studied and its investigation can be traced back to
1970’s. We note that it is NP-hard to decide, whether
a given hypergraph is 2-colorable. The same holds even
if we restrict ourselves to 3-regular hypergraphs [6].
Hence, probably there is no nice characterization of 2-
colorable hypergraphs, if we require all hyperedges to
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have at least three vertices, which is our case. Two well
known conditions for a hypergraph H, which are easy to
check, and each of which implies 2-colorability, are (1)
H is balanced, (2) any union of m hyperedges contains
at least m + 1 vertices (see e.g. [5]). However, neither
of them can be applied in our case.

At the end of this section we would like to point out
that one can rephrase our problem in the setting of cov-
ering decomposition, see [8]. For some recent results in
the area see e.g. [9, 10]. Thus, we can say that we want
to divide H into two parts so that any point p in the
plane covered by at least three elements of H is cov-
ered by a half-plane in each part. Hence, the immediate
consequence of Theorem 1 is the following.

Corollary 2 Every 3-fold covering of the plane by a
finite set of closed half-planes is decomposable into two
parts.

2 Preliminaries

From now on let H denote a finite set of closed half-
planes in R2 in the following general position: no half-
plane in H is defined by a vertical line, no two half-
planes in H are defined by two parallel lines, and no
three half-planes in H are defined by three lines inter-
secting in a common point. By a standard perturbation
argument one can show that if the chromatic number of
H(H) is at most two, for anyH in general position, then
the same holds for any finite set of closed half-planes H′
in R2.

We say that a half-plane in R2 is upper (lower), if
it is defined as a set of points (x, y) ∈ R2 satisfying
y ≤ ax + b (y ≥ ax + b), for some a 6= 0, b ∈ R. We
can partition H into two parts HU and HL containing
upper and lower half-planes, respectively.

By the point-line duality in the plane we understand
a transformation that takes the point (a, b) ∈ R2, a 6= 0,
to the line y = ax − b and the line y = ax + b, a 6= 0,
to the point (a,−b). Our duality preserves point-line
incidence and above-below relationship.

By the point-line polar duality in the plane we under-
stand a transformation that takes the line ax+ by = 1,
(a, b) 6= (0, 0) to the point (a, b) and vice versa.

By the dual of a half-plane h defined by a line y ≤
ax + b (y ≥ ax + b) in the point-line duality we under-
stand a vertical ray r starting at (a,−b) having down-
ward (upward) direction. This extension of the duality
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is natural, since a point p ∈ h, if and only if its dual line
intersects r.

Let RU and RL denote the set containing vertical
rays dual to the elements in HU and HL, respectively.
Let R = RU ∪RL.

Using the point-line duality we can naturally recast
our coloring problem so that instead of half-planes we
are coloring the vertical rays in R and we require that
any line l intersecting at least three rays in R intersects
rays of both colors (see Figure 2).

Let PU and PL denote the sets of the starting points
of the rays in RU and RL, respectively. Let P =
PU ∪ PL. Note that PU and PL could be also defined
as the sets of the points dual to the lines defining the
half-planes in HU and HL, respectively. We denote by
P0

U and P0
L the subsets of PU and PL, respectively, con-

taining the vertices of the upper and lower, respectively,
hull of the points in PU and PL, respectively. Having
defined Pi

U and Pi
L, we define Pi+1

U and Pi+1
L as the

subsets of PU \
⋃

j≤i P
j
U and PL \

⋃
j≤i P

j
L, respectively,

containing the vertices of the upper and lower, respec-
tively, hull of the remaining points.

If it does not lead to a confusion, we will be referring
interchangeably to the vertices and hyperedges of H via
primal or dual setting. We also refer to the vertices of H
as to the elements of P. We call a 2-coloring of the half-
planes in H good, if it does not leave any region covered
by at least three half-planes in H monochromatic, or in
other words, if it witnesses that χ(H) = 2.

Claim 3 In order to prove Theorem 1, it is enough to
prove it for the arrangements of half-planes H, such that
for H = H(H) the following holds: For each v ∈ V the
intersection of all hyperedges of size 3, that contain v,
is {v}.

Proof. We define inductively a set V ′ as follows. At
the beginning let V ′ stand for an empty set. If there

is a point v in V , so that
∣∣∣∣⋂ v∈e
|e|=3, e∈H\V ′

e

∣∣∣∣ 6= 1, where

H \V ′ represents the restriction of H to V \V ′ without
hyperedges of size smaller than three, remove v from V
and put it into V ′. Repeat the above process until no
such a point v is found. The claim follows easily from
the observation below.

(*) If we can 2-color H \ V ′ then we can 2-color H.

Given a good 2-coloring χ of H \ V ′, we extend it in-
ductively to a good 2-coloring of H. We will be remov-
ing (and coloring) vertices from V ′ to V in the order,
which is the opposite one to the order, in which they
were removed. Let v denote a vertex removed from V ′

to V at one step. Let u ∈ ⋂ v∈e
|e|=3, e∈H\V ′

e = Vv, such

that v 6= u, if Vv 6= ∅. We color the added vertex v ∈ V ,

l

RL

RU

Figure 1: Dual settings

so that χ(v) 6= χ(u) if Vv 6= ∅. Otherwise we color v ar-
bitrarily. As we have not introduced a monochromatic
hyperedge at any step, our coloring of H is valid. �

Let (p1, . . . pn) denote a sequence of points of P. Let
l denote a line in the plane. The condition l(p1, . . . pn)
is true if and only if l intersects the vertical rays in
R corresponding to the points p1, . . . pn. We use the
symbol ¬ in front of l(p1, . . . pn) to indicate its negation.
Let x(p) denote the x-coordinate of the point p. We
write p < q for two points in the plane if x(p) < x(q).
We say that a point r in Pi

U (Pi
L) is between p ∈ Pi

U

(Pi
L) and q ∈ Pi

U (Pi
L) if p < r < q.

Let p1, p2, p3 . . . denote the points in Pi
U (Pi

L) accord-
ing to the order of their appearance on the hull from left
to right.

The following claim allows us to consider only sets of
half-planes H without ”dummy” elements. Let pj and
pj+1 stand for a fixed pair of vertices in P0

U (P0
L). In

the spirit of Claim 3 we have:

Claim 4 We can assume that there are at most three
points between pj and pj+1 in P1

U (P1
L).

Among these (at most) three points there is at most one
special point p such that there exist lines lj, lj+1 for
which lj(p, pj), lj+1(p, pj+1), ¬lj(pj+1), ¬lj+1(pj), and
¬lj(q),¬lj+1(q) for all the points q, q 6= p, pj < q <
pj+1 in P1

U (P1
L). Let us call these (at most) three points

by p′1, p = p′2 and p′3, so that p′1 < p < p′3.
Moreover, if there is no special point between pj and

pj+1 in P1
U (P1

L), we can assume that there is no point
at all between pj and pj+1.

Proof. We give the proof only for the upper hull case,
because the other case is symmetric.

The uniqueness of the special point p follows eas-
ily, since if there are two special points p′1 and p the
line l′j+1, such that l′j+1(p′1, pj+1), ¬l′j+1(p),¬l′j+1(pj),
would have to cross lj three times (contradiction) (see
Figure 2 for an illustration).

For the rest of the claim consider a line l for which
l(pj) and ¬l(pj+1). Moreover, l(p′) for some p′ ∈ P1

U
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Figure 2: Illustration for the proof of Claim 4

so that pj < p′ < pj+1. Then we can translate l into
a position such that we obtain a line l′, so that l′(pj),
¬l′(pj+1), and l′(p′′) for exactly one p′′ ∈ P1

U such that
pj < p′′ < pj+1. If there is no special point p, the
point p′′ can be always colored with the color, which
is opposite to the color of pj . Thus, we can disregard
all the points in P1

U between pj and pj+1. Otherwise,
there is a special point p, and any point p′ ∈ P1

U , for
which pj < p′ < p (resp. pj+1 > p′ > p), that does not
immediately precede (resp. follow) p on the upper hull
of P1

U , can be contained in a hyperedge of H of size 3
only together with pj (resp. pj+1). Thus, by Claim 3
we can remove it. �

The case analysis in the main section is based on the
following observation. Let U and L denote the upper
and lower hull, respectively, of the finite set of points
PU and PL.

Observation 1 If L and U intersect, then at least one
of the following two sets is not empty: PL ∩U , PU ∩L.

Let p ∈ P0
U , and q ∈ P0

L, p < q. Let lU and rL denote
the points (if they exist) preceding and succeeding p
and q, respectively, on their respective hulls. Moreover,
we assume that for the line l containing lU , p we have
l(q), and for the line l′ containing q, rL we have l′(p).
The following simple lemma is a crucial ingredient in
the proof of the main theorem.

Lemma 5 Suppose that PU does not contain any point
to the right of p, and PL does not contain any point to
the left of q. Then there exists a good 2-coloring of P,
which colors p with blue, q with red, all the vertices in
PU between lU and p by red, and all the vertices in PL

between q and rL by blue color. Moreover, if there is
no vertex in PU between lU and p, lU is colored by red,
and if there is no vertex in PL between q and rL, rL is
colored by blue color.

Proof. There are two cases to consider (see the upper
part of Figure 3 for an illustration) according to the
position of the intersection of the two lines: lUp and qrL.
In the figures the points are depicted by squares, discs
and circles representing uncolored vertices, and vertices
colored by blue, and red color, respectively. A grey area

lU q
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p
rL

lU
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rL
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Figure 3: Lemma 5

depicts a region that does not contain any point from
P in its interior.

First, assume that neither l intersects qrL, nor l′ in-
tersects lUp. In this case we color every point to the
right of q with blue color and every point to the left of
p with red color.

Hence, we can assume that l′ intersects lUp (the other
case is symmetric) (see the lower part of Figure 3 for an
illustration).

If there is a line m, for which m(rL, p, p′) for some
p′, q < p′ < rL, p′ ∈ PL, and ¬m(p′′) for all p′′ ∈ PL,
p′′ > rL, or p′′ ∈ PU , p′′ < p, we color lU and rL with
red, the points between q and rL with blue color, and
the rest is colored with red.

Otherwise (if there is no such line m) we color lU
with red, rL with blue, the points between q and rL
with blue, and the rest of the points with red color.

It is straightforward to check that our 2-coloring is
good in every considered case, and that it satisfies the
required properties. �

3 Proof of Theorem 1

First let us assume that there is point p ∈ R2 that is
not covered by any half-plane in H. Without loss of
generality we can suppose that p is the origin. We use
the polar duality transformation on the lines defining
the half-planes in H thereby obtaining a set of points
PP . Let LP denote the set of line segments pp′, where
p′ ∈ PP . Now, it is enough to two color the line seg-
ments in LP so that any line intersecting at least three
line segments in LP intersects line segments of both col-
ors.

Let P ′ stand for a finite set of points in the plane. We
define a hypergraph H ′ = (P ′, E′), s.t. a hyperedge in
E′ is the intersection of a closed half-plane with P ′ of
size at least three. We use the algorithm from [7], which
gives a 2-coloring of a finite set of points P ′ in the plane
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Figure 4: Case (a)

witnessing the fact that the chromatic number of H ′ is
at most 2, to color the points in PP . A good coloring
of the line segments in LP is obtained by assigning to
any line segment the color of its endpoint in PP .

Thus, we can assume that the whole plane is covered
by the half-planes in H.

Let uphull(PU ) and lowhull(PL) denote the upper and
lower hull of PU and PL, respectively. Note, that the
assumption about covering the plane by the half-planes
in H translates in the dual setting to the assumption
that uphull(PU ) and lowhull(PL) intersect. Thus, by
using Observation 1 we obtain a point p ∈ P0

U (w.l.o.g.)
contained in lowhull(PL). Hence, we have two points
lL, rL ∈ P0

U , lL < p < rL, such that there is no point
q ∈ P0

L, for which lL < q < rL. Let v denote a vertical
line through p. W.l.o.g we can assume that if p is the
leftmost point in PU , |PU | = 1.

If |PU | > 1, let h denote the line through p, which is
the extension of the side of uphull(PU ) ending at p (if we
traverse the hull from the left to right). Let lU denote
the other endpoint of this side. Let rU denote the point
following p on the upper hull (if it exists). The lines
v and h divide the plane into 4 regions (see Figure 4).
Depending on the containment of lL and rL in these
4 regions, on the existence of an intersection between
segments lLrL and lUp, and on whether lL < lU holds,
we distinguish the following 4 cases.

In each of the cases below we define a good 2-coloring
χ ofH. In the figures the points are depicted by squares,
discs and circles representing uncolored vertices, and
vertices colored by blue, and red color, respectively. A
grey area depicts a region that does not contain any
point from PU or PL in its interior.

a) In this case we have: rL is above h, which implies
that lUp and lLrL do not intersect each other (see
Figure 4).

We color the points as follows: χ(p) = χ(rL) =
χ(lL) = blue, and the remaining points by red.

Everything is fine, as any non-vertical line intersects
a ray corresponding to p, rL or lL. Moreover, a line
cannot intersect all the rays corresponding to p, rL
and lL without intersecting the ray corresponding to
lU .

b) In this case we have: rL is below h, lUp and lLrL do
not intersect each other, and lL < lU (see Figure 5
left).

We color the points as follows: χ(p) = χ(rL) = blue
and χ(lU ) = χ(lL) = red. We color the points q,
q ∈ PU , q < p or q ∈ PL, q > rL by red, and the
remaining points q, q ∈ PU , q > lU or q ∈ PL, q < lL
by blue. The points in PU between lU and p can
be, in fact, colored arbitrarily. Let p′1, p

′
2, p
′
3 ∈ PL

denote the points from Claim 4 between lL and rL
(if they exist). We color p′1 by blue and p′3 by red. If
there exists a line l such that l(lL, p′2, p

′
3), ¬l(p′1) and

¬l(rL), we color p′2 with blue (see Figure 5 right),
otherwise we color p′2 with red. We color the other
points in PL between p′1 and p′3 with the color which
is opposite to the color of p′2. The rest of the points
to the left of p′2 is colored by blue and to the right
of p′2 by red.

It is easy to check that the 2-coloring we defined is
good.

c) In this case we have: rL is below h, and lUp and lLrL
intersect.

Let χ(p) = blue and χ(lL) = red (the color of lL
might be changed in some of the following cases).
Let r′L (l′L) denote the point following rL (preceding
lL) on the lower hull (if it exists).

First, we assume that either rL is above the line prU ,
or rU does not exist. Observe that we can assume
that rU does not belong to lowhull(PL). Indeed, oth-
erwise rU can play the role of the point p and we eas-
ily reduce our situation to case (a). In what follows
we distinguish several cases:

(1) There exists a line l, for which we have
l(lL, rL, rU ) (resp. l(rL, lL, lU )), and ¬l(q), for
all q ∈ PU , q > rU (resp. q ∈ PU , q < lU ), and
for all q ∈ PL, q < rL, q 6= lL (resp. q ∈ PL,
q > lL, q 6= rL) (see Figure 6).
We put χ(lU ) = red and χ(rU ) = χ(rL) = blue
(resp. χ(lU ) = χ(lL) = blue and χ(rU ) =
χ(rL) = red). We color the rest of the points
by red (resp. blue).
Everything is fine, as a non-vertical line that
does not intersect any of the rays corresponding
to p, rL or rU (resp. p, lL or lU ), cannot inter-
sect any ray besides lL (resp. rL). Moreover, a
line cannot intersect all the rays corresponding
to p, rL and rU (resp. p, lL and lU ).

(2) The triangle lLrLr′L does not contain any point
from PL in its interior (see Figure 7). The sit-
uation when rLlLl

′
L does not contain any point

from PL can be handled by symmetry.
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Figure 5: Case (b)

p

lU
rU

rLlL

l

Figure 6: Case (c1)
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rU

lL
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p r′
L

Figure 7: Case (c2)

We put χ(lL) = χ(r′L) = blue, and χ(rU ) =
χ(rL) = red. We delete the points in PL be-
tween lL and r′L, except rL, since they can be al-
ways colored with red color. We color the points
r ∈ PU , r > p and r ∈ PL, r < lL with red, and
apply Lemma 5 with p as p and rL as q in order
to color the rest of the points. Note that r′L was
not recolored by Lemma 5.
The coloring we define in this case does not
have to be good, as lL, lU and p might form the
monochromatic hyperedge (see Figure 8). How-
ever, in this case we can color everything by red
color, except lL, lU and rL.

(3) The triangle lUprU does not contain any point
from PU in its interior (see Figure 9), and none
of the above happens.
We put χ(lU ) = χ(rU ) = χ(rL) = red. We
delete all the points in PU between lU and rU ,
except p, since they can be always colored with
blue color. We color all the points in PL between
lL and rL with blue color. We apply Lemma 5
with p as p and rL as q in order to color the
points in PU to the left of p and in PL to the
right of rL. Analogously, we apply the reversed
version of Lemma 5 with p as p and lL as q in

rL
p

lUlL

Figure 8: The hyperedge formed by lL, lU and p

p

lU
rU

rLlL

l′L
r′
L

Figure 9: Case (c3)

lU
rU

lL rLp r′
Ll′L

Figure 10: Case (c4)

order to color the points in PU to the right of
p and in PL to the left of lL. Again, neither lU
nor rU is recolored.
It is easy to check that the 2-coloring we de-
fined is good, using the fact that we excluded
the previous cases ((c1), (c2)). Indeed, if there
is a line l, such that l(rU , rL, lL), by excluding
case (c1), the line l ”can cause a problem” only if
l(l′L). However, by excluding case (c2) the trian-
gle lLrLl′L is not empty, and it contains a point
colored by blue color. Nothing else ”bad” can
happen by the coloring constructed in the proof
of Lemma 5.

(4) None of the previous cases occurs.
We put χ(rL) = red (see Figure 10). We apply
Lemma 5 twice. First, with p as p and rL as
q, and then we apply its version with reversed
orientation of the x-axis with p as p and lL as q.
Finally, we color all the vertices in PL between
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Figure 11: The hyperedge formed by l′L, lU and p
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Figure 13: Case (d)

lL and rL with blue color.
Note that if both lU and rU receive blue color,
lU , p, and rU cannot form the monochromatic
hyperedge, since the triangle lUrUp contains an
element from PU , which is in this case colored
with red color. Similarly, we can handle the sit-
uation if r′L or l′L receive red color. On the other
hand, it can still happen that either l′L, lU , p or
r′L, rU , p form the monochromatic (blue) edge
(analogously to case (c2)) (due to symmetry we
treat only the first case). However, by the color-
ing constructed in the proof of Lemma 5, if that
is the case (see Figure 11), we color everything
by red color, except l′L, lL, lU and rL. Here, we
also used the fact that the triangles lUrUp and
l′LlLrL are not empty.

Otherwise, rL is below the line prU , and the line
through lL and rL cannot intersect the segment prU ,
and the line through p and rU cannot intersect the

segment lLrL (see Figure 12). Indeed, otherwise we
could end up, after reversing the x or y-axis, in case
(a) with p or rL playing the role of p. Similarly, we
can assume that rU > rL, as otherwise we could end
up in case (b).

We color lL with blue color, rL and rU with red
color. We color the points r ∈ PU , r > rU and
r ∈ PL, r < rL with blue. We color the remaining
points r ∈ PU , r > p with red. Finally, we apply
Lemma 5 with p as p and rL as q. It is easy to see
that our coloring is good.

d) In this case we have: rL is below h, lUp and lLrL do
not intersect each other, and lL > lU (see Figure 13).

We color the points as follows: χ(p) = χ(rL) = blue
and χ(lU ) = χ(lL) = red. We color the points p′ ∈
PU , p′ < p and p′ ∈ PL, p′ > rL with red color. We
color the remaining points p′ ∈ PL, p′ > lL with blue
color. If there is no other point then we are done.
Otherwise there exists a point r, which is either in
PU , s.t. r > p, or in PL, s.t. r < lL. We can
assume that there is a point r ∈ P0

U following p on
the upper hull (because of the symmetry), s.t. r >
rL and r lies below the line through pr. Indeed,
otherwise we could reduce the situation to one of the
previous cases. Moreover, the line through lLrL does
not intersect the segment lvp for the same reason.
We color r with blue color, and the rest of the points
with red color. Our coloring is fine by the same
argument as in case (a).

Note that if |PU | = 1, the situation can be handled as
a special case of case (c4).

As for the algorithmic part of the statement. It is
easy to see that the above proof can be turned into an
algorithm which 2-colors H. Moreover, it is also easy
to see that the bottle necks of the algorithm are con-
structing a convex hull (see e.g [12]), sorting the points
in P according to the x-coordinate, and running the al-
gorithm from [7] (in case when there is an uncovered
point of the plane). Since each of these operations re-
quires the claimed running time, and each of them is
carried out constant number of times, the rest of the
theorem follows.

4 Discussion

The problem we consider in this paper was originally
stated in the setting of conflict-free coloring defined as
follows1.

Let P denote a finite set of points in R2. Let R
denote a set (possibly infinite) of regions (subsets of
R2). A conflict-free coloring of P with respect to R is

1We decided to formulate it as a hypergraph coloring problem,
because we found it more natural.
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an assignment χ of colors {1, . . . k} to the points in P ,
such that for any range r ∈ R, the set P ′ := P ∩ r
contains a point p ∈ P ′ of unique color c ∈ {1, . . . k},
i.e. for all p′ ∈ P ′, s.t. p′ 6= p, we have χ(p) 6= χ(p′).
For a weak conflict-free coloring we only require that P ′

is not monochromatic, i.e. if |P ′| > 1, P ′ contains two
different points p, q such that χ(p) 6= χ(q).

In the dual version of conflict-free coloring instead
of finite set of points P we fix a finite set of regions
R (subsets of R2). A conflict-free coloring of R with
respect to a set of points P ⊆ R2 is an assignment χ of
colors {1, . . . k} to the regions in R, so that any point
p ∈ P covered by at least one region in R is covered
by a region in R of unique color (in the same sense as
above). Similarly, in the weak version of dual conflict-
free coloring we require that if p ∈ P is covered by more
than two regions in R not all of them have the same
color.

In each of the above cases, chromatic number is de-
fined as the minimum number of colors needed to obtain
the desired coloring.

Thus, our problem can be stated as a problem of es-
timating chromatic number in the setting of dual weak
conflict free coloring with respect to the set of closed
half-planes.

Since the notion of conflict-free coloring was intro-
duced, many variants of the problem of estimating the
conflict-free chromatic number and its dual has been
considered, e.g. the instances of the problem where
the set of regions consists of discs [3, 13], rectangles
[1, 4, 11]. A generalization of our problem was recently
considered in [2, 14]. In fact, we strengthen a bit their
result in one special case, i.e. we proved that pH̃(2) = 32

(as defined there). Before, it was known that pH̃(2) ≤ 4
([7, 13]). It would be interesting to see whether the
ideas from our proof can be generalized and used to
strengthen Corollary 1 from [2].
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